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A model for nonlinear sound wave propagation for the trumpet is proposed. Experiments have
been carried out to measure the sound pressure waveforms of the Bb

3 and Bb
4 notes played forte.

We use these pressure measurements at the mouthpiece as an input for the proposed model. The
compressible Euler equations are used to incorporate nonlinear wave propagation and compress-
ibility effects. The equations of motion are solved using the discontinuous Galerkin method (DGM)
and the suitability of this method is assessed. The third spatial dimension is neglected and the
consequences for such an assumption are examined. The numerical experiments demonstrate the
validity of this approach. We obtain a good match between experimental and numerical data after
the dimensionality of the problem is taken into account.
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1. Introduction

The amplitude of most audible sound waves is only a small fraction of atmospheric pressure.

In such cases, a small amplitude linearization of the gas dynamics equations can be made

resulting in a linear model of sound propagation 1. However, for brass musical instruments

these simplifying assumptions start to break down once loud or high frequency notes are

played 1. For such notes, the pressure variations can be a significant fraction of atmospheric

pressure in the narrow tubing of the instrument 2. This can potentially allow the nonlinear

behavior from the high amplitude propagating waves to distort the waveforms 1,3.

If the pressure pulse leaving the mouthpiece of an instrument has large enough ampli-

tude, the crest will travel noticeably faster than the trough. This will cause the waveform
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to steepen and excite the higher frequency components 4. This influences the timbre of the

sound giving it a more ‘brassy’ effect 5. If the cylindrical bore of the instrument is long

enough and the nonlinear effects are strong enough, it is possible for the wave to steepen

into a shock wave exaggerating the brassy sound 1.

Work addressing wave production for the trumpet began in 1971 by Bachus et al. 6, and

for the trombone in 1982 by Elliot et al. 7. In these papers, the motion of the lips coupled

to the air column was examined. They concluded that the nonlinear motion of the lips did

not contribute to the harmonic generation. They also thought that the amplitude of the

sound waves did not influence the wave propagation behavior. Bachus et al. 6 state that the

transfer function between the mouthpiece pressure and radiated sound was basically linear.

Since they assumed that the wave propagation could be considered as linear, Webster’s

horn equation was considered to be an adequate description of sound wave propagation in

a horn 8,9,10. This expression was published in a paper by Webster in 1919 11. However,

credit should also be given to Bernoulli, Euler and Lagrange. They all derived this equation

and examined the solution before Webster published his work 12. The equation is a one-

dimensional (1D) differential equation that is an approximation for linear sound waves under

the assumption that the acoustic pressure is constant in the tube and that the duct does

not flare too quickly 13.

In 1980 however, this work was contradicted by Beauchamp. He suggested that linear

models would not be sufficient to understand the wave motion in brass instruments 14. In

his experiments with trombones, he measured the radiated harmonics and compared them

to the corresponding harmonics of the initial wave at the mouthpiece. He found that at

different playing volumes the difference between the harmonics was not constant, i.e., the

transfer function was not linear. The amplitude of the initial wave influenced the sound

pressure levels of the radiated harmonics.

Hirschberg et al. in 1995 2 observed that shock waves were present outside the trombone

bell for certain notes played at certain volumes. It is often assumed that the nonlinear

effects in the trumpet are also strong enough to produce shock waves. By using schlieren

imaging, Pandya et al. 15 reported that they observed shock waves outside the trumpet bell.

However, there is some uncertainty since the trumpet is much shorter than the trombone.

The typical length of the trombone is approximately 2.76 m versus 1.48 m for the trumpet.

Some results in the literature suggest that the shock distance is about the length of the

trumpet for a Bb
3 played forte 15,16.

A number of papers proposed acoustic models to describe or mathematically explain

nonlinear wave propagation within brass instruments. For example, Thompson et al. 16

proposed a linear and a nonlinear frequency domain model. The nonlinear model matches

the experimental and numerical results very well for quietly played notes. For loudly played

notes, the model deviates from the experiment for all harmonic components below 6000

Hz except for the two lowest harmonics. Burgers’ equation or its variations have been used

to explain the presence of experimentally observed shocks, e.g., 5,17. Overall though, most

work has been done on the trombone rather than the trumpet.

