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Abstract

We propose a family of high order methods for the solution of hyperbolic conservation laws which are based
on the discontinuous Galerkin (DG) spatial discretization. In the standard DG method, the dispersion and
dissipation errors and the spectrum of the semi-discrete scheme are related to the [ p

p+1
] Padé approximants of

exp(z) and exp(−z). These Padé approximants are responsible for the superconvergent O(h2p+2) and O(h2p+1)
errors in dispersion and dissipation, respectively, and the restriction of the CFL number when increasing the order
of approximation, p. By modifying the DGM we obtain different rational approximations of the exponential,
thereby sacrificing some of the superconvergence of the method, and construct new schemes which allow larger
time steps than the original DGM, while having the same order of convergence in the L

2 norm. This is achieved
through modifications to the numerical flux. The schemes preserve the attractive properties of the usual DGM,
such as the high order accuracy and compact stencil.

1 Introduction

The discontinuous Galerkin (DG) spatial discretization applied to convection problems has maximum a Courant-
Friedrichs-Lewy (CFL) number that decreases with the order of approximation p as (approximately) 1/(2p+1) when
paired with an appropriate order explicit Runge-Kutta scheme. This rather restrictive condition is caused by the
growth of the spectrum of the spatial discretization operator of the semi-discrete scheme, which increases slightly
slower than O(p2) [11]. In contrast, finite difference schemes have a stability restriction that grows with the size of
the computational stencil as O(p). This makes the DGM a more expensive scheme for the same theoretical order
of convergence. This is often quoted as one of the shortcomings of the DGM. A possible solution to this issue was
proposed by Warburton and Hagstrom in [18], in which the authors propose the use of a co-volume mesh which allows
an order independent CFL number. However, this method is limited to structured grids and requires mappings of
the solution between the original and co-volume meshes. The method in [18] shrinks the spectrum of the DG method
so that it does not require the usual 1/(2p+ 1) scaling. Another approach is to devise explicit time-integrators with
larger absolute stability regions or stability regions which better encapsulate the spectrum of the DG spatial operator
[13, 14, 17]. For Runge-Kutta methods this usually comes at the cost of additional stages.

For the same theoretical order of convergence, numerical schemes can have distinctly different global accuracy. It
has been pointed out that the discontinuous Galerkin scheme is more accurate than the finite volume scheme, e.g.
when applied to the two-dimensional Euler equations [12], in terms of the L2 norm. One reason for this is the small
dispersive and dissipative errors in the DGM. It was shown [7, 2] that the local dispersion and dissipation errors of
the method are O(h2p+3) and O(h2p+2), respectively, for resolved wave numbers. Globally, these errors are each one
order lower. These small errors lead to slower accumulation of the numerical error which is especially noticeable for
long time calculations.

The accuracy of the DGM, in terms of the dispersive and dissipative errors, has been studied by several authors
[8, 15]. Notably, by assuming that the exact solution of the linear advection equation is of the form exp(i(kx−ωt)),
and fixing ω, Hu and Atkins [7] numerically showed that the numerical wave speed kh of the DG method is related
to the exact wave speed by the dispersion relation fp(ihk) = exp(ihkh), where fp(z) is the sub-diagonal [ p

p+1 ] Padé

approximant [3] of exp(z). Ainsworth gave a more in depth analysis in [2], including explicit expressions for the
leading term of the errors. More recently, Krivodonova and Qin [11] showed that the spectrum of the DGM is given
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by the same Padé approximant, but of exp(−z). In particular, they proved that the spectrum is given by |fp| = 1
and pointed out that the large spectrum and the resulting small CFL number of the DGM are a direct consequence
of the superconvergence property. It is reasonable to assume then that a scheme resulting in a different rational
approximation of exp(z) may have desirable properties, e.g. a less restrictive CFL number. The difficulty is to
modify the weak DG form to obtain such a scheme.

In this paper, we propose modifications to the DG method which involve p+ 1 parameters αm, m = 0, 1, . . . , p,
which we call flux multipliers. In the case when αm =1, for k = 0, 1, . . . , p, we recover the original DGM. When a
certain αm is not equal to one we refer to this multiplier as ‘modified’. In each equation evolving the m-th degree of
freedom on element Ij , cjm, in time (see (10) and (11)), we use the flux multiplier αm to scale the contribution from
the jumps in the numerical flux at cell interfaces to the propagation of cjm. The justification of this operation is that
the weak DG formulation consists of integrals over cell volumes plus contributions from jumps in the numerical flux
at the cell boundaries. For solutions which belong to the finite element space, the flux jumps are equal to zero and,
thus, the proposed modifications will not influence the solution accuracy. More generally, they will not affect the
formal results on accuracy and convergence originally established by Cockburn and Shu [5, 4], as long as the equation
corresponding to the cj0 coefficient (i.e., the one corresponding to the constant basis function) is unchanged. We
show that the modifications will affect the eigenvalues of the spatial operator of the semi-discrete scheme, and hence,
the CFL number.

In order to relax the time step restriction of the standard DG formulation, we search for a set of flux multipliers
αm that provides the largest increase in the CFL number when using the Legendre polynomial basis. The values for
any other polynomial basis could be obtain from the presented ones by a simple transformation. In order to compute
this set of values, we use linear algebra software to search for αm so that the size of the spectrum of the modified
scheme is smaller than that of the original DGM. We find that for the orders of approximation considered in this
work, the CFL number can be improved by a factor of two or more by modifying only the highest multiplier to be
αp ≈ 0.4. The modification of more than the highest multiplier generally leads to a larger improvement in the CFL
for particular combinations of αm. Using an energy argument we prove that when only the highest multiplier , αp,
is modified the semi-discrete scheme is linearly stable. In this case small modifications to αp influence only the size
of the spectrum. In a general case where more than one multiplier is modified, a particular choice of multipliers can
result in an unstable semi-discrete scheme. However, we are able to numerically find a combination of multipliers
which results in stable semi-discrete schemes.

Next, we analyse the accuracy of modified schemes. We prove that modifying m highest order multipliers lowers
the order of accuracy in dispersion and dissipation by m orders to O(h2p+2−m) and O(h2p+1−m), respectively.
Nevertheless, the order of convergence of the scheme in the L1 norm remains the same regardless of the number of
multipliers changed, as long as α0 remains equal to one. This follows from the standard DG analysis [5, 4], and our
numerical experiments. However, we observe in numerical experiments that the magnitude of the global L1 error
increases due to larger dissipative and dispersive errors. In particular, setting a larger number of multipliers to be
not equal to one leads to a larger global error.

The proposed schemes can be viewed from a different perspective. Instead of comparing the schemes based on the
size of spatial discretization, we can compare them based on the computational effort. That is, instead of increasing
the time step size for a fixed mesh, we can fix the time step and proportionally increase the number of cells. We
show that with the modified DG scheme, the solution for the same computational effort is noticeably more accurate
in terms of the global error. This is especially advantageous for problem which have high frequency waves or fine
structures.

The remainder of this paper is organized as follows: In Section 2 we will introduce the discontinuous Galerkin
finite element method, and show how it is modified through the introduction of the flux multipliers αm. We will then
prove several results concerning the effects of these multipliers on the accuracy of the DG scheme by using the linear
advection equation as a model problem. We will then investigate the stability of the modified scheme and show that
we are able to ameliorate the usual stability restriction of the classical DG scheme through suitable choices in the
multipliers αm. We will conclude by showing that the modified scheme preserves the usual order of convergence in
the L1 norm, and we will show how the scheme performs on several test examples including the linear advection
equation and the Euler equations. We also give examples where the accuracies of the DG and modified DG schemes
are compared on different sized meshes, but equal computation times.
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2 Modified Discontinuous Galerkin Discretization

We consider the one-dimensional scalar conservation law

ut + f(u)x = 0 (1)

subject to appropriate initial and periodic boundary conditions on interval I. The domain is discretized into mesh
elements Ij = [xj , xj+1] of size hj = xj+1 − xj , j = 1, 2, ..., N . The discontinuous Galerkin spatial discretization on
cell Ij is obtained by approximating u by Uj ∈ Pp, multiplying (1) by a test function V ∈ Pp, and integrating the
result on Ij

d

dt

∫ xj+1

xj

UjV dx+

∫ xj+1

xj

f(Uj)xV dx = 0, ∀V ∈ Pp. (2)

Here, Pp is a finite dimensional space of polynomials of degree up to p. Transforming [xj , xj+1] to the canonical
element [−1, 1] by a linear mapping

x(ξ) =
xj + xj+1

2
+

hj

2
ξ (3)

yields
hj

2

d

dt

∫ 1

−1

UjV dξ +

∫ 1

−1

f(Uj)ξV dξ = 0, ∀V ∈ Pp. (4)

