1. Fundamental theorem

(a) Find the matrix of the collineation that maps the standard frame of reference to the frame $\{(1,1,1),(1,2,0),(1,0,1),,(6,7,4)\}$.
(b) Using the answer to (a), find the images of the points $(1,-1,0)$ and $(0,-1,1)$ and the line $[1,1,1]$.

2. Equation of conic

Find the equation of the conic that is tangent to $[0,1,0]$ at $(1,0,0)$,
tangent to $[1,0,0]$ at $(0,1,0)$,
and contains the point $(2,3,1)$.

3. Theorem of Desargues

State the theorem of Desargues and show a sketch.

4. Theorem of Pappus

State the theorem of Pappus and show a sketch.

5. Hermitian Matrices

(a) Two circles in the complex plane are given by the Hermitian matrices $H_{1}=\left[\begin{array}{cc}1 & 3-4 i \\ 3+4 i & 0\end{array}\right]$ and $H_{2}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. Find the matrix in the pencil determined by H_{1} and H_{2} that represents a line.
(b) Find the Cartesian equations of the object represented by $\left[\begin{array}{cc}1 & -3-i \\ -3+i & -6\end{array}\right]$.
(c) Do the same for the matrix $\left[\begin{array}{cc}0 & -2+i \\ -2-i & 7\end{array}\right]$.

6. Inverses

You are given a cirlce Σ with centre O and a point P distinct from O.
(a) Give the best procedure you know for constructing P^{Σ}.
(b) Suppose P is inside Σ. Give a procedure for finding a circle Γ so that $\Sigma=\Sigma^{\Gamma}$ and $O=P^{\Gamma}$.

7. Orthogonal Circles

Suppose Σ is a circle with centre O and P and Q are distinct points that are inverses of each other with respect to Σ. Prove that any circle through both P and Q is orthogonal to Σ.

8. Stereographic Projection

Let \mathcal{S} be the sphere of radius 1 with centre at $(0,0,1)$. Let π be the plane with equation $z=0$. [Note that \mathcal{S} and π are tangent at $(0,0,0)$.]
Consider stereographic projection from the plane π to the sphere \mathcal{S} from the point $N=(0,0,2)$ that maps points (x, y) of π points $(u, v, w$,$) on \mathcal{S}$.
Find the equations for u, v, and w in terms of x and y.

9. Tangent Circles

Two cirlces C_{1} and C_{2} are given tangent to each other at P.
Give a procedure for finding a sequence of circles $D_{1}, D_{2}, D_{3} \cdots$ each tangent to the next and all tangent to C_{1} and C_{2}.

10. Imaginary Circles

Explain how to recognize an imaginary circle
(a) in terms of its Cartesian equation
(b) in terms of its Hermitian matrix
(c) in terms of its stereographic image.