It was the interest of the authors to investigate the complex acoustic phenomena in the
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trumpet experimentally and to develop an accurate numerical time domain model. Since

there is little published experimental data available (in terms of recorded frequencies and

their corresponding sound pressure levels), we took pressure measurements in a lab and

published the results in the appendix for others to use for future research. This data will

also be used in our model as an input at the mouthpiece.

To solve the equations of motion, we have decided to use the discontinuous Galerkin

method (DGM) because of its many advantages. Firstly, the DGM has sufficiently small

numerical dispersion and dissipation errors. This implies that the propagation of high har-

monics can be simulated accurately. Secondly, the DGM can easily handle the complex

geometry of the trumpet. Further discussions of the numerical scheme can be found in 18

and 19.

Since majority of the mathematical descriptions of wave steepening in brass instruments

are 1D, the extension to two dimensions seemed natural. The use of lower dimensional

models is usually justified by the symmetry of the trumpet which is accurate within the

cylindrical bore but not the flare. In addition, we do not want to assume that the bends

can be neglected without sufficient numerical evidence. We want to carefully model the

cylindrical bore and a bend before assuming that an axisymmetric two-dimensional (2D)

model is a good approximation. Therefore, we base our model on the full 2D Euler system

describing the motion of compressible inviscid fluid rather than Burgers’ equations. This

allows us to better take into account the spreading of the waves at the bell.

However, the spreading of the waves in three and two dimensions is also different: the

amplitude decays inversely proportional to the distance or a square root of it, respectively,

i.e., we still expect there to be some amplitude discrepancy in our results. We will analyze

this amplitude difference between 2D and 3D for the trumpet. For now however, losses will

not be included in our model. Though in reality there are losses in the system due to wall

boundary layers, wall vibration and the viscosity of the medium 20,21.

The end goal of this research is to describe nonlinear wave propagation in the trumpet

and this includes the generation of shock waves if they are in fact produced. However, this

is a large task and this paper will focus on the first step of this investigation: to determine

if neglecting the bends and third dimension in the full Euler system is reasonable once the

dimension factor is taken into consideration. Once this is established, we can than investigate

the production of shock waves in a future paper.

2. Acoustic Laboratory Experiments

2.1. Experimental Set Up

Pressure measurements were taken on a Bb Barcelona BTR-200LQ trumpet shown in Figure

1. Three microphones were attached at three locations along the trumpet. One quarter-inch

microphone was mounted to the shank, i.e., the cylindrical part of the trumpet mouthpiece

about 4.5 cm from the beginning of the instrument. The other quarter-inch microphone was

attached to the tubing of the trumpet at the first bend which is approximately 42 cm along

the length of the trumpet. The last, a half-inch microphone was placed on the central axis
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of the trumpet approximately 16 cm - 17 cm outside the bell. In the rest of the paper, we

will refer to these locations as mouthpiece, bend, and bell.

Fig. 1: Placement of microphones on the Barcelona BTR-200LQ trumpet.

To mount the microphones at the mouthpiece and bend, small holes were cut into

the cylindrical part of the mouthpiece and trumpet bore. Quarter inch o-ring compression

fittings were then soldered to the trumpet bore over these holes. In an attempt not to alter

the acoustic properties of the trumpet, the microphones were placed so that the diaphragms

made the boundary of the tube as smooth as possible. The microphones were connected

to three inputs of an Agilent four channel digital oscilloscope and the pressure data from

all three microphones was collected simultaneously while the instrument was held in the

normal playing position. The data was captured once the note of choice was steady and

only a couple of periods of the raw data was saved into the local computer.

The Agilent digital oscilloscope quantizes the input signals with 8-bit converters, so we

might expect the microphone data to have a maximum of 256 levels. However, due to the

large oversampling of the internal converters, many samples are added together to produce

output samples with much better resolution. We found that our data displayed over 2000

levels, so it was captured with 11-bit precision, having a signal-to-noise ratio of about 66

dB.

In order to make the path of the airflow more direct we avoided using the valves of

the Bb trumpet. For this reason, we chose to play C3 and C4 notes, which correspond to

a concert Bb
3 and Bb

4, respectively. Both of these notes were played forte (f ), which means

loud.

