11 Plane \Leftrightarrow Sphere

In this section, let S be the sphere in \mathbb{R}^3 with centre (0,0,0) and radius 1. Let $N : (0,0,1) \in S$ be the point of projection on S so that a point z = x + iy in the complex plane corresponds to a point $(u, v, w) \in S$ if and only if the three points N : (0,0,1), (u,v,w) and (x,y,0) are collinear. (This is the stereographic projection presented in lecture.)

11.1 An Hermitian matrix H_1

Consider the Hermitian matrix

$$H_1 = \left(\begin{array}{cc} 1 & -3 - 4i \\ -3 + 4i & -11 \end{array} \right).$$

11.1.1 (*) Centre and radius

In the complex plane, find the centre and radius of the circle given by the equation

$$(z,1)H_1\left(\begin{array}{c}\overline{z}\\1\end{array}\right)=0$$

11.1.2 (*) The plane δ_1

Find the equation of the plane δ_1 in \mathbb{R}^3 such that the intersection $\delta_1 \cap \mathcal{S}$ is the projection of H_1 on the sphere \mathcal{S} .

11.2 A second Hermitian matrix H_2

Consider a second matrix H_2 given by

$$H_2 = \left(\begin{array}{cc} 1 & 5-4i\\ 5+4i & -99 \end{array}\right)$$

and consider the one parameter family of circles given by $\lambda_1 H_1 + \lambda_2 H_2$.

Set 11

11.2.1 (*) A line

Find values of λ_1 and λ_2 that give the straight line in this family. Write the matrix and the Cartesian equation of this line.

11.2.2 (*) Δ_1, Δ_2 , and $\Delta_{1,2}$

Find the values Δ_1, Δ_2 , and $\Delta_{1,2}$ associated with the quadratic form

$$\det \left(\lambda_1 H_1 + \lambda_2 H_2\right) = \Delta_1 \lambda_1^2 + 2\Delta_{1,2} \lambda_1 \lambda_2 + \Delta_2 \lambda_2^2$$

11.2.3 (*) $\cos(\omega)$

Find the value of the cosine of the angle determined by the directed circles H_1 and H_2 as a function of Δ_1 , Δ_2 and $\Delta_{1,2}$.

11.2.4 (*) $\Delta_1 \Delta_2 - (\Delta_{1,2})^2$

Find the value of the discriminant $\Delta_1 \Delta_2 - (\Delta_{1,2})^2$

Footnote

_ _ _ _ _

(*) Items marked with an asterisk should be submitted for marking.

2013-07-21