At this point, integration by parts is usually performed on the second term in order to express this integral in terms
of the contributions from the cell interfaces plus an integral over the interior of the cell. Instead, notice that as a
distribution f(Uj)x is defined as

f(Uj)x =











(

f(Uj(xj))− f(U∗

j )
)

δxj
, x = xj

f(Uj)x, x ∈ (xj , xj+1)
(

f(U∗

j+1)− f(Uj(xj+1))
)

δxj+1
, x = xj+1

where δxj
is the Dirac delta function at x = xj , and U∗

j+1 is the Riemann state at the interface between the j-th
and (j + 1)-th cells. Moreover, the derivative on the interior term is defined classically since Uj is smooth inside Ij .
Using this expression for f(Uj) and assuming the test function V (ξ) is continuous across the cell interface, we can
write (4) as

hj

2

d

dt

∫ 1

−1

UjV dξ +
[

f(U∗

j+1)− f(Uj(1))
]

V (1)

+
[

f(Uj(−1))− f(U∗

j )
]

V (−1) +

∫ 1

−1

f(Uj)ξV dξ = 0, ∀V ∈ Pp. (5)

Next, we choose the Legendre polynomials as the basis for the finite element space Pp. Recall [1], that the Legendre
polynomials Pm(ξ), m = 0, 1, 2, . . . , form an orthogonal system on [−1, 1]

∫ 1

−1

PmPi dξ =
2

2m+ 1
δmi, (6)

where δki is the Kroneker delta. With the chosen normalization (6), the values of the basis functions at the end
points of the interval [−1, 1] are [1]

Pm(1) = 1, Pm(−1) = (−1)m. (7)

The numerical solution can be written in terms of this basis as

Uj =

p
∑

i=0

cjiPi, (8)
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where cji is a function of time t. Substituting (8) into (5), choosing V = Pm, m = 0, 1, . . . , p, and using (7) and (6)
results in

hj

2m+ 1
ċjm = −

[

f(U∗

j+1)− f(Uj(1))
]

− (−1)m
[

f(Uj(−1))− f(U∗

j )
]

−
∫ 1

−1

f(Uj)ξPm dξ, m = 0, 1, . . . , p, (9)

where the dot in ċjm represents differentiation with respect to t.
Notice that the only contributions from neighbouring cells are concentrated in the two jump terms on the right

hand side of (9), while the integral term is purely local to the cell Ij . Moreover, when the exact solution of (1)
belongs to the finite element space, these two jump terms will be equal to zero. Consequently, modifying these terms
will not affect the accuracy of the solution. This motivates us to consider a modified version of (9),

hj

2m+ 1
ċjm = −αm

[

f(U∗

j+1)− f(Uj(1))
]

− (−1)mαm

[

f(Uj(−1))− f(U∗

j )
]

−
∫ 1

−1

f(Uj)ξPm dξ, m = 0, 1, . . . , p. (10)

Here we have introduced the parameters αm,m = 0, . . . , p, which scale the contributions of the flux discontinuities at
the cell interfaces to the propagation of the solution coefficients. Note that when αm = 1, ∀m, we recover the original
DG scheme. Since many applications of the DG method use a slightly different formulation than (9), in which the
integral term of the flux is integrated by parts, we present an alternative form of (10) where we have performed this
extra step and rearranged to obtain

hj

2m+ 1
ċjm = −αm

(

f(U∗

j+1)− (−1)mf(U∗

j )
)

− (1− αm) (f(Uj(1))− (−1)mf(Uj(−1)))

+

∫ 1

−1

f(Uj)P
′

m dξ, m = 0, 1, . . . , p. (11)

We expect that this scheme, which we will refer to as the modified DG (mDG) scheme, will perform similarly to the
original DG on smooth solutions, where the altered jump contributions are small. In the remainder of the paper we
will be interested in establishing what effect these parameters will have on the numerical scheme. Since this analysis
is difficult to perform on the general formulation, we will instead consider a simple problem: the linear advection
equation.

2.1 Linear Advection Equation

Here we are interested in the problem
ut + aux = 0,

where a > 0 and constant, and with periodic boundary conditions. Applying the modified DG discretization to this
problem, and using the upwind flux so that U∗

j+1 = Uj(1), (10) reads

hj

2m+ 1
ċjm = −(−1)mαma [Uj(−1)− Uj−1(1)]− a

∫ 1

−1

(Uj)ξPm dξ.

Substituting (8) into the above expression and using (7) for the boundary terms we obtain

hj

2m+ 1
ċjm = −(−1)mαma

[

p
∑

i=0

(−1)icji −
p
∑

i=0

cj−1,i

]

− a

∫ 1

−1

(

p
∑

i=0

cjiP
′

i

)

Pm dξ.

Collecting common terms of the right hand side results in

ċjm = a
2m+ 1

hj

[

(−1)mαm

p
∑

i=0

cj−1,i −
p
∑

i=0

(∫ 1

−1

P ′

iPm dξ + (−1)m+iαm

)

cji

]

. (12)
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This can be written in a vector form as

ċjm = a
2m+ 1

hj

(

(−1)mαm[1, 1, ..., 1]cj−1

−
[∫ 1

−1

P ′

0Pmdξ + (−1)mαm, ...,

∫ 1

−1

P ′

pPmdξ + (−1)m+pαm

]

cj

)

, (13)

where cj = [cj0, cj1, . . . , cjp]
T and cj−1 is defined similarly. Combining cell solution-coefficient vectors into a global

vector c = [cT0 , c
T
1 , . . . , c

T
N ]T , and assuming a uniform grid hj = h, ∀j, equation (13) can be written as

ċ =
a

h
Lc. (14)

With the assumed periodic boundary conditions, L is a block matrix of the form

L =











Ãp 0 0 . . . 0 0 D̃p

D̃p Ãp 0 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . 0 D̃p Ãp











, (15)

where D̃p and Ãp are (p+ 1)× (p+ 1) matrices,

D̃p =











α0 . . . α0

−3α1 . . . −3α1

...
...

(−1)p(2p+ 1)αp . . . (−1)p(2p+ 1)αp











, (16)

Ãp = −











b00 + α0 . . . bp0 + (−1)pα0

3 (b01 − α1) . . . 3
(

bp1 + (−1)p+1α1

)

...
...

(2p+ 1) (b0p + (−1)pαp) . . . (2p+ 1) (bpp + αp)











, (17)

where

bim =

∫ 1

−1

P ′

iPmdξ. (18)

We use the ‘∼’ notation on the matrices Ãp and D̃p to indicate their dependence on the αm flux multipliers. In what
follows, we will drop the ‘∼’ to indicate that αm = 1, ∀m. For a more concise expression for bim, we notice that the
derivatives of the Legendre polynomials satisfy [1]

(2m+ 1)Pm = P ′

m+1 − P ′

m−1. (19)

We then derive
P ′

m+1 = (2m+ 1)Pm + (2(m− 2) + 1)Pm−2 + (2(m− 4) + 1)Pm−4 + . . . . (20)

Using (20) with the orthogonality property of the Legendre polynomials (6) we obtain

bim =

∫ 1

−1

P ′

iPmdξ =

{

0, i 6 m,
1− (−1)i−m, i > m.

(21)

3 Accuracy of the mDG Method

Let us investigate the accuracy of the modified DG scheme by examining how accurately the scheme approximates
solutions of the form u(x, t) = ei(kx−ωt). For the exact solution of the linear advection equation the wave number k
will be related to the frequency, ω, by k = ω

a
. For a specific fixed frequency ω the numerical scheme will produce
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an approximate solution of the form U(x, t) = ei(khx−ωt), where kh is referred to as the numerical wave number.
Therefore, the degree to which the scheme produces a numerical wave number which agrees with the exact wave
number will give us a measure of the accuracy of the scheme. To investigate this relation between kh and k, let us
assume the numerical solution has the form

cj(t) = ei(jKh−ωt)ĉ,

where ĉ is a constant vector of the coefficients, and Kh = khh is the non-dimensional numerical wave number.
Substituting this into (14), and taking into account (15), yields

(

− iωh

a
I − Ãp −

1

λ
D̃p

)

ĉ = 0, (22)

where λ = eiKh . For a non-trivial solution of (22) to exist, the determinant of the matrix in the brackets must be
zero. This condition will yield a relation between the non-dimensional numerical wave number Kh, and the non-
dimensional exact wave number K = ωh

a
. In [11], Krivodonova and Qin investigate this condition for the regular DG

scheme (αm = 1, ∀m). We recall their main results in the following theorems.

