1. Homogeneous Coordinates

Let P, Q, R, and S be points given by

$$
P: p=\left(p_{1}, p_{2}, p_{3}\right), \quad Q: q=\left(q_{1}, q_{2}, q_{3}\right), \quad R: r=\left(r_{1}, r_{2}, r_{3}\right) \text { and } S: s=\left(s_{1}, s_{2}, s_{3}\right)
$$

For each of the following geometric statements about points, give an equivalent algebraic statement about their coordinate vectors.
[2] (a) The points P and Q are equal.
[3] (b) The points P, Q, and R are distinct and collinear.
[5] (c) The points P, Q, R, and S form a frame.

2. Collineation

Find the matrix of the collineation that maps the standard frame to the frame

$$
F_{1}:(2,0,3), \quad F_{2}:(0,1,5), \quad F_{3}:(2,1,0) \quad F_{4}:(2,8,3) .
$$

3. All tangents to a conic

Let Γ be the conic whose equation is

$$
3 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-2 x_{3}^{2}=0
$$

[2] (a) Find the matrix that represents Γ.
[2] (b) If $X: x=\left(x_{1}, x_{2}, x_{3}\right)$ is a point on Γ, and $M: m=\left[m_{1}, m_{2}, m_{3}\right]$ is the line tangent to Γ at X, then the vectors x and m are related by what equation?
[6] (c) Find the equation involving the coordinates of m that is necessary and sufficient for the line M to be tangent to Γ.

4. Matrix of a conic

Let Γ be the non-degenerate conic that

- contains $(1,0,0)$,
- is tangent to $[2,0,5]$ at $(0,1,0)$, and
- is tangent to $[2,3,0]$ at $(0,0,1)$.
[8] (a) Find the matrix of Γ.
[2] (b) Find the coordinates of the line tangent to Γ at $(1,0,0)$.

5. Polarity

A polarity of the plane is given by $A=\left[\begin{array}{rrr}2 & 0 & 4 \\ 0 & 1 & -3 \\ 4 & -3 & 0\end{array}\right]$.
[1] (a) Write the Cartesian equation of the conic associated with this polarity.
[2] (b) Find the polar line L of the point $(3,4,-10)$.
[4] (c) Find the coordinates of S and T, the points that are the intersection of L with Γ.
[3] (d) Find the point of intersection of the tangents to Γ at S and T respectively.

6. Inversion in the plane

A point P and a circle Σ are given. P is not at the centre of Σ. Give a construction for the inverse of P with respect to Σ. Prove that your construction is correct.

7. Cirlces in the Complex Plane

Two circles C_{1} and C_{2} are given.
C_{1} has centre $(3,4)$ and radius 5
C_{2} has centre $(2,1)$ and radius 1 .
[3] (a) Find the Hermitian matrices H_{1} and H_{2} that represent C_{1} and C_{2}, respectively.
[4] (b) Find the cosine of the angle determined by H_{1} and H_{2}.
[3] (c) Find an Hermitian matrix that represents the line in the pencil determined by H_{1} and H_{2}.

8. Stereographic Projection

Let \mathcal{S} be the sphere $\left\{(u, v, w): u^{2}+v^{2}+w^{2}=1\right\}$.
Let $S:(0,0,-1)$. Consider the stereographic projection from the plane $(x, y, 0)$ to the sphere \mathcal{S}, using S as the centre of projection.
Let C be the circle in the $x y$-plane given by $(x-4)^{2}+(y+3)^{2}=6^{2}$, and let D be the stereographic projection of C on \mathcal{S}.
Find the equation of the plane in 3 space that contains D.

9. Orthogonal Circles

[4] (a) Suppose C_{1} and C_{2} are any 2 circles with centres O_{1} and O_{2}, respectively. Let X be any point not on either circle and not on line $\left(O_{1}, O_{2}\right)$. Give a construction for a circle $K(X)$ that passes through X and is orthogonal to both C_{1} and C_{2}.
[6] (b) Suppose further that C_{1} and C_{2} are disjoint. It is a fact that, for any X as described above, $K(X)$ meets line $\left(O_{1}, O_{2}\right)$ in two points which are independent of X. Let Z be one of these intersection points and let Σ be any circle whose centre is Z. Let D_{1} and D_{2} be the inverses with respect to Σ of C_{1} and C_{2}, respectively. Prove that D_{1} and D_{2} have a common centre.