2.2. Experimental Results

One period of the recorded pressure measurements for the Bb
3 and Bb

4 notes played f is

depicted in the left plots of Figures 2 and 3, respectively. The plots show deviation of the

sound wave pressure from atmospheric pressure, which is 101325 Pa. Since the pressure at

the bell is much lower than inside the instrument, its waveform looks like a straight line in
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the left plots of Figures 2-3. A close up can be seen on the right plots. Since the data is

periodic, the starting point for plotting of all three waveshapes was chosen arbitrarily, i.e.,

if a different point were chosen the phase shifts would differ.

Fig. 2: Left: Measured pressure waveform at the mouthpiece, bend and bell of a Bb
3. Right: Close up of the

measurements at the bell.

Fig. 3: Left: Measured pressure waveform at the mouthpiece, bend and bell of a Bb
4. Right: Close up of the

measurements at the bell.

We will use the experimental data at the mouthpiece as the boundary condition on

the pressure. The data at the bell will be used to judge accuracy of the proposed model.

To this end, we applied the FFT to the discrete experimental data to obtain the spectral

components of the wave. When using an N-point discrete Fourier transform (DFT), we

must multiply the spectrum thus obtained by
√

2
N , in order for the peak of a spectral line to

represent the rms value of that component. These are reported in Figure 4. As customary,

the results are presented as sound pressure level (SPL) which is measured in decibels (dB).
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Conversion from Pascals (Pa) to dB is given by

Lp = 20 log10

(
P

2× 10−5

)
. (1)

The total SPL is equal to 166.9 dB for the Bb
3 and 167.2 dB for the Bb

4 in the shank

of the mouthpiece. Dynamic levels are arbitrary in the sense that there is no specific deci-

bel level that defines forte; but typically, these SPLs fall into the forte range reported in

the literature. As expected, our obtained results are also similar in character to the pres-

sure measurements presented in 2,4,6,7,16. In particular, the waveform shapes and SPLs for

analogous notes in these papers resemble our plots shown in Figures 2, 3 and 4.

Fig. 4: Frequency spectra at the mouthpiece, bend and bell. Left: Bb
3. Right: Bb

4.

Applying Fourier synthesis to the results in Figure 4 gives us a continuous expression

for the pressure. We write the trumpet notes as a sum of sine/cosine waves with frequencies

f , 2f , 3f ,. . . , i.e., harmonics, each with a corresponding amplitude, A, and phase shift, φ.

The sinusoidal function of a harmonic can be rewritten as a phase-shifted cosine function

that is a superposition of the real and imaginary parts with amplitudes α and β 22

αicos(ωit) + βisin(ωit) = Aicos (2πfit+ φi) , (2)

where i is the harmonic number, t is time, fi is ith frequency, ωi = 2πfi is the angular

frequency. The amplitude is defined as

Ai =
√

(α2
i + β2

i ), (3)

and the corresponding phase angle φi is given by
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φi = arctan

(
βi
αi

)
. (4)

Therefore, one period of the entire pressure waveform of a desired note is expressed as

p = A0 +

N/2∑
i

2Aicos (2πfit+ φi) , (5)

where A0 is the term corresponding to the direct current, and N is the number of points

in our data, and fN/2 is the Nyquist frequency. The amplitude is multiplied by a factor of

two since the Ai are double-sided.

3. Numerical Set Up

3.1. Number of Harmonics

Next, we need to determine how many harmonics in (5) are required in order to reconstruct

and accurately describe a pressure waveform for a given note. We obtained slightly more than

200 harmonics from our FFT analysis. Not all of these frequencies are meaningful. Once the

SPLs drop by approximately 50 dB, these frequencies represent noise in our measurements.

Our oscilloscope had a dynamic range of 66 dB, so it does not contribute to the noise in

our measurements. The number of retained harmonics is important as it influences the size

of the mesh: we normally require a minimum number of mesh cells per wavelength in order

to resolve it properly. This number depends on the order of the numerical scheme.