Theorem 1 (Krivodonova, Qin [11]). The condition det(−iKI −Ap − 1
λ
Dp) = 0 can be written as

λ = fp(iK). (23)

Here, fp has the form

fp(z) =
Rp(z)

Qp(−z)
,

where Rp(z) is a polynomial of degree p and Qp(z) is a polynomial of degree p + 1. Furthermore, Rp(z) and Qp(z)
can be generated through the recursive relations,

Rp(z) = (2p+ 1)(Rp−1(z) +Qp−1(z))− zRp−1(z),

Qp(z) = (2p+ 1)(Rp−1(z) +Qp−1(z)) + zQp−1(z),

together with the initial conditions R0(z) = 1, and Q0(z) = 1 + z.

Theorem 2 (Krivodonova, Qin [11]). The function fp(z) is the [ p
p+1 ] Padé approximant of ez, i.e.

fp(z) = ez +O(z2p+2), (24)

Using (23) and (24) together with λ = eiKh we immediately obtain

eiKh = eiK +O((iK)2p+2),

from which we get the order estimate

Kh = K + iC1K
2p+2 + C2K

2p+3 + . . . ,

where C1 and C2 are constant and real. Using that Kh = hkh and K = hk we obtain

kh = k + iC1k
2p+2h2p+1 + C2k

2p+3h2p+2 + . . . . (25)

Recall that the numerical solution is of the form cj(t) = ei(jhkh−ωt)ĉ. Hence, the imaginary part of the error in kh
will cause an error in the amplitude of the numerical solution. We therefore call the imaginary part of the error
the dissipation error. On the other hand, the real part of the error in kh will cause a shift in the wave number of
the numerical solution. We call this error the dispersion error. Therefore we see from (25) that the order of the
dispersion error of the DG scheme is O(h2p+2) and the order of the dissipation error is O(h2p+1), for the resolved
wave numbers. See [7] and [2] for a more complete discussion of the order of accuracy of the DG scheme.

Let us propose an analogous result for the modified DG scheme.
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Proposition 1. The condition det(−iKI − Ãp − 1
λ
D̃p) = 0 can be written as

λ = f̃p(iK).

Here, f̃p has the form

f̃p(z) =
R̃p(z)

Q̃p(−z)
,

where R̃p(z) is a polynomial of degree p and Q̃p(z) is a polynomial of degree p + 1. Furthermore, R̃p(z) and Q̃p(z)
can be generated through the recursive relations

R̃p(z) = (2p+ 1)αpqp−1(z)− zR̃p−1(z),

Q̃p(z) = (2p+ 1)αpqp−1(z) + zQ̃p−1(z),

qp(z) = 2(2p− 1)qp−1(z) + z2qp−2(z),

together with the initial conditions R̃0(z) = α0, Q̃0(z) = α0 + z, q−1(z) = 1, and q0(z) = 2 + z.

Proof. Let us first consider the relation det(−zI −Ap − 1
λ
Dp) = 0. By Theorem 1 we know that

det

(

−zI −Ap −
1

λ
Dp

)

= Qp(−z)− 1

λ
Rp(z).

Using the recursion relations for Qp and Rp we obtain

Qp(−z)− 1

λ
Rp(z) = −zQp−1(−z) + (2p+ 1) (Rp−1(−z) +Qp−1(−z))

− 1

λ
(−zRp−1(z) + (2p+ 1)(Rp−1(z) +Qp−1(z))) ,

which can be rewritten,

Qp(−z)− 1

λ
Rp(z) = −z

[

Qp−1(−z)− 1

λ
Rp−1(z)

]

+ (2p+ 1)
(

Rp−1(−z) +Qp−1(−z)− 1

λ
[Rp−1(z) +Qp−1(z)]

)

,

or, equivalently,

det

(

−zI −Ap −
1

λ
Dp

)

= −z det

(

−zI −Ap−1 −
1

λ
Dp−1

)

+ (2p+ 1)

(

qp−1(−z)− 1

λ
qp−1(z)

)

, (26)

where qp−1(z) = Qp−1(z) +Rp−1(z). Writing the matrix
(

−zI − Ap − 1
λ
Dp

)

in full we see

det

(

−zI −Ap −
1

λ
Dp

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−z + (1 − 1
λ
) −(−1 + 1

λ
) . . . bp0 + (−1)p − 1

λ

3(−1 + 1
λ
) −z + 3(1 + 1

λ
) . . . 3(bp1 + (−1)p+1 + 1

λ
)

5(1− 1
λ
) 5(−1− 1

λ
) . . . 5(bp2 + (−1)p+2 − 1

λ
)

...
...

. . .
...

(2p+ 1)(−1)p(1− 1
λ
) (2p+ 1)(−1)p(−1− 1

λ
) . . . −z + (2p+ 1)(1− (−1)p 1

λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Using the linearity of the determinant function in the last entry we write

det

(

−zI −Ap −
1

λ
Dp

)

= −z det

(

−zI −Ap−1 −
1

λ
Dp−1

)

+ det(Bp), (27)
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where

Bp =















−z + (1 − 1
λ
) −(−1 + 1

λ
) . . . bp0 + (−1)p − 1

λ

3(−1 + 1
λ
) −z + 3(1 + 1

λ
) . . . 3(bp1 + (−1)p+1 + 1

λ
)

5(1− 1
λ
) 5(−1− 1

λ
) . . . 5(bp2 + (−1)p+2 − 1

λ
)

...
...

. . .
...

(2p+ 1)(−1)p(1− 1
λ
) (2p+ 1)(−1)p(−1− 1

λ
) . . . (2p+ 1)(1− (−1)p 1

λ
)















.

Next, by adding/subtracting an appropriate multiple of the last row of Bp to every other row we can simplify det(Bp)
to

det(Bp) = (2p+ 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−z 2 . . . bp0
0 −z . . . 3bp1
0 0 . . . 5bp2
...

...
. . .

...
(−1)p(1− 1

λ
) (−1)p(−1− 1

λ
) . . . (1− (−1)p 1

λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (28)

Comparing (27) to (26) and using (28), we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−z 2 . . . bp0
0 −z . . . 3bp1
0 0 . . . 5bp2
...

...
. . .

...
(−1)p(1− 1

λ
) (−1)p(−1− 1

λ
) . . . (1− (−1)p 1

λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= qp−1(−z)− 1

λ
qp−1(z). (29)

When we return to the modified DG scheme, we write det
(

−z − Ãp − 1
λ
D̃p

)

in full to obtain,

det

(

−zI − Ãp −
1

λ
D̃p

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−z + α0(1− 1
λ
) −α0(−1 + 1

λ
) . . . bp0 + α0((−1)p − 1

λ
)

3α1(−1 + 1
λ
) −z + 3α1(1 +

1
λ
) . . . 3(bp1 + α1((−1)p+1 + 1

λ
))

5α2(1− 1
λ
) 5α2(−1− 1

λ
) . . . 5(bp2 + α2((−1)p+2 − 1

λ
))

...
...

. . .
...

(2p+ 1)(−1)pαp(1 − 1
λ
) (2p+ 1)(−1)pαp(−1− 1

λ
) . . . −z + (2p+ 1)αp(1 − (−1)p 1

λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If we again use the linearity of the determinant function in the last entry we obtain

det

(

−zI − Ãp −
1

λ
D̃p

)

= −z det

(

−zI − Ãp−1 −
1

λ
D̃p−1

)

+ det(B̃p), (30)

where,

B̃p =















−z + α0(1 − 1
λ
) −α0(−1 + 1

λ
) . . . bp0 + α0((−1)p − 1

λ
)

3α1(−1 + 1
λ
) −z + 3α1(1 +

1
λ
) . . . 3(bp1 + α1((−1)p+1 + 1

λ
))

5α2(1− 1
λ
) 5α2(−1− 1

λ
) . . . 5(bp2 + α2((−1)p+2 − 1

λ
))

...
...

. . .
...

(2p+ 1)(−1)pαp(1− 1
λ
) (2p+ 1)(−1)pαp(−1− 1

λ
) . . . (2p+ 1)αp(1− (−1)p 1

λ
)















.

By again adding/subtracting an appropriate multiple of the last row of B̃p to every other row we can simplify det(B̃p)
to

det(B̃p) = (2p+ 1)αp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−z 2 . . . bp0
0 −z . . . 3bp1
0 0 . . . 5bp2
...

...
. . .

...
(−1)p(1 − 1

λ
) (−1)p(−1− 1

λ
) . . . (1− (−1)p 1

λ
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (31)
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and using (29) we obtain,

det(B̃p) = (2p+ 1)αp

(

qp−1(−z)− 1

λ
qp−1(z)

)

. (32)

Finally, if we define the polynomials Q̃p(z) and R̃p(z) so that

det

(

−zI − Ãp −
1

λ
D̃p

)

= Q̃p(−z)− 1

λ
R̃p(z),

for which a direct calculation shows Q̃0(z) = α0 + z and R̃0(z) = α0, we can use (32) to write (30) as

Q̃p(−z)− 1

λ
R̃p(z) = −z

[

Q̃p−1(−z)− 1

λ
R̃p−1(z)

]

+ (2p+ 1)αp

[

qp−1(−z)− 1

λ
qp−1(z)

]

.

