## 1. Inversion

Let C be any circle in the plane and let P be any point other than the centre of C .
(a) Give a construction for a point Q that is the inverse of P with respect to C .
(b) Prove that your construction works, namely that P and Q are inverses with respect to C .

## 2. Family of circles

Let F be the family of circles represented by the matrices

$$
\mathrm{H} 1=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \text { and } \mathrm{H} 2=\left[\begin{array}{cc}
1 & i \\
-i & -1
\end{array}\right] .
$$

(a) What is the radius of the circle given by H 2 ?
(b) Find the matrix of the line in F .
(c) Find the matrix of the circle in F that contains $1+2 i$.

## 3. Family of circles 2

Let W be any circle and let P be any point not on W and not at the centre of W . Let Q be the inverse of P with respect to W . Let F be the family of all circles on P and Q . Let $\Sigma$ be any circle with centre at P . Consider the images of all circles in F under inversion with respect to $\Sigma$. Describe the family of images. (Justify your statements).

## 4. Stereographic projection

Let $S=\left\{(u, v, w): u^{2}+v^{2}+w^{2}=1.\right\}$, the unit sphere in three space with centre at the origin. Consider stereographic projection using the point $\mathrm{N}:(0,0,1)$, from S to the xy plane. As usual identify the complex point $\mathrm{x}+\mathrm{y} i$ with the triple ( $\mathrm{x}, \mathrm{y}, 0$ ). You may assume that the map from S to the complex plane is given by

$$
(\mathrm{u}, \mathrm{v}, \mathrm{w}) \rightarrow \mathrm{x}+i \mathrm{y}=(\mathrm{u}+i \mathrm{v}) /(1-\mathrm{w})
$$

(a) Find the equation of the plane in three space that contains the stereographic image of the circle given by $\mathrm{H}=\left[\begin{array}{cc}1 & i \\ -i & 7\end{array}\right]$.
(b) Let $M$ be the plane with equation $3 u+4 v-5 w=1$. Find the Hermitian matrix representing the circle in the complex plane that is the stereographic image of the circle $S \cap M$.

## 5. Five points determine a conic

Find the matrix of the conic that contains the points
$\mathrm{X}:(1,0,0), \mathrm{Y}:(0,1,0), \mathrm{Z}:(0,0,1)$,
$\mathrm{U}:(1,1,1)$, and $\mathrm{S}:(1 / 29,1 / 31,1 / 37)$.

## 6. Collineation

Let four points in the Cartesian plane be given:

$$
\mathrm{A}:(0,0), \mathrm{B}:(1,0), \mathrm{C}:(9 / 10,7 / 10) \text {, and } \mathrm{D}:(0,8 / 10)
$$

(a) Find the homogeneous coordinates of these two points: $\mathrm{AB} \cap \mathrm{CD}$ and $\mathrm{BC} \cap \mathrm{DA}$ :
(b) Find the 3 by 3 matrix of the collineation that maps the homogeneous coordinates of the four points of the unit square $\mathrm{A}, \mathrm{B},(1,1)$, and $(0,1)$ to the homogeneous coordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D, respectively. (Hint: Use the answers to (a).)