In early investigations, it was typical for only six to eight harmonics to be considered in

describing a note, e.g., 2,3,6. We found, however, that more harmonics are necessary for an

accurate representation of a note at the mouthpiece and an even higher number for mea-

surements taken outside the bell. This is in line with recent results in the literature 23. The

required number of harmonics depend on the acoustical system and available computational

resources. In order to find the proper number, we truncate the FFT reconstruction (5) at

Nf = 5, 10, 15, 20, 25, and 30 number of harmonics and measure the resulting error (Table

1). The relative error was measured in the L2 norm

error(%) =
‖pFFT − pTrun‖2
‖pFFT ‖2

∗ 100%, (6)

where pFFT is the fully reconstructed waveform and pTrun is the reconstruction truncated

after a given number of harmonics. We observe that for the mouthpiece at least fifteen

harmonics are necessary to describe Bb
3 and at least ten are needed for Bb

4. Adding extra

frequencies does not significantly reduce the error. The difference in the number of harmonics

for Bb
3 and Bb

4 can be explained by looking at the waveforms in Figures 2-3 where the Bb
4
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waveform is visually smoother. This is further supported by the frequency spectra in Figure

4 where the Bb
4 spectrum tapers off at lower frequencies.

Table 1: Error associated with the number of harmonics used to reconstruct the measured pressure waveform
of a Bb

3 and Bb
4 note at the mouthpiece.

Number of Harmonics Error for Bb
3 Error for Bb

4

5 10.46 % 2.69 %

10 2.16 % 0.53 %

15 0.52 % 0.32 %

20 0.44 % 0.29 %

25 0.32 % 0.26 %

30 0.24 % 0.24 %

We also calculate the number of harmonics that are needed to be retained in the trun-

cated FFT reconstruction in order to represent the pressure waveform measured outside the

bell. This is necessary for a meaningful comparison of the experimental and computational

data. Table 2 reports the errors for both notes. We observe again that a greater number of

harmonics are needed for Bb
3. Furthermore, we note that the number of meaningful harmon-

ics in the recorded data is higher at the bell than at the mouthpiece for the same accuracy.

Approximately thirty harmonics are needed for the waveforms at the bell. Thus, we use

Nf = 30 in the boundary conditions (13). We again refer to Figures 2-3 where the signal at

the bell is steeper than at the mouthpiece. This phenomenon is due to nonlinear behavior

of the pressure wave, which steepens the wave as it moves through the trumpet.

Table 2: Error associated with the number of harmonics used to reconstruct the measured pressure waveform
of a Bb

3 and Bb
4 note outside the bell.

Number of Harmonics Error for Bb
3 Error for Bb

4

5 75.48 % 37.67 %

10 46.86 % 8.53 %

15 20.87 % 3.08 %

20 8.78 % 1.68 %

25 4.69 % 0.77 %

30 2.94 % 0.35 %

35 2.00 % 0.27 %

3.2. Euler Equations

It is tempting to use Webster’s horn equation, an ordinary differential equation in the axial

coordinates, to describe the wave propagation in the trumpet. However, this 1D equation
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is inadequate for our purposes. The method neglects the nonlinear coupling of the forward

and backward moving waves. Furthermore, the pressure field is assumed to be uniform

throughout the width of the duct and the flare expansion of the bell has to be gradual. If

the rate of change of the flare is too large, this method fails even for low frequency waves

because we cannot decouple the modes 13. To describe nonlinear wave propagation in the

trumpet for loud, high frequency notes, it is essential to take the pressure variations and

mode coupling into consideration without placing any restrictions on the flare of the bell.

We base our model on the 2D compressible Euler equations:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (7a)

∂(ρu)

∂t
+
∂(ρu2 + p)

∂x
+
∂(ρuv)

∂y
= 0, (7b)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2 + p)

∂y
= 0, (7c)

∂E

∂t
+
∂(u(E + p))

∂x
+
∂(v(E + p))

∂y
= 0, (7d)

where ρ is the density of air, (ρu, ρv) are the momenta in the x and y direction respectively,

p is the internal pressure, and E is the total energy. The equation of state connects E to

the other variables:

E =
p

γ − 1
+
ρ

2
(u2 + v2). (8)

For air, the specific heat ratio γ is approximately 1.4. The system (7) describes the motion

of inviscid, compressible gas. Thus, our model neglects viscosity of the air and wall losses

in the trumpet. In addition, to reduce the 3D problem to two dimensions we simply took

the projected shape of the trumpet. We will discuss how these assumptions have influenced

our results later. In order to solve equations (7-8), we need to specify initial and boundary

conditions.