Comparing the coefficients on λ, we arrive at the recursive relations

R̃p(z) = (2p+ 1)αpqp−1(z)− zR̃p−1(z),

Q̃p(z) = (2p+ 1)αpqp−1(z) + zQ̃p−1(z).

The final recursive relation, for qp(z), follows immediately from the recursion relations in Theorem 1 and the fact
that qp(z) = Qp(z) +Rp(z).

The coefficients of the polynomials R̃p(z) and Q̃p(z) will now depend linearly on the αm multipliers since the

polynomials qp(z) are independent of αm. From the above theorem we know that when αm = 1, ∀m, f̃p(z) will be
the Padé approximant of ez to order O(z2p+2). Upon choosing some coefficients αm 6= 1 we expect to find that

f̃p(z) = ez +O(zM )

where p+ 1 ≤ M < 2p+ 2. Therefore, the original unmodified DG scheme, which results from choosing each αm to
be 1, is in a sense optimally accurate since it obtains the full (2p+1)-th order accuracy in dissipation and (2p+2)-th
order accuracy in dispersion.

Let us rigorously demonstrate the effects of altering the αm multipliers on the accuracy of the modified DG
scheme through the following theorem.

Theorem 3 (mDG). Let αm be the lowest order multiplier (smallest m) for which αm 6= 1 in the matrices Ãp and

D̃p. Then f̃p(z) = ez +O(zp+1+m).

To prove this theorem, let us first establish a useful lemma.

Lemma 1. For each p, [qp−1(z)− qp−1(−z)ez] = O(z2p+1).

Proof. From Theorems 1 and 2 we know

Rp−1(z)

Qp−1(−z)
= ez +O(z2p),

which implies
Rp−1(z)−Qp−1(−z)ez = O(z2p). (33)

Furthermore, we know
Rp(z)

Qp(−z)
= ez +O(z2p+2).

Using the recursive relations for R̃p(z) and Q̃p(−z) in Proposition 1 with αm = 1, ∀m we find

(2p+ 1)qp−1(z)− zRp−1(z)

(2p+ 1)qp−1(−z)− zQp−1(−z)
= ez +O(z2p+2).

Rearranging we obtain,

(2p+ 1)(qp−1(z)− qp−1(−z)ez)− z(Rp−1(z)−Qp−1(−z)ez) = O(z2p+2).

Using (33) we find that z(Rp−1(z)−Qp−1(−z)ez) is O(z2p+1) and this implies that (2p+ 1)(qp−1(z)− qp−1(−z)ez)
is also O(z2p+1) and has the same leading term as z(Rp−1(z)−Qp−1(−z)ez). This establishes the result.
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We now proceed to prove the theorem.

Proof of Theorem 3. Beginning with the base case of m = 0 and p = 0, a direct calculation of f̃0(z) yields

f̃0(z) =
α0

α0 − z

= 1 +
1

α0
z + . . .

= ez +O(z1).

Next, suppose p > 0 and m ≤ p. We will use the recurrence relations for R̃p and Q̃p to calculate f̃p. Since αm is

the lowest order multiplier for which αm 6= 1, we have that the polynomials R̃m−1 and Q̃m−1 are unmodified. Hence
R̃m−1 = Rm−1, Q̃m−1 = Qm−1 and f̃(z) = fm−1(z). From Theorem 2, f̃m−1(z) = fm−1(z) = ez + O(z2m). This
implies

R̃m−1(z)− Q̃m−1(−z)ez = O(z2m). (34)

We then examine the residual R̃m(z)− Q̃m(−z)ez and use Proposition 1 to find

R̃m(z)− Q̃m(−z)ez = (2m+ 1)αmqm−1(z)− zR̃m−1(z)− ((2m+ 1)αmqm−1(−z)− zQ̃m−1(−z))ez,

= (2m+ 1)αm(qm−1(z)− qm−1(−z)ez)− z(R̃m−1(z)− Q̃m−1(−z)ez),

= O(z2m+1),

and therefore by dividing by Q̃m(−z) we obtain that f̃m(z) − ez = O(z2m+1). Note that in the last line we use
both (34) and Lemma 1. Also note that from Theorem 2 we know that the coefficient on z2m+1 in the residual of
f̃m(z)− ez must be multiplied by (αm− 1) since if αm = 1 then f̃m(z)− ez = O(z2m+2). Finally, we do the inductive
step by examining the residual of R̃m+1(z)− Q̃m+1(−z)ez to find

R̃m+1(z)− Q̃m+1(−z)ez = (2m+ 3)αm+1qm(z)− zR̃m(z)− ((2m+ 3)αm+1qm(−z)− zQ̃m(−z))ez,

= (2m+ 3)αm+1(qm(z)− qm(−z)ez)− z(R̃m(z)− Q̃m(−z)ez),

= O(z2m+3) +O(z2m+2),

= O(z2m+2).

Hence by dividing by Q̃m+1(−z) we obtain f̃m+1(z) − ez = O(z2m+2). Repeating these calculations up to R̃p and

Q̃p we find

f̃p(z) = ez +O(zp+m+1),

which is the desired result.

Now that we have established the order of the error between f̃p(z) and ez we can state our primary result on the
accuracy of the modified DG scheme.

Corollary 1. Let αm be the lowest order multiplier (smallest m) for which αm 6= 1 in the matrices Ãp and D̃p.
Then for the non-dimensional numerical wave number, it holds

Kh = K + C1(iK)p+m+1 + C2(iK)p+m+2 + . . . ,

and therefore,
kh = k + C1(ik)

p+m+1hp+m + C2(ik)
p+m+2hp+m+1 + . . . .

From this corollary we can conclude that if p+m+1 is odd then the order of the dispersion error of the modified
DG scheme (the real part of the error in kh) is O(hp+m+1) and the order of the dissipation error (the imaginary part
of the error in kh) is O(hp+m). On the other hand, if p+m+ 1 is even then the order of the dissipation error of the
modified DG scheme is O(hp+m+1) and the order of the dispersion error is O(hp+m).

Corollary 2. If the lowest order multiplier α0 is chosen to be not equal to one, the order of the errors in the numerical
wave number kh will be O(hp). Since the order of the spatial approximation is p+ 1, the order of convergence of the
scheme will be reduced to order p when α0 6= 1.
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Therefore, for the remainder of this paper we will take α0 = 1 to preserve the usual order p+1 convergence rate.

Remark 1. We remark that the proposed modifications to the numerical flux do not affect consistency of the scheme.
This is because on smooth solutions the jump term is zero and will not contribute and therefore the numerical flux
remains consistent with the exact flux function f(u). Hence the original results established by Cockburn and Shu
in [5, 4] on the (p + 1)-th order consistency of the DG method will carry over to this modified scheme. We can
therefore conclude by the equivalence theorem of Lax-Richmeyer that the modified scheme will preserve the usual p+1
convergence rate for linear equations, provided the scheme is linearly stable.

For nonlinear equations the proof of the TVDM property presented in [5] can be verbatim applied to the modified
scheme provided α0 = 1. In particular, Lemma 2.1 uses only the equation for the cj0 and the values of the solution
at the endpoints of the interval. Since the equation cj0 is unmodified, and the endpoint values are limited in the same
manner, the lemma holds. Moreover Lemma 2.3 in [5] will also hold with p = 1 and the minmod limiter. Hence the
modified scheme preserves the usual order p+ 1 convergence for smooth nonlinear problems provided it is stable and
α0 = 1.

In Proposition 2 in the next section we prove linear stability of the modified scheme in the case where only the
highest order multiplier is taken not equal to one. However, when more multipliers are modified the scheme may not
be linearly stable. In these cases we investigate stability by plotting the spectrum of the discrete spatial operator of
the mDG scheme.

4 Stability of the mDG Method

In this section we will study what effects modifying the flux multipliers αk will have on the linear stability of the
modified DG scheme. We pair the DG spatial discretization of order p with an order p+ 1 time-integration scheme,
e.g. Runge-Kutta-(p + 1), in order to ensure a global convergence rate of order p + 1. For the linear advection
equation, when using an explicit order p+ 1 Runge-Kutta time-integration scheme to discretize (14), it is known [5]
that the stability restriction on the size of the time step ∆t scales with p as

∆t .
h

a(2p+ 1)
.

