11 Plane \Leftrightarrow Sphere

In this section, let \mathcal{S} be the sphere in \mathbb{R}^{3} with centre $(0,0,0)$ and radius 1 . Let $N:(0,0,1) \in \mathcal{S}$ be the point of projection on \mathcal{S} so that a point $z=x+i y$ in the complex plane corresponds to a point $(u, v, w) \in \mathcal{S}$ if and only if the three points $N:(0,0,1),(u, v, w)$ and $(x, y, 0)$ are collinear. (This is the stereographic projection presented in lecture.)

11.1 An Hermitian matrix H_{1}

Consider the Hermitian matrix

$$
H_{1}=\left(\begin{array}{cc}
1 & -3-4 i \\
-3+4 i & -11
\end{array}\right)
$$

11.1.1 (*) Centre and radius

In the complex plane, find the centre and radius of the circle given by the equation

$$
(z, 1) H_{1}\binom{\bar{z}}{1}=0
$$

11.1.2 (*) The plane δ_{1}

Find the equation of the plane δ_{1} in \mathbb{R}^{3} such that the intersection $\delta_{1} \cap \mathcal{S}$ is the projection of H_{1} on the sphere \mathcal{S}.

11.2 A second Hermitian matrix H_{2}

Consider a second matrix H_{2} given by

$$
H_{2}=\left(\begin{array}{cc}
1 & 5-4 i \\
5+4 i & -99
\end{array}\right)
$$

and consider the one parameter family of circles given by $\lambda_{1} H_{1}+\lambda_{2} H_{2}$.

11.2.1 (*) A line

Find values of λ_{1} and λ_{2} that give the straight line in this family. Write the matrix and the Cartesian equation of this line.

11.2 .2 (*) $^{*} \Delta_{1}, \Delta_{2}$, and $\Delta_{1,2}$

Find the values Δ_{1}, Δ_{2}, and $\Delta_{1,2}$ associated with the quadratic form

$$
\operatorname{det}\left(\lambda_{1} H_{1}+\lambda_{2} H_{2}\right)=\Delta_{1} \lambda_{1}^{2}+2 \Delta_{1,2} \lambda_{1} \lambda_{2}+\Delta_{2} \lambda_{2}^{2}
$$

11.2.3 (*) $\cos (\omega)$

Find the value of the cosine of the angle determined by the directed circles H_{1} and H_{2} as a function of Δ_{1}, Δ_{2} and $\Delta_{1,2}$.

11.2.4 (*) $\Delta_{1} \Delta_{2}-\left(\Delta_{1,2}\right)^{2}$

Find the value of the discriminant $\Delta_{1} \Delta_{2}-\left(\Delta_{1,2}\right)^{2}$

Footnote
(*) Items marked with an asterisk should be submitted for marking.