3.3. Initial and Boundary Conditions

We assume that initially the flow is at rest, i.e., the velocity in the horizontal and vertical

direction is zero. The rest of the variables are scaled from physical values to values more

convenient for computation. In particular, the speed of sound c0, which is approximately

343 m/s in air, and atmospheric pressure p0, which is 101325 Pa (i.e., one atmosphere), are

scaled to be equal to 1. Assuming that the flow is isentropic, i.e., c0 =
√

γp0
ρ0

, the initial

density should then be taken to be 1.4. In summary
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Initial State:


p0 = 1.0,

ρ0 = 1.4,

u0 = 0.0,

v0 = 0.0.

(9)

The reflecting boundary conditions were prescribed on the inner and outer walls of the

trumpet (Figures 6, 7, 8) excluding the mouthpiece end which is discussed below. At the

straight wall, we use the solid wall boundary conditions. We specify a ghost state at each

boundary quadrature point where the density, pressure and tangential velocity are taken to

be the same as the corresponding value inside the cell. The normal velocity is reflected with

respect to the wall, i.e., taken with a change of sign. Then, the ghost and inner states are

passed to the Riemann solver. The resulting Riemann state corresponds to no flow through

the solid wall boundary condition. For more detail see 24.

We found that special care needs to be taken in imposing boundary conditions on the

curved part of the bell. Computations are very sensitive to accuracy of geometric description.

We refine the mesh and use the curvature boundary conditions proposed in 25 to simulate

the flow around the curved geometry of the bell on the straight-sided mesh shown in Figures

6, 7 and 8. Curved boundary conditions take into account the curvature of the true geometry

of the trumpet while computing on a simpler straight-sided mesh. This allows us to speed

up computations and at the same time, avoid spurious entropy production at the corners

of the straight-sided triangles. Another approach would be to use high-order curve-sided

triangles and the standard solid wall treatment described above. In the numerical section,

both types of reflective boundary conditions (curved and straight) have been considered in

certain simulations.

The far boundary of the computational domain around the trumpet has pass-through

boundary conditions. The condition is imposed by specifying the unperturbed flow state as

the ghost state on the outside of the domain. Due to the negligibly small velocity and low

amplitude of the pressure wave outside the trumpet (.05% of atmospheric pressure), there

is very little numerical reflection at the outer wall boundary of our mesh. To verify this, we

considered a box that was four times larger than the one shown in the left of Figure 6 and

found no difference in the computed pressure.

The data obtained from the experiments is used as the boundary condition on the

pressure. We do not attempt to model the flow behavior inside the mouthpiece as it is quite

complex. Our measurements were taken on the straight part of the mouthpiece where it

connects with the bore. Since the waveform in the bore behaves like a planar 1D wave, we

impose that boundary condition on the left vertical wall where the mouthpiece would be.

This corresponds to the zero value of the horizontal variable and the interval [-0.58,0.58]

in the vertical direction in the geometric description in Figure 5. Since the measurements

were recorded when the note was being played for some time, they represent the boundary

conditions when the quasi steady state is reached. Thus, we can expect for the simulation
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that the first time the wave transverses the trumpet, the output will not be accurate.

However, if simulations are performed correctly, then the reflected waves should fit well

with the prescribed values at the wall as they form the standing wave pattern.

The boundary conditions for the dimensionless pressure are given by

p̂(t) = Â0 +

Nf∑
i=1

2Âicos
(

2πf̂it+ φ̂i

)
, (10)

where Âi, f̂i, and φ̂i are scaled versions of data in (5) and Nf is the number of used

frequencies. The values for this variables are given in Appendix B.

The boundary conditions for the rest of the variables are set in the following way. The

density is computed using the isentropic flow law

ρ̂(t) = Cp̂(t)
1
γ , (11)

where C is the proportionality constant. We require C to hold for the initial conditions (9)

which gives C = γ. Finally, we need to prescribe the initial velocity. We connect velocity to

pressure using the 1D expression derived from linear acoustic theory

û(t) =
p̂(t)− po
ρoc

. (12)

This results in an input of the pressure wave of the form given in (10), moving from left to

right. Since there is little return from the reflections at the bell (especially for the frequency

components we are interested in), the plane wave velocity expression is a good approxima-

tion. We note that the linearization is applied at the mouthpiece boundary, i.e., on the line

corresponding to the beginning of our trumpet. The velocity of the air particles inside of the

instrument is governed by the Euler equations and, hence, is nonlinear. The linearization

is justified since the speed of the air particles inside the instrument is low relative to the

speed of sound. Velocity measurements for trombones reported in 26 give the maximum

speed about 17 m/s, i.e., about 5% of the speed of sound, in the throat of the mouthpiece.