This simple estimate is at most 5% smaller than the exact CFL number [6]. This time step restriction is found by
choosing ∆t to be small enough that the spectrum of a∆t

h
L is contained within the absolute stability region of, in this

case, Runge-Kutta-(p+1). Upon altering the multipliers in the modified DG scheme (10), the spectrum of this linear
operator a∆t

h
L will be changed. It is therefore possible that this stability restriction can be relaxed by choosing the

multipliers αk in some particular way. Since determining the spectrum of this operator explicitly is very difficult, we
will resort to numerically calculating its eigenvalues and determine the time step restriction by numerically searching
for the largest CFL number such that the spectrum will be contained in the absolute stability region of RK-(p+ 1).
We will begin by only considering changes in the highest multiplier αp since, as we will see, significant gains can be
made in the relaxation of the stability restriction through only modifying the highest multiplier. We will then move
on to study the effects of changing more than the highest multiplier.

4.1 Case 1: Only highest flux multiplier, αp, is not equal to one.

Before we begin, let us note that in the particular case that only the highest multiplier of the modified scheme, αp,
is taken to be not equal to 1, we have a corollary of Theorem 3.

Corollary 3. If the DG scheme is modified by only changing the highest multiplier, αp, then the order of the
dispersion error of the scheme is lowered by two to O(h2p) and the order of the dissipation error remains O(h2p+1).

This corollary tells us that upon modifying the highest multiplier the order of accuracy in dissipation and disper-
sion of the scheme is only minimally affected. Therefore, the improvements in the stability restriction resulting from
the modification of only the highest coefficient will have the benefit of only mildly reducing the orders of the error in
dissipation and dispersion of the DG scheme. This is particularly true when using a very high order approximation
since for large p the differences between an O(h2p+2) error and an O(h2p) error will be fairly negligible.

In Figure 1 we show the eigenvalues of the operator L for the p = 1, 2, 3, and 4 schemes, respectively, with
different values for the highest multiplier αp in each case. In each figure, we show with the ‘o’ marker the spectrum
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Figure 1: Eigenvalues of the operator L, the spatial DG discretization for the linear advection equation, for the p = 1
and 2 (top) and p = 3, and 4 (bottom), with N = 50. We show in each figure the spectrum of L for αp = 1, 32 , and
1
2 .
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Table 1: Largest CFL numbers obtained with the modified DG scheme on the linear advection equation for p =
1, 2, . . . , 10, only modifying the highest order coefficient. Relative increase is calculated as the ratio between the
increased CFL of the modified scheme, divided by the CFL number of the original DG scheme.

p αp CFL Relative Increase

1 1.000 0.33 3.00
0.333 1.00

2 1.000 0.21 2.97
0.210 0.62

3 1.000 0.14 2.60
0.260 0.37

4 1.000 0.11 2.46
0.270 0.28

5 1.000 0.09 2.40
0.330 0.22

6 1.000 0.08 2.34
0.345 0.19

7 1.000 0.07 2.27
0.360 0.16

8 1.000 0.06 2.24
0.380 0.14

9 1.000 0.05 2.21
0.385 0.12

10 1.000 0.05 2.19
0.395 0.11
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for αp = 1, which is the spectrum of the original DG scheme, together with the spectra for αp = 3
2 and αp = 1

2
with the ‘x’ and ‘+’ markers, respectively. We notice from these figures that, in general, the modification of the
highest coefficient has the effect of scaling the spectrum of the operator L. In particular, upon increasing the αp

multiplier the spectrum of L is enlarged, while decreasing the αp multiplier reduces the spectrum of L. From this,
we immediately see that when αp < 1, and the spectrum of L is reduced, we are able to choose the CFL number
larger and still have a stable scheme. In contrast, when αp > 1 we must choose the CFL number smaller and the
stability condition of the scheme is made more restrictive. Although for completeness we include the cases when
αp > 1 in our numerical tests below, we remark that modifying the DG scheme in this way has little benefit since
both the stability restriction is tightened and the accuracy of the scheme is reduced.

Now that we have established that the stability restriction of the DG scheme can be relaxed through reducing
the highest multiplier αp, our next pursuit is to determine precisely the degree to which the stability condition can
be improved, what choices of αp give us the most relaxed time-step restriction, and how much of an improvement we
can expect to gain for very high order approximations. To answer these questions, we have used a MATLAB program
which calculates the spectrum of L for varying values of αp and uses this spectrum to find the largest CFL number so
that the complete spectrum of CFL ·L is contained within the absolute stability region of RK-(p+1) via a bisection
algorithm. In Table 1 we present the largest CFL number we were able to obtain using this program for schemes of
order p = 1, 2, . . . , 10, together with the value of αp for which the scheme obtains this CFL number. From this we
see that we are able to achieve a significant increase in the usual CFL number of the DG scheme. We conjecture that
for very high order schemes we can expect to obtain a two-fold increase in the CFL number of the DG scheme by
only modifying the highest multiplier to be αp ≈ 0.4. We note that this significant gain in the CFL number comes
at the cost of only one order of accuracy in the form of a dispersive error, while no additional dissipative error is
introduced. We can establish another property of the scheme with this modification: the semi-discrete scheme (10)
is linearly stable for any choice of αp > 0.

Proposition 2. The modified DG scheme (10) with each multiplier αm = 1, m = 1, . . . , p−1, and αp > 0, is linearly
stable.

Proof. Without loss of generality, we can assume a = 1 in the linear advection equation. Using αm = 1,m =
1, . . . , p− 1, the scheme (10) with the upwind flux can be written

hj

2m+ 1
ċjm = −(−1)m [Uj(xj)− Uj−1(xj)]−

∫ xj+1

xj

dUj

dx
Pm dx, m = 0, 1, . . . , p− 1, (35)

hj

2p+ 1
ċjp = −(−1)pαp [Uj(xj)− Uj−1(xj)]−

∫ xj+1

xj

dUj

dx
Pp dx. (36)

Multiplying each equation (35) by cjm(t), then multiplying (36) by 1
αp

cjp(t) and summing, we obtain

1

2

d

dt

[(

p−1
∑

m=0

hj

2m+ 1
c2jm

)

+
hj

(2p+ 1)αp

c2jp

]

= −Uj(xj) [Uj(xj)− Uj−1(xj)]

−
∫ xj+1

xj

dUj

dx

[(

p−1
∑

m=0

cjmPm

)

+
1

αp

cjpPp

]

dx. (37)

Since
dUj

dx
is a polynomial of degree less than p, the integral

∫ xj+1

xj

dUj

dx
Pp dx = 0. We then obtain

∫ xj+1

xj

dUj

dx

[(

p−1
∑

m=0

cjmPm

)

+
1

αp

cjpPp

]

dx =

∫ xj+1

xj

dUj

dx

[(

p−1
∑

m=0

cjkPk

)

+ cjpPp

]

dx,

=

∫ xj+1

xj

dUj

dx
Uj dx,

=
1

2
U2
j (xj+1)−

1

2
U2
j (xj). (38)
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Substituting (38) into (37) yields

1

2

d

dt

[(

p−1
∑

m=0

hj

2m+ 1
c2jm

)

+
hj

(2p+ 1)αp

c2jp

]

= −Uj(xj) [Uj(xj)− Uj−1(xj)]−
1

2
U2
j (xj+1) +

1

2
U2
j (xj),

= −1

2
U2
j (xj+1) + Uj(xj)Uj−1(xj)−

1

2
U2
j (xj). (39)

Finally, summing over the entire mesh and using the periodicity of the boundary conditions yields

1

2

d

dt

N
∑

j=0

(

p−1
∑

m=0

hj

2m+ 1
c2jm +

hj

(2p+ 1)αp

c2jp

)

=

N
∑

j=0

(

−1

2
U2
j (xj+1) + Uj(xj)Uj−1(xj)−

1

2
U2
j (xj)

)

,

=

N
∑

j=0

(

−1

2
U2
j−1(xj) + Uj(xj)Uj−1(xj)−

1

2
U2
j (xj)

)

,

= −1

2

N
∑

j=0

(Uj(xj)− Uj−1(xj))
2 ≤ 0.

Therefore, we find that for any αp > 0,
∑N

j=0 ||cj || will be bounded, and hence the semi-discrete scheme is linearly
stable.

4.2 Several flux multipliers are not equal to one.

When several multipliers in the modified scheme (10) are taken to be not equal to one, we encounter several difficulties.
Firstly, as we have established above, as we alter more multipliers the order of accuracy diminishes as we introduce
larger dispersive and dissipative errors into the scheme. Secondly, the search for the choices of the multipliers
which will yield the largest gain in the CFL number becomes computationally expensive. Thirdly, in our tests we
observed that when more than one multiplier is modified, the operator L may have eigenvalues with positive real
part. Therefore, a linear stability analysis of the type presented in Proposition 2 is not possible.

