1. Warmup. Given five points $A:(1,-5,2), B:(1,2,-1), C:(2,-1,0), D:(5,1,-1)$ and $F:(-12,1,1)$ follow the steps below to find the coordinates for the line $(A B \cap$ $C D) F$.
[2] (a) $L_{1}=\operatorname{line}(A, B)$
[2] (b) $L_{2}=\operatorname{line}(C, D)$
[2] (c) $E=\operatorname{point}\left(L_{1}, L_{2}\right)$
[4] (d) $L_{3}=\operatorname{line}(E, F)$
2. Find the matrix of the collineation that maps the standard frame to
[5] (a) $(0,1,1),(2,1,0),(1,0,3),(-4,1,10)$.
[5] (b) Use (a) or otherwise to find the matrix of the collineation that maps the frame above to the standard frame.
3. Seven points are given: $V:(1,1,1), A:(1,0,0), B:(0,1,0), C:(0,0,1)$ $A^{\prime}:(1+a, 1,1), B^{\prime}:(1,1+b, 1), C^{\prime}:(1,1,1+c)$.
[4] (a) Prove that the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are in perspective from a point.
[6] (b) Prove Desagues Theorem by showing directly that triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are perspective from a line.
[10]4. Find the matrix of the conic that satisfies these conditions:
(a) The polar of $(1,0,0)$ is $[0,1,3]$.
(b) The polar of $(-2,1,0)$ is $[1,2,-5]$.
(c) The point $(4,1,1)$ is on the conic.
[10]5. The following construction is given:
\mathcal{C} is a circle with center $O ;$
P is a point interior to $\mathcal{C} ;$
$\ell_{1}=$ line $(O, P) ;$
$\ell_{2}=$ perpendicular $\left(P, \ell_{1}\right) ;$
$\{S, T\}=\operatorname{meet}\left(\mathcal{C}, \ell_{2}\right) ;$
$\ell_{3}=$ line $(O, S) ;$
$\ell_{4}=$ perpendicular $\left(S, \ell_{3}\right) ;$

$$
Q=\operatorname{meet}\left(\ell_{4}, \ell_{1}\right) .
$$

Prove that P and Q are inverses with respect to \mathcal{C}.
[10]6. Let Σ be a circle with centre O. Let A be a point interior to $\Sigma, A \neq 0$. Give a construction for a circle Γ that is orthogonal to Σ and so that the inverse of A with respect to Γ is O.
[10]7. Let Σ be a circle with centre O and P be any point inside $\Sigma, P \neq 0, P \notin \Sigma$. Let L be the perpendicular bisector of the two points P and P^{Σ}. Let X be any point on L. Prove that the circle with center X and radius point P is orthogonal to Σ.
8. Let \mathcal{S} be the sphere $\left\{(u, v, w): u^{2}+v^{2}+(w-1)^{2}=1\right\}$. Let $N=(0,0,2)$ on \mathcal{S}. Let π be the plane $\{(x, y, 0): x, y \in \mathbb{R}\}$, tangent to \mathcal{S} at $(0,0,0)$. Consider stereographic projection from the point N.
[5] (a) Given the point (u, v, w) on \mathcal{S}, find $(x, y, 0)$ on π that is the projection of (u, v, w) from N.
[5] (b) Given $(x, y, 0)$ on π, find the coordinates of (u, v, w) on \mathcal{S} that is the projection of $(x, y, 0)$ from the point N.
[10]9. For $i=1,2$, let $H_{i}=\left[\begin{array}{cc}A_{i} & B_{i} \\ C_{i} & D_{i}\end{array}\right]$ represent two circles and $\Delta_{i}=\operatorname{det}\left(H_{i}\right)$. Let $2 \Delta_{12}=A_{1} D_{2}+A_{2} D_{1}-B_{1} C_{2}-B_{2} C_{1}$. Suppose that ω is the angle between the two circles. Suppose also that $\Delta_{1} \Delta_{2}-\left(\Delta_{12}\right)^{2} \geq 0$. Prove that $-1 \leq \cos \omega \leq 1$.
[3]10. (a) A circle is given by the Hermitian matrix $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$. Write the formula for inversion with respect to this circle.
[3] (b) For the particular circle

$$
(x-5)^{2}+(x-3)^{2}=16
$$

find the Hermitian matrix that represents it.
[4] (c) Using (a) and (b), or otherwise, find the formula that gives the inverse of the complex point z with respect to the particular circle given in (b).