We were unable to find in literature measurements taken inside the instrument. We discuss

later the limitations of the boundary conditions.

Therefore, the boundary conditions at the mouthpiece of the computational trumpet,

i.e., at about 4.5 cm from the beginning of the physical instrument, are given by

Boundary Conditions:



p̂ = Â0 +
∑Nf

i=1 2Âicos
(

2πf̂it+ φ̂i

)
,

ρ̂ = γp̂
1
γ ,

û = p̂−po
ρoc

,

v̂ = 0.0,

Ê = p̂
γ−1 + ρ̂

2(û2 + v̂2).

(13)
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3.4. Trumpet Mesh

To create a 2D trumpet mesh, we first wanted to determine if neglecting the bends would

be a reasonable approximation. In this paper, we verify that the trumpet bends do not

greatly influence wave propagation inside the instrument. Nonetheless, considering a bend

in the mesh does produce slightly better numerical results. This hypothesis is tested in

the numerical section and is shown to be accurate within the error margins of our model.

Thus, our mesh attempts to accurately reflect the length of a trumpet, the bore and slowly

increasing diameter of the flare of the bell.

Figure 5 depicts the two different geometries of the trumpet (when the bend is neglected)

that were used as an input by a mesh generator. Valves on the trumpet are not used in

playing Bb
3 and Bb

4 so the length of the instrument is taken to be 1.48 m. The diameter of

the tube is constant except near the end where it slowly increases and then flares rapidly

at the bell. To accurately depict the geometry, measurements were taken as the diameter of

the bore expanded near the bell. These points were passed to the mesh generating software

GMSH.

Fig. 5: Geometries for the trumpet meshes.

The initial measurements were taken at the university’s machine shop. However, mea-

surements were only taken every few centimeters throughout the flare. This mesh, which we

will call mesh 1, was constructed and is illustrated in Figure 6. Mesh 1 was used for simula-

tions in the numerical section; however, we were concerned with the lack of smoothness as

the flare expanded. Therefore, we created another mesh, called mesh 2, and it can be seen

in Figure 7. To obtain a better set of points along the flare, we took a picture of the trumpet

and downloaded the grabit software from MathWorks Inc.. This allowed us to trace out the

shape of the bell with more points making the geometry more precise, and smoother. Mesh
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2 was also used for simulations presented in the numerical section. By using both meshes,

we were able to compare how the shape of the flare influenced our results. A third mesh,

mesh 3 in Figure 8 will be used in the numerical section to justify that the bends can be

neglected. The grabit software was also used to create the bend shape.

For all meshes, the points on the straight part of the bore were connected by lines;

the curve representing the bell was interpolated using cubic splines. The meshes were con-

structed so that one unit on the axes represents 1 cm. We enclosed the trumpet in a box

with dimensions 2.20 m by 2.92 m. We found that increasing the box’s size does not influ-

ence the accuracy of the computations. The total number of cells is 8467, 8038, and 9563

in meshes 1, 2 and 3, respectively. There are about four to five triangles along the width of

the bore. In the length direction, we have approximately 350 triangles per wavelength. At

the bell, the mesh is refined by a factor of two and a half, which would correspond to 875

triangles per wavelength. The mesh is coarser near the boundary of the box. According to
23, this is more than enough triangles per wavelength regardless of the discretization order.

Fig. 6: Mesh 1: Two-dimensional trumpet mesh constructed by taking measurements in machine shop.

Fig. 7: Mesh 2: Two-dimensional trumpet mesh constructed by tracing out the shape of the bell in Matlab.
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Fig. 8: Mesh 3: Two-dimensional trumpet mesh constructed by tracing out the shape of the bell and bend
in Matlab.

4. Numerical Experiments

4.1. Discontinuous Galerkin method

We use the discontinuous Galerkin method in the formulation originally proposed by Cock-

burn and Shu 24. Here we provide a brief synopsis of the numerical scheme.