To understand why the scheme can become unstable, we consider the specific case when p = 2 and consider
modifications to the second highest multiplier, α1. Following the arguments of Proposition 1, Theorem 3, and
Corollary 1, we explicitly calculate the relation between the numerical wave number Kh and the exact wave number
K (for simplicity we set α2 = 1) to find

Kh = K + i
α1 − 1

120
K4 − α1(α1 − 1)

1200
K5 +O(K6).

From this equation, we see that when α1 < 1 the coefficient in front of K4 will be negative and imaginary. Since the
numerical solution is of the form cj(t) = ei(jKh−ωt)ĉ, this error term will cause the magnitude of the solution to grow
with j, rather than remain bounded. Hence, this negative imaginary error in Kh is the cause of the instability that
can be observed when solving (10) numerically. We note that choosing α2 > 1 results in a stable scheme, however
the spectrum of this scheme is larger than the spectrum of the original DG scheme. Hence, this choice is of little
interest.

In general, we can use these expansions of Kh to determine what choices of αk will produce an unstable scheme.
For example, if we calculate the complete expansion of Kh for p = 3 we find

Kh = K +
α1 − 1

1680α3
K5 + i

7α3(α2 − 1) + 3α2(α1 − 1)

70560α2
3

K6

− 49α2
3(α3 − 1) + 35α3α2(α2 − 1) + (147α2

3 − 21α3α1 + 15α2
2)(α1 − 1)

4939200α3
3

K7 +O(K8),

and the condition that the coefficient on K6 is positive can be written
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Table 2: Largest CFL numbers obtained with the modified DG scheme on the linear advection equation for p = 3, 4,
and 5 modifying the three highest order coefficients. Relative increase is calculated as the ratio between the increased
CFL of the modified scheme, divided by the CFL number of the original DG scheme.

p αp αp−1 αp−2 CFL Relative Increase

3 1.00 1.00 1.00 0.14 5.40
0.04 0.39 1.15 0.78

4 1.00 1.00 1.00 0.11 4.06
0.04 0.41 1.16 0.47

5 1.00 1.00 1.00 0.09 3.88
0.07 0.52 1.16 0.36

α1 ≥ 7α3(1 − α2)

3α2
+ 1.

Therefore, if we alter the highest three multipliers for the p = 3 scheme we can expect that the scheme will be stable
if this condition is met. In general, the condition that the coefficient of K2p is positive in the expansion of Kh can
be written

αp−2 ≥ (2p+ 1)αp(1− αp−1)

(2p− 3)αp−1
+ 1.

Hence, this condition tells us that we can expect to obtain a stable scheme when reducing the second highest multi-
plier, αp−1, so long as the third highest multiplier, αp−2, is chosen to be sufficiently large. Using this information, we
again use our MATLAB program to search for the optimal choices of the three highest multipliers. More specifically,
we construct a mesh of test values for αp, αp−1, and αp−2 and search for the specific point in this mesh which yields
the largest CFL number in the modified scheme. The mesh is then refined and the process is repeated until a desired
amount of accuracy for this optimal point is obtained. The obvious downside of this modification is that we must
now alter the highest three multipliers, rather than just the highest two. This modification will therefore have a
more severe effect on the overall accuracy of the scheme. We show the results of this search in Table 2 where we see
that we can again substantially improve the usual CFL number of the DG scheme. However, this large increase in
the CFL number appears to diminish as the order of the scheme rises, and the effects of this modification become
less disruptive.

5 Numerical Examples

In this section we will apply the modified DG scheme to several test examples to confirm its convergence rate and
observe the general performance of the scheme in comparison with the standard DG scheme. We will begin by testing
the modified scheme with several choices of the multipliers αm,m = 1, . . . , p, to show that we retain the usual p+ 1
convergence rate on smooth solutions. We will then show how the modified scheme performs for a linear problem
with several different waveforms. We will also present an example where the accuracy of the modified scheme on a
fine mesh is compared to the accuracy of the DG scheme on a coarse mesh, but the computational effort of both
schemes is relatively equivalent. These examples are specifically chosen with initial conditions with fine structure
where mesh refinement may be more beneficial to accuracy than the higher order dissipation and dispersion errors
of the DG scheme. We will conclude the section by applying the modified scheme to some non-linear problems, in
which we will again confirm the convergence rate and show that the demonstrated gains in the CFL condition do
indeed carry over to non-linear problems.

5.1 Linear Advection Equation

Our convergence studies were done on the following initial value problem,

ut + ux = 0, −1 ≤ x < 1, t > 0, (40)

u(x, 0) = u0(x),

u(−1, t) = u(1, t),
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Table 3: Linear advection, (40), (41). L1 errors ǫ1 and convergence rates, r, for the sine wave initial condition, p = 1.
Errors are calculated at t = 2, after one full period.

α1 = 1, CFL = 1

3
α1 = 4

3
, CFL = 1

4
α1 = 2

3
, CFL = 1

2
α1 = 1

3
, CFL = 0.9

N ǫ1 r ǫ1 r ǫ1 r ǫ1 r

16 1.26e-02 - 1.97e-02 - 6.63e-03 - 2.14e-02 -
32 3.00e-03 2.07 4.88e-03 2.01 1.73e-03 1.93 5.77e-03 1.89
64 7.29e-04 2.04 1.21e-03 2.01 4.45e-04 1.96 1.47e-03 1.98
128 1.80e-04 2.02 3.02e-04 2.01 1.12e-04 1.99 3.73e-04 1.98
256 4.47e-05 2.01 7.54e-05 2.00 2.80e-05 2.00 9.39e-05 1.99

Table 4: Linear advection, (40), (41). L1 errors ǫ1 and convergence rates, r, for the sine wave initial condition, p = 2.
Errors are calculated at t = 2, after one full period.

α2 = 1, CFL = 1

5
α2 = 7

5
, CFL = 1

10
α2 = 2

5
, CFL = 2

5
α2 = 1

5
, CFL = 3

5

N ǫ1 r ǫ1 r ǫ1 r ǫ1 r

16 1.66e-04 - 1.07e-04 - 8.10e-04 - 2.44e-03 -
32 2.06e-05 3.01 1.31e-05 3.04 9.93e-05 3.03 3.02e-04 3.02
64 2.57e-06 3.00 1.62e-06 3.02 1.23e-05 3.01 3.76e-05 3.01
128 3.21e-07 3.00 2.01e-07 3.01 1.53e-06 3.01 4.70e-06 3.00
256 4.01e-08 3.00 2.51e-08 3.00 1.91e-07 3.00 5.87e-07 3.00

with

u0(x) =
1

2
sinπx. (41)

In Tables 3-5 we show the results of the convergence tests for the p = 1, 2, and 3 schemes. In each table, we present
errors ǫ1 in the L1 norm at t = 2 after one full period on uniform meshes having 16, 32, 64, 128, and 256 elements. To
obtain a proper comparison of the accuracy of the numerical solution for each choice of the αm multipliers, the CFL
number was chosen to be as large as possible, with the exception of the case p = 1 and α1 = 1

3 . In this case, a simple

calculation can show that when the time step is chosen to be precisely ∆t = h
a
this scheme will perfectly advect, i.e.

with no numerical error committed, the piecewise linear numerical solution of the linear advection equation1. For
this reason, we choose a CFL number that is slightly less than the maximum possible. In these convergence tests,
when choosing the multipliers in the modified scheme to be not equal to 1, we obtain that the scheme is less accurate
in terms of the L1 error. This is expected, since these modifications result in increased dispersion and dissipation
errors as compared to the original DG scheme and these errors lead to a faster growth of the accumulated error.
The temporal component of the error also increases due to a larger time step. We also see from these tables that
for any stable scheme of order p+ 1, we retain the full p+ 1 order convergence rate regardless of the choices for the
multipliers αm, m = 1, . . . , p.

Our numerical experiments revealed that when the lowest multiplier α0 was changed, the order of convergence of
the scheme was reduced by one. This was to be expected, as shown in Corollary 2, and hence was not reported.

We attempt to compare the performance of the modified scheme with the classical DG scheme in Figures 3-5.1.
We use two metrics to measure effort. In the left plots we use computational complexity, which we estimate as the
number of cells times the number time steps. Since the number of time steps is proportional to the number of cells
divided by the CFL number, we estimate the computational complexity using N2/CFL. In the right plots we use
the CPU clock time averaged over 20 runs on a Intel i7-2600K. In each of these figures we use the same choices of
multipliers in the mDG scheme as in the convergence tests in Tables 3-5. Figures 3-5.1 indicate that the modified
scheme with increased CFL number has a comparable performance in terms of work N2/CFL, only slightly better
for p = 3 and slightly worse for p = 2, but performs better than the classical DG scheme in terms of run time. This
seems to indicate that for very smooth linear problems there is performance benefit to the increase in CFL number.

