PMath 360

Sample Final

2000

1. Homogeneous Coordinates

Let P, Q, R, and S be points given by

 $P: p = (p_1, p_2, p_3), \quad Q: q = (q_1, q_2, q_3), \quad R: r = (r_1, r_2, r_3) \text{ and } S: s = (s_1, s_2, s_3).$

For each of the following geometric statements about points, give an equivalent algebraic statement about their coordinate vectors.

- [2] (a) The points P and Q are equal.
- [3] (b) The points P, Q, and R are distinct and collinear.
- [5] (c) The points P, Q, R, and S form a frame.

2. Collineation

Find the matrix of the collineation that maps the standard frame to the frame

 $F_1: (2,0,3), F_2: (0,1,5), F_3: (2,1,0) F_4: (2,8,3).$

3. All tangents to a conic

Let Γ be the conic whose equation is

$$3x_1^2 + 2x_1x_2 + x_2^2 - 2x_3^2 = 0$$

- [2] (a) Find the matrix that represents Γ .
- [2] (b) If $X : x = (x_1, x_2, x_3)$ is a point on Γ , and $M : m = [m_1, m_2, m_3]$ is the line tangent to Γ at X, then the vectors x and m are related by what equation?
- [6] (c) Find the equation involving the coordinates of m that is necessary and sufficient for the line M to be tangent to Γ .

4. Matrix of a conic

Let Γ be the non-degenerate conic that

- contains (1, 0, 0),
- is tangent to [2, 0, 5] at (0, 1, 0), and
- is tangent to [2,3,0] at (0,0,1).
- [8] (a) Find the matrix of Γ .

[2] (b) Find the coordinates of the line tangent to Γ at (1,0,0).

5. Polarity

A polarity of the plane is given by $A = \begin{bmatrix} 2 & 0 & 4 \\ 0 & 1 & -3 \\ 4 & -3 & 0 \end{bmatrix}$.

- [1] (a) Write the Cartesian equation of the conic associated with this polarity.
- [2] (b) Find the polar line L of the point (3, 4, -10).
- [4] (c) Find the coordinates of S and T, the points that are the intersection of L with Γ .
- [3] (d) Find the point of intersection of the tangents to Γ at S and T respectively.

6. Inversion in the plane

A point P and a circle Σ are given. P is not at the centre of Σ . Give a construction for the inverse of P with respect to Σ . Prove that your construction is correct.

7. Cirlces in the Complex Plane

Two circles C_1 and C_2 are given.

 C_1 has centre (3, 4) and radius 5

 C_2 has centre (2, 1) and radius 1.

- [3] (a) Find the Hermitian matrices H_1 and H_2 that represent C_1 and C_2 , respectively.
- [4] (b) Find the cosine of the angle determined by H_1 and H_2 .
- [3] (c) Find an Hermitian matrix that represents the line in the pencil determined by H_1 and H_2 .

8. Stereographic Projection

Let S be the sphere $\{(u, v, w) : u^2 + v^2 + w^2 = 1\}.$

Let S: (0, 0, -1). Consider the stereographic projection from the plane (x, y, 0) to the sphere S, using S as the centre of projection.

Let C be the circle in the xy-plane given by $(x-4)^2 + (y+3)^2 = 6^2$, and let D be the stereographic projection of C on S.

Find the equation of the plane in 3 space that contains D.

9. Orthogonal Circles

- [4] (a) Suppose C_1 and C_2 are any 2 circles with centres O_1 and O_2 , respectively. Let X be any point not on either circle and not on line (O_1, O_2) . Give a construction for a circle K(X) that passes through X and is orthogonal to both C_1 and C_2 .
- [6] (b) Suppose further that C₁ and C₂ are disjoint. It is a fact that, for any X as described above, K(X) meets line (O₁, O₂) in two points which are independent of X. Let Z be one of these intersection points and let Σ be any circle whose centre is Z. Let D₁ and D₂ be the inverses with respect to Σ of C₁ and C₂, respectively. Prove that D₁ and D₂ have a common centre.