7 Constructing Inverses Part a

7.1 The inverse of a point

7.1.1 Construction using an orthogonal circle

Let O and R be distinct points and Σ be a circle with centre O and radius point R. Let P be any point distinct from O .

Consider this construction for the inverse of P with respect to Σ.

```
L1 = line ( O, P );
M = point ( }\Sigma\\\L1 )
L2 = line ( O, M );
L3 = perp ( M, L2 );
L4 = pbis ( P, M );
A = point ( L3, L4 );
\Gamma = circle ( A, P );
Q = point (L1, \Gamma\P ).
```


7.1.2 (*) Exploration

Confirm for yourself that when P is outside Σ, Q is inside, and vice versa. Confirm for yourself that Q seems not to move when you move M around Σ. Use the tool Reflect Point about Circle to find P^{\prime}, the inverse of P with respect to Σ. Use the Move tool to shift the labels of P^{\prime} and Q slightly so that they do not overlap. Move the point P about and confirm that the points P^{\prime} and Q continue to coincide. Find and use the tool Relation between Two Objects to compare P^{\prime} and Q . When using this tool for two points that are close to each other, it is possible to select the individual points by clicking on their labels. ${ }^{(*)}$ Submit your Figure and the Construction Protocol.

7.2 A straightedge only (no compass) construction

On a new figure, again let Σ be a circle with centre O , and let P be any point distinct from O. Consider this construction for Q :

$$
\begin{aligned}
& \mathrm{L} 1=\text { line }(\mathrm{O}, \mathrm{P}) ; \\
& \mathrm{A}=\text { point }(\Sigma) ; \\
& \mathrm{L} 2=\text { line }(\mathrm{P}, \mathrm{~A}) ; \\
& \mathrm{B}=\text { point }(\Sigma, \mathrm{L} 2 \backslash \mathrm{~A}) ; \\
& \mathrm{C}=\text { point }(\Sigma \backslash \mathrm{L} 2) ; \\
& \mathrm{L} 3=\text { line }(\mathrm{P}, \mathrm{C}) ; \\
& \mathrm{D}=\text { point }(\mathrm{E}, \mathrm{~L} 3 \backslash \mathrm{C}) ; \\
& \mathrm{L} 4=\text { line }(\mathrm{A}, \mathrm{C}) ; \\
& \mathrm{L} 5=\text { line }(\mathrm{A}, \mathrm{D}) ; \\
& \mathrm{L} 6=\text { line }(\mathrm{B}, \mathrm{C}) ; \\
& \mathrm{L} 7=\text { line }(\mathrm{B}, \mathrm{D}) ; \\
& \mathrm{E}=\text { point }(\mathrm{L} 4, \mathrm{~L} 7) ; \\
& \mathrm{F}=\text { point }(\mathrm{L} 5, \mathrm{~L} 6) ; \\
& \mathrm{L} 8=\operatorname{line}(\mathrm{E}, \mathrm{~F}) ; \\
& \mathrm{Q}=\text { point }(\mathrm{L} 1, \mathrm{~L} 8) .
\end{aligned}
$$

7.2.1 (*) Exploration

Create your own copy of the figure, so that the line OP is more or less horizontal and P is to the right of the circle. Observe the positions of L_{8} and Q, as you move A or C around $\Sigma .\left(^{*}\right)$ State your observations about the line L 8 and Q as you move the points A and C .

7.2.2 (*) Simplification

$\left.{ }^{*}\right)$ Create a new version of your figure for 7.2 by defining C so that it is either point of the intersection $\Sigma \cap L_{1}$ and D at the other. Again, by moving A about the circle Σ, observe the position of L_{8} and Q. $\left({ }^{*}\right)$ State your observations about the points E and F , line L_{8}, and finally, the point Q. Submit your version the figure, its Construction Protocol and your observations.