1It is worth noting that for p = 2 we are able to construct a scheme which also perfectly advects the piecewise quadratic solution to
(40) by choosing α0 = 1, α1 = 1

2
, α2 = 1

10
and CFL = 1. However, as discussed in section 4.2, because α1 < 1 and α0 = 1, the scheme

is linearly unstable for CFL 6= 1.
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Table 5: Linear advection, (40), (41). L1 errors ǫ1 and convergence rates, r, for the sine wave initial condition, p = 3.
Errors are calculated at t = 2, after one full period.

α3 = 1, CFL = 0.14 α3 = 0.33, CFL = 0.35 α3 = 0.04, α2 = 0.39,
α1 = 1.15, CFL = 0.78

N ǫ1 r ǫ1 r ǫ1 r

16 3.38e-06 - 1.74e-05 - 5.15e-04 -
32 2.11e-07 4.00 1.08e-06 4.01 3.27e-05 3.97
64 1.32e-08 4.00 6.72e-08 4.00 2.04e-06 4.00
128 8.27e-10 4.00 4.20e-09 4.00 1.28e-07 4.00
256 5.17e-11 4.00 2.62e-10 4.00 7.99e-09 4.00

Figure 2: Performance comparison between DG and mDG, p = 3. Left figure shows accuracy compared to esitmate
of work, N2/CFL. Right figure shows accuracy compared to CPU run time.
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Figure 3: Performance comparison between DG and mDG, p = 1. Left figure shows accuracy compared to esitmate
of work, N2/CFL. Right figure shows accuracy compared to CPU run time.
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Figure 4: Performance comparison between DG and mDG, p = 2. Left figure shows accuracy compared to esitmate
of work, N2/CFL. Right figure shows accuracy compared to CPU run time.

5.2 Linear Advection Equation, Discontinuous Solutions

The next test - with which we can more directly observe the effects of modifying the DG scheme on a variety of
waveforms - involves solving (40) with the following initial conditions [9]:

u0(x) =































1
6 (G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)) −0.8 ≤ x ≤ −0.6,

1 −0.4 ≤ x ≤ −0.2,

1− |10(x− 0.1)| 0 ≤ x ≤ 0.2,
1
6 (F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, z)) 0.4 ≤ x ≤ 0.6,

0 otherwise,

(42a)
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Figure 5: Linear advection, (40), (42), p = 1 on a mesh of N = 200 elements. Shown at t = 2, after one full period.
Solid line shows the exact solution, line with ‘x’ markers shows the numerical solution. Top left: α1 = 1, CFL = 1

3 ,
Top Right: α1 = 4

3 , CFL = 1
4 , Bottom left: α1 = 2

3 , CFL = 1
2 , Bottom right: α1 = 1

3 , CFL = 0.9.
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G(x, β, z) = e−β(x−z)2 , (42b)

F (x, α, a) =
√

max(1− α2(x− a)2, 0), (42c)

where a = 0.5, z = −0.7, δ = 0.005, α = 10, and β = log 2
36δ2 . This initial profile consists of a combination of Gaussians,

a square pulse, a sharp triangle, and a combination of half-ellipses. We present the results with out limiting in order
to discuss the effect of the induced dispersive and dissipative errors in the modified scheme. These effects are better
seen in the spurious oscillations near solution discontinuities - which limiting would destroy - and in the dissipation of
local extrema, to which limiters heavily contribute. We then present an example where the limiter has been applied
and note that there is little difference between the schemes in terms of accuracy. Implementation of limiters, e.g.
the minmod [5] or moment limiter [10], is straightforward and analogous to their implementation in classical DG
schemes.
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Figure 6: Linear advection, (40), (42), p = 2 on a mesh of N = 200 elements. Shown at t = 2, after one full period.
Solid line shows the exact solution, line with ‘x’ markers shows the numerical solution. Top left: α2 = 1, CFL = 1

5 ,
Top Right: α2 = 7

5 , CFL = 1
10 , Bottom left: α2 = 2

5 , CFL = 2
5 , Bottom right: α2 = 1

5 , CFL = 3
5 .
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The results of test (40)-(42) for the p = 1, 2, and 3 schemes are shown in Figures 5-7 at t = 2 after one full period,
on a uniform mesh of N = 200 cells. In each figure we show several choices of the highest multiplier αp and for
the p = 3 scheme in Figure 7 we show an example where the three highest multipliers have been modified to their
optimal values listed in Table 2. In Figure 5, we observe a slight shift to the left and right for α1 = 1

3 and α1 = 4
3 ,

respectively, of the entire wave front for the p = 1 scheme. This is especially noticeable for the Gaussians and ellipses.
The modified scheme for which α1 = 2

3 is visually closer to the original DG scheme. This can be explained once
we explicitly calculate the expansion of the numerical wave number Kh in terms of the exact wave number K from
Corollary 1 for the p = 1 scheme,

Kh = K − α1 − 1

12α1
K3 +O(K4). (43)

Hence, choosing α1 > 1 will introduce an additional dispersive error of negative sign into the usual DG scheme. On
the other hand, decreasing α1 to 2

3 introduces an additional positive dispersive error. Note that the numerical wave
speed, ah, is given by ah = ω/Kh. Hence, Kh < K results in ah > a and we observe numerical waves travelling
slightly faster than the exact one. Similarly for Kh > K we observe numerical waves travelling slightly slower.

This property is true in general for the modified scheme, i.e. in the expansion of Kh for the order p scheme, when
each multiplier is taken to be equal to one except the highest, the coefficient of K2p+2 will have a similar form to
(43). Therefore, choosing αp > 1 will add a negative dispersive error and shift the wave fronts to the right, while
choosing αp < 1 will add a positive dispersive error and shift the wave fronts to the left. For example, the full
expansion of Kh in the p = 2 scheme is calculated to be

Kh = K + i
α1 − 1

120α2
K4 − 5α2(α2 − 1) + 3α1(α1 − 1)

3600α2
2

K5 +O(K6), (44)

and therefore when α1 = 1,

Kh = K − α2 − 1

720α2
K5 +O(K6), (45)
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Figure 7: Linear advection, (40), (42), p = 3 on a mesh of N = 200 elements. Shown at t = 2, after one full period.
Solid line shows the exact solution, line with ‘x’ markers shows the numerical solution. Top left: α3 = 1, CFL = 0.14,
Top Right: α3 = 0.33, CFL = 0.36, Bottom: α3 = 0.04, α2 = 0.39, α1 = 1.15, CFL = 0.78.
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and the effects of altering α2 in the p = 2 scheme will be analogous to the effects of altering α1 in the p = 1 scheme.
We note that although the order of the leading errors of Kh may stay the same for different choices of the

multipliers in (43)-(45), the magnitude of the error changes with different choices. Indeed from these examples it is
clear that although the formal order of accuracy remains the same, larger modifications may introduce larger errors
in accuracy. In practice, care should be taken to choose the multipliers to obtain a balance between the stability
gains and the deteriorating effects of the loss of accuracy.

Finally, we show in Figure 8 the results of this test for p = 1 with a minmod limiter implemented. We measure the
errors to be 0.070, 0.079, 0.068, 0.117 for the DG, mDG with α1 = 4/3, 2/3, 1/3, respectively. Visually the solutions
look similar, with the expection of the α1 = 1/3 case where the error is greater. This would seem to indicate that
in the presence of discontinuities when a limiter is used there is little difference in accuracy of the solutions, i.e. for
non-smooth problems the accuracy is almost completely determined by the limiter. Hence the limiter would appear
to remove the detrimental effects on accuracy introduced by the modifications and the performance benefits of the
modified scheme are immediate.

5.3 Burgers’ Equation

To test the modified scheme on a non-linear problem, we consider Burgers’ equation,

ut + uux = 0, (46)

on [−1, 1], with periodic boundary conditions and with the sine wave initial condition, (41). We perform our
convergence tests on this problem for the p = 1 and p = 2 schemes for various choices of the multipliers αm and show
the results in Tables 6 and 7. We use the same choices of multipliers as in Section 5.1 above), and present errors ǫ1
in the L1 norm at t = 0.3, before the shock wave has formed. No limiter is used in these tests. From these tables
we see that the modified scheme indeed retains the usual order of convergence for this nonlinear problem, for any
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Figure 8: Linear advection, (40), (42), p = 1 on a mesh of N = 200 elements with minmod limiter. Shown at t = 2,
after one full period. Solid line shows the exact solution, line with ‘x’ markers shows the numerical solution. Top left:
α1 = 1, CFL = 1

3 , Top Right: α1 = 4
3 , CFL = 1

4 , Bottom left: α1 = 2
3 , CFL = 1

2 , Bottom right: α1 = 1
3 , CFL = 0.9.
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Table 6: Burgers’ equation (46), (41). L1 errors ǫ1 and convergence rates, r, p = 1. Errors are calculated at t = 0.3,
before a shock wave forms.