In order to describe the method, we write a general conservation law

∂u

∂t
+∇ · F(u) = 0, x ∈ Ω, t > 0, (14a)

u = u0, t = 0. (14b)

We divide the problem domain Ω into a collection of nonoverlapping elements

Ω =

Nh⋃
j=1

Ωj . (15)

Then, we construct a Galerkin problem on element Ωj by multiplying (14a) by a test

function v ∈ (H1(Ωj))
m, where m is the number of equations in the system (14), integrating

the result on Ωj , and using the Divergence Theorem to obtain

∫
Ωj

v
∂u

∂t
ds+

∫
∂Ωj

vF(u) · ~n dτ −
∫

Ωj

gradv · F(u) ds = 0, ∀v ∈ (H1(Ωj))
m, (16)

where ~n is the normal vector to ∂Ωj .
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The solution u is approximated by a vector function Uj = (Uj,1, Uj,2, . . . , Uj,m)T , where

Uj,k =

Np∑
i=1

cj,k,iϕi, k = 1, 2, . . . ,m, (17)

in a finite-dimensional subspace of the solution space. The basis {ϕi}
Np
i=1 is chosen to be

orthonormal in L2(Ωj)
18. This will produce a multiple of the identity for the mass matrix

on Ωj when the testing function v is chosen to be equal to the basis functions consecutively

starting with ϕ1.

Due to the discontinuous nature of the numerical solution, the normal flux Fn = F(u) ·
~n, is not defined on ∂Ωj . The usual strategy is to define it in terms of a numerical flux

Fn(Uj ,Uk) that depends on the solution Uj on Ωj and Uk on the neighboring element

Ωk sharing the portion of the boundary ∂Ωjk common to both elements. In our numerical

experiments, we have used the Roe numerical flux 18. Finally, the L2 volume and surface

inner products in (16) are computed using 2p and 2p+ 1 order accurate Gauss quadratures
18, respectively, where p is the order of the orthonormal basis. The resulting system of ODEs

is

dc

dt
= f(c), (18)

where c is the vector of unknowns and f is a nonlinear vector function resulting from the

boundary and volume integrals in (16).

Numerical experiments presented in Section 4.3 were computed using a linear basis and

verified by running the same tests with a quadratic basis. Due to the very fine meshes used,

the results were extremely similar.

4.2. Estimated Difference of Trumpet Output in Two and Three

Dimensions

In that portion of the trumpet where the bore diameter is constant, the acoustic signal is

essentially 1D. We can approximately compare the 2D simulations with 3D measurements

if we make a few reasonable assumptions about the acoustic signals leaving the bell. Let

us compare a 3D trumpet of bore with radius R with a 2D trumpet of the same projected

shape. We choose our 2D trumpet with a height W such that the area of its rectangular

bore is the same as that of the 3D trumpet, thus 2RW = πR2. Using the measured acoustic

pressure for our simulations means that the same total power is traveling down the actual

trumpet and the simulation.

Now consider that most of the acoustic power will leave each trumpet bell, since much

of the power is in the higher harmonics. We assume that this will be similar in 2D and

3D, i.e., we are using a conservation of energy argument. In addition, we assume that the

axial acoustic pressure2 measured in similar places outside the bell is proportional to the
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total power leaving the instrument. There will be some differences in 2D and 3D but we

will assume that they are not significant relative to the other considerations.

The acoustic waves leaving the bell in both 2D and 3D will have curved wavefronts, and

we can equate the pressure2 times the wavefront area so that the power leaving each bell

is the same. It is necessary to estimate (see Appendix A) these curved wavefront areas, the

one in 2D being a curved strip of width h bridging the edges of the bell, and the one in 3D

being a spherical cap bounded by the edge of the bell. If A2 and A3 represent these areas,

and p2 and p3 represent the simulated and measured axial pressures on these areas, then

we would set p2
2A2 = p2

3A3.

There is one more detail needed to compare the simulated and measured pressures. They

have been assessed not at the bell but some distance from it, due to the original placement

of the microphone well outside the bell. In comparing this position to the one on the curved

wavefront bridging the bell, we must account for the different variation of amplitude with

distance in 2D and 3D. In 2D, the amplitude is closely proportional to 1√
r
, whereas in 3D

the amplitude varies as 1
r . We need to know where the center of curvature is located for the

wavefronts. All these considerations have been included in the numerical factor of 14 dB

difference between 2D and 3D at a distance 16 cm from the bell. While the whole process

seems a bit rudimentary, it nonetheless allows a comparison between 2D and 3D.

4.3. Computational Results

To better interpret our simