9 More reflection and inversion

9.1 Poincaré reflection

Let Ω be the circle that bounds a Poincaré model of the hyperbolic plane. Let O be the centre of Ω. Let A and B be two P -points in this hyperbolic plane. Suppose A, B, and O are not collinear.

In the following we ask for two constructions in the Poincaré plane: one for the P-line connecting two points A and B , and one for the P -line that is the perpendicular bisector between two points.

9.1.1 $\quad\left(^{*}\right) \quad L_{1}=$ P-line (A, B)

Construct P-line on A and B. ${ }^{1} \quad$ Make a Tool for the P-line (A, B) with respect to Ω. Submit your Construction Protocol.

These 5 items (i) through (v) are not to be submitted for marking. They are intended to allow you to sharpen your mental tools by getting some experience by using a Geogebra tool. Construct several Poincar lines, (i) some parallel (that is, "meeting" at a point on Ω), (ii) some non-intersecting, (iii) some intersecting. (iv) Construct a triangle with a very small angle sum. (v) Construct a triangle with angle sum zero?

[^0]
9.1.2 (*) $L_{2}=$ P-pbis (A, B)

Find a construction for a second P-line called L_{2} that reflects (inverts) A to B and B to A. ${ }^{2}$

When you find your construction, use software tools to verify to your satisfaction that your work is right. Move A about and watch L_{1} and L_{2} move, always orthogonal to Ω and to each other.

9.2 Inversions in the complex plane

If the Hermitian matrix H and the function f are given by

$$
H=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \text { and } f(z)=\frac{-C \bar{z}-D}{A \bar{z}+B}
$$

so that the matrix H represents the circle with equation $(z, 1) H(\bar{z}, 1)=0$, then the function f gives inversion with respect to the same circle. That is, for any z in the plane (except for the centre of the circle) the pair z and $f(z)$ are inverses with respect to the circle represented by the matrix H.

9.2.1 Σ, H_{1}, f_{1}

Let Σ be the circle in the complex plane with centre 0 and radius 10 .
9.2.1.1 $\quad(*) \quad$ Find H_{1}, the Hermitian matrix of $\Sigma .\left({ }^{*}\right)$
9.2.1.2 (*) Use the entries in H_{1} to write the function f_{1} that gives inverses of points with respect to $\Sigma .\left(^{*}\right)$

[^1]9.2.1.3 (*) Verify that the fixed points ${ }^{3}$ of f_{1} are exactly the points that satisfy the equation determined by the matrix H_{1}. That is, show that
$$
z=f_{1}(z) \Longleftrightarrow(z, 1) H_{1}(\bar{z}, 1)^{t}=0
$$

9.2.2 $\left(^{*}\right) \quad \Gamma, H_{2}, f_{2}$

Let Γ be circle with centre $(-4,3)$ and radius 5 . Let H_{2} be the matrix, representing Γ. Let f_{2} be the function for inverse points with respect to Γ. Do the same three tasks for H_{2} and f_{2} that you did for H_{1} and f_{1} in 9.2.1.

9.2.3 The product $\Sigma \cdot \Gamma \cdot \Sigma$

9.2.3.1 Recall that Γ goes through the centre of Σ. Convince yourself that the product of the three inversions, first with respect to Σ, then with respect to Γ, and then with respect to Σ again, might be expected to be a reflection with respect to a line.

9.2.4 The composition $f_{3}=f_{1} \circ f_{2} \circ f_{1}$

9.2.4.1 $\quad\left(^{*}\right) \quad$ Simplify the composition $f_{3}(x)=f_{1}\left(f_{2}\left(f_{1}(z)\right)\right)$.
9.2.4.2 (*) Use f_{3} to write the corresponding matrix H_{3}.
9.2.4.3 $\left(^{*}\right) \quad$ Verify that the fixed points of f_{3} are the points of a line. Write the equation of that line.
$\left(^{*}\right)$ Please submit items flagged with an asterisk for marking.
2013-07-05

[^2]
[^0]: ${ }^{1}$ Hints for the P-line(A,B):

 - It is an arc that lies on the circle Γ that passes through A and B and is orthogonal to Ω.
 - Γ also lies on the point $A^{\prime}=A^{\Omega}$
 - The line segment connecting the centres of Ω and Γ meets Γ in a point on the P-line.
 - The end points of the arc lie on Ω and are not P-points. If you can, show the end points of the arc as open circles.

[^1]: ${ }^{2}$ Hints: Since the reflection in L_{2} maps A to B and B to A, it must reflect the P-line L_{1} to itself. Thus the circle Δ that defines L_{2} must also have its centre on the (Euclidean) line (A, B). Look for another pair of points that must be mapped to each other to find the centre of Δ. The "points at infinity" on L_{1} must also map to each other. When you have the centre, let Delta be the circle with this centre and orthogonal to Ω and hence also to Γ.

[^2]: ${ }^{3}$ The phrase " z is a fixed point of f " means that $z=f(z)$. The reason is that we sometimes think of a function as causing or representing motion. If something does not move, it is said to be fixed.

