Lecture Note 01 Collinear points

Leroy J. Dickey University of Waterloo

2013-05-08

Definition 1 (**Collinear**). Suppose three points *A*, *B* and *C* are given. We say that they are **collinear** if there is a line L so that all three points are on L.

Using this definition, we prove the following theorem.

Theorem 2. Three distinct points are collinear if and only if the coordinates of any one of them is a linear combination of the other two.

Proof. (\Longrightarrow) Suppose A, B and C are three distinct points and suppose they are collinear on the line L. Let the coordinates of these four objects be given by:

A:
$$\mathbf{a} = (a_1, a_2, a_3),$$

B: $\mathbf{b} = (b_1, b_2, b_3),$
C: $\mathbf{c} = (c_1, c_2, c_3)$ and
L: $\mathbf{t} = [\ell_1, \ell_2, \ell_3].$

Since all three points A, B and C are on the line L, we have

$$\mathbf{t} \circ \mathbf{a} = [\ell_1, \ell_2, \ell_3] \cdot (a_1, a_2, a_3) = 0 \tag{1}$$

$$\mathbf{t} \circ \mathbf{b} = [\ell_1, \ell_2, \ell_3] \cdot (b_1, b_2, b_3) = 0$$
(2)

$$\mathbf{t} \circ \mathbf{c} = [\ell_1, \ell_2, \ell_3] \cdot (c_1, c_2, c_3) = 0 \tag{3}$$

Let M be the matrix whose columns have the entries of vectors **a**,**b** and **c**. The above three equations can be written as a vector-matrix equation,

$$\mathbf{t}M = [\ell_1, \ell_2, \ell_3] \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = \mathbf{0}.$$
 (4)

Equation (4) tells us that **t** satisfies the vector-matrix equation $\mathbf{x}M = 0$. Since there is a non-zero solution (it is **t**) of this equation, M is singular and hence there is also a non-zero solution to the matrix-vector equation $M\mathbf{y} = 0$.¹ Thus, there is a vector $\mathbf{y} = (u, v, w)$ so that $\mathbf{y} \neq \mathbf{0}$ and

$$M\mathbf{y} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \mathbf{a}u + \mathbf{b}v + \mathbf{c}w = 0.$$
(5)

We will show that all three entries in (u, v, w) are non-zero. To do this, we suppose the opposite, that some coordinate is zero. For argument sake, suppose that u = 0. We will show that this leads to a contradiction. Even though u = 0, we still have $(u, v, w) = (0, v, w) \neq 0$, and hence, at least one of v or w must be non-zero. Suppose it is v. Then we have $0 \neq \mathbf{b} = (-w/v)\mathbf{c}$. Because \mathbf{b} and \mathbf{c} are both non-zero, we see that $w \neq 0$ and hence points B and C are equal, which contradicts the assumption that B and C are distinct. Hence $u \neq 0$.

Similar arguments show that $v \neq 0$ and $w \neq 0$.

Because all three entries a, b, and c are non-zero, not only are **a**, **b** and **c** linearly dependent, but we may solve for any one of them as a linear combination of the other two.

This completes the proof that three distinct collinear points have coordinate vectors that are linearly dependent. $\hfill \Box$

Proof. (\Leftarrow) The proof in the opposite direction, that linear dependence of coordinate vectors implies that three points are collinear, is left as an exercise for the reader.

Exercise 3. Prove the converse of what has been shown so far, namely, that if three distinct points are linearly dependent, there is a line that is incident with all three.

Corollary 4. *Three distinct* lines *are coincident if and only if their coordinate vectors are linearly dependent.*

Exercise 5. Let three points in the plane be given with homogeneous coordinates (2, 5, 0), (0, 3, 2) and (-2, 1, a). (a) Find homogeneous coordinates for the line on the first two of three points. (b) Show that for the three points to be collinear, we must have a = 4.

Revised: 2013-07-16

¹There is a non-trivial solution to the equation $\mathbf{x}M=0 \iff M$ is singular \iff the equation My = 0 has a non-trivial solution.