α1 = 1, CFL = 1

3
α1 = 4

3
, CFL = 1

4
α1 = 2

3
, CFL = 1

2
α1 = 1

3
, CFL = 0.9

N ǫ1 r ǫ1 r ǫ1 r ǫ1 r

16 3.83e-03 - 3.54e-03 - 5.79e-03 - 1.58e-02 -
32 1.17e-03 1.71 9.92e-04 1.83 1.74e-03 1.73 3.78e-03 1.58
64 3.24e-04 1.84 2.67e-04 1.89 4.99e-04 1.81 1.10e-03 1.78
128 8.63e-05 1.91 7.01e-05 1.93 1.37e-04 1.87 3.02e-04 1.87
256 2.24e-05 1.95 1.80e-05 1.96 3.58e-05 1.93 7.96e-05 1.93

choices of the multipliers αm. We again observe that the performance of the DG scheme is roughly the same with
that of the mDG method with increased CFL number for a fixed computation effort.

5.4 Euler Equations

To test the modified DG method for a system of equations, we consider the Euler equations, ut + f(u)x = 0 with

u = (ρ, ρq, E)T , f(u) = qu+ (0, P, qP )T , (47a)

and an equation of state

P = (γ − 1)

(

E − 1

2
ρq2
)

, (47b)
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Table 7: Burgers’ equation (46), (41). L1 errors ǫ1 and convergence rates, r, p = 2. Errors are calculated at t = 0.3,
before a shock wave forms.

α2 = 1, CFL = 1

5
α2 = 7

5
, CFL = 1

10
α2 = 2

5
, CFL = 2

5
α2 = 1

5
, CFL = 3

5

N ǫ1 r ǫ1 r ǫ1 r ǫ1 r

16 2.58e-04 - 2.02e-04 - 7.04e-04 - 1.40e-03 -
32 3.43e-05 2.91 2.76e-05 2.87 9.45e-05 2.90 1.95e-04 2.84
64 4.63e-06 2.89 3.56e-06 2.95 1.22e-05 2.95 2.62e-05 2.90
128 6.16e-07 2.91 4.54e-07 2.97 1.60e-06 2.93 3.49e-06 2.91
256 8.03e-08 2.94 5.78e-08 2.97 2.10e-07 2.93 4.61e-07 2.92

Figure 9: Euler equations, (47)- (48), p = 2, shown at t = 2. Top: DGM and mDGM with α2 = 1
5 on a mesh of

N = 500 elements. Bottom: DGM on a 500-element mesh and mDGM with α2 = 1
5 , on a mesh of N = 866 elements.

Right plots are zooms of left plots.

−10 −5 0 5 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

ρ

 

 
DG

mDG

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

x

ρ

 

 
DG

mDG

−10 −5 0 5 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

ρ

 

 
DG
mDG

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

x

ρ

 

 
DG
mDG

for which we take γ = 1.4, and subject to the initial data [16]

(ρ, q, P )(x, 0) =











(3.857143,−0.920279, 10.333333), x ≤ 0,

(1 + 0.2 sin(5x),−3.549648, 1.000000), 0 < x < 10,

(1.000000,−3.549648, 1.000000), x ≥ 10.

(48)

This example involves the interaction of a stationary shock at x = 0 with a leftward-moving flow having a sinusoidal
density variation. As the density perturbation passes through the shock, it produces oscillations developing into
shocks of smaller amplitude. We choose this test problem since it gives us a good example of the interaction between
a shock and the fine structure of the produced oscillations. In our tests we chose to use the moment limiter [10].
In Figure 9, we present the numerical solutions of the p = 2 scheme at t = 2. In the top left figure we show the
unmodified DG scheme, α2 = 1 with CFL = 1

5 , and the modified scheme with α2 = 1
5 and CFL = 3

5 , on a mesh
of N = 500 elements. In the top right figure we show a zoomed view of the fine structure of the solution to the
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left of the shock wave. In each figure we show the schemes together with a reference solution computed using the
DG scheme with p = 2 and N = 2500 with the moment limiter. Surprisingly, the mDG solution is more accurate,
i.e. suffers from less numerical diffusion. While a rigorous explanation of this is still an open question, one possible
explanation is that the limiter destroys some of the accuracy of the fine structure at each iteration. Hence, since
the modified solution is obtained using a larger time-step, the solution is less damaged by the limiter and is able
to better resolve the fine structure to the left of the shock wave. Finally, in the bottom left figure we show again
the unmodified DG scheme, α2 = 1 with CFL = 1

5 , on the same mesh of NDG = 500 elements, together with the

modified scheme with α2 = 1
5 and CFL = 3

5 on a mesh of NmDG = 866 ≈
√
3NDG elements. The bottom right

figure shows a zoomed view of the fine structure of the solution. This example demonstrates the increase in accuracy
we can obtain by implementing the modified DG scheme on a refined mesh, for equivalent computation effort.

6 Conclusions

In this paper, we have proposed a family of numerical schemes obtained through a modification of the discontinuous
Galerkin finite element method. It is known that the choice of numerical flux influences the spectrum of the DG
scheme. For example, the central flux results in the spectrum being entirely located on the imaginary axis and the
upwind flux produces a spectrum which lies in the left half-plane and grows with order of approximation p. Here, we
propose a modification to the DG scheme which does not change the type of flux, but rather alters the contribution
of this flux to the solution coefficients cjm. This modification is obtained by multiplying the jump contributions of
the numerical flux for the solution coefficient cjm by a multiplier αm. Since for one-dimensional problems, with a
basis of Legendre polynomials, the coefficient cjm is a numerical approximation of the m-th derivative of the solution
on cell j, scaled by Cmhm where Cm is a constant, our method modifies the amount of numerical flux that is being
contributed the m-th derivative of the solution. In the specific case that αm = 1, ∀m, we obtain the usual DG
method.

The results of our study of this modified method can be summarized as follows. Firstly, the modification of
the lowest order coefficient α0 in the order p scheme immediately results in a severe accuracy loss and the order of
convergence of the scheme is reduced by one. We therefore avoid such a modification and focus on modifying only the
equations for the higher order coefficients of the scheme. Secondly, by analyzing how the modified scheme performs
on the linear advection equation we can establish that when the coefficient αm is modified the order of accuracy
of dispersion and dissipation of the scheme is p +m, i.e. the accuracy is reduced from the usual accuracy of order
2p+ 1 in dissipation and order 2p+ 2 in dispersion. This reduction of accuracy introduces additional dispersive and
diffusive errors to the numerical solution. Thirdly, when modifying only the highest multiplier we can prove that
the method is linearly stable for any choice of αp. Furthermore, we can expect to obtain a more relaxed stability
restriction by choosing αp ≈ 0.4. The relaxed condition allows us to take a time step twice as large, compared to
the usual DG method. Finally, more multipliers may be altered and a larger improvement in the usual CFL number
can be made for specific choices of αm, but as more multipliers are altered the accuracy of the scheme is reduced as
more dispersion and dissipation errors are added. Additionally, the increased time step introduces a larger temporal
error into the solution.

We present a number of numerical experiments demonstrating the performance of the mDG method. In our
examples, the mDG method preserves the convergence rate of the original DG method in the usual L1 norm. For
the linear advection equation with a very smooth profile, the mDG method performs similarly to the DG method
for a fixed computational effort, i.e. the number of cells times the number of time steps, but outperforms the DGM
in terms of CPU runtime. On the other hand, when the solution has discontinuities and limiters are applied, the
mDG scheme provides a comparable solution on the same mesh, but in less computation time. Additionally fewer
time steps results in less limiting which can result in fine structures of the solution from being overly smoothed by
the limiter. In particular, for the Euler equations example, the mDG method results in a better solution with the
CFL number being three times larger than in the usual DG method.

It is hoped that further study will illuminate a better understanding of the effects of these modifications to the DG
method. In particular, more testing is necessary to determine what choices of the multipliers will be optimal in the
sense of the trade-off between accuracy and the CFL number. It would also be useful to compare the mDG scheme
with finite-volume and finite-difference schemes in terms of accuracy. Additionally, the results in Tables 1 and 2
indicate that there may be a pattern in the choices of the multipliers αm which give us the largest CFL improvement,
as p increases. This suggests that these choices may be related to some specific rational approximation of exp(z).
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Further, the optimal choices of the multipliers αm should also be investigated with the application of different
limiters in the presence of shock waves. Finally, the extension of this approach to higher dimensional problems is
straightforward in terms of implementation, however the analysis becomes complex. Preliminary numerical tests
indicate that the CFL number can relaxed on two-dimensional unstructured triangular grids in an analogous way
and this is the subject of current research.
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