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Definition 1 (Collinear). Suppose three points A,B and C are given. We say that they are
collinear if there is a line L so that all three points are on L.

Using this definition, we prove the following theorem.

Theorem 2. Three distinct points are collinear if and only if the coordinates of any one of them is
a linear combination of the other two.

Proof. (=⇒) Suppose A, B and C are three distinct points and suppose they are collinear on the
line L. Let the coordinates of these four objects be given by:

A: a = (a1, a2, a3),
B: b = (b1,b2,b3),
C: c = (c1,c2,c3) and
L: t = [`1,`2,`3].

Since all three points A, B and C are on the line L, we have

t◦a = [`1,`2,`3] · (a1, a2, a3) =0 (1)

t◦b = [`1,`2,`3] · (b1,b2,b3) =0 (2)

t◦c = [`1,`2,`3] · (c1,c2,c3) =0 (3)

Let M be the matrix whose columns have the entries of vectors a,b and c. The above three
equations can be written as a vector-matrix equation,

t M = [`1,`2,`3]

 a1 b1 c1

a2 b2 c2

a3 b3 c3

= 0. (4)
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Equation (4) tells us that t satisfies the vector-matrix equation xM = 0. Since there is a non-zero
solution (it is t) of this equation, M is singular and hence there is also a non-zero solution to the
matrix-vector equation My = 0.1 Thus, there is a vector y = (u, v, w) so that y 6= 0 and

M y =
 a1 b1 c1

a2 b2 c2

a3 b3 c3

 u
v
w

= au +bv +cw = 0. (5)

We will show that all three entries in (u, v, w) are non-zero. To do this, we suppose the opposite,
that some coordinate is zero. For argument sake, suppose that u = 0. We will show that this leads
to a contradiction. Even though u = 0, we still have (u, v, w) = (0, v, w) 6= 0, and hence, at least
one of v or w must be non-zero. Suppose it is v . Then we have 0 6= b = (−w/v)c. Because b and
c are both non-zero, we see that w 6= 0 and hence points B and C are equal, which contradicts
the assumption that B and C are distinct. Hence u 6= 0.

Similar arguments show that v 6= 0 and w 6= 0.

Because all three entries a, b, and c are non-zero, not only are a,b and c linearly dependent, but
we may solve for any one of them as a linear combination of the other two.

This completes the proof that three distinct collinear points have coordinate vectors that are
linearly dependent.

Proof. (⇐=) The proof in the opposite direction, that linear dependence of coordinate vectors
implies that three points are collinear, is left as an exercise for the reader.

Exercise 3. Prove the converse of what has been shown so far, namely, that if three distinct
points are linearly dependent, there is a line that is incident with all three.
Corollary 4. Three distinct lines are coincident if and only if their coordinate vectors are linearly
dependent.
Exercise 5. Let three points in the plane be given with homogeneous coordinates (2, 5, 0), (0, 3,
2) and (-2, 1, a). (a) Find homogeneous coordinates for the line on the first two of three points.
(b) Show that for the three points to be collinear, we must have a = 4.
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1There is a non-trivial solution to the equation x M=0 ⇐⇒ M is singular ⇐⇒ the equation M y = 0 has a non-
trivial solution.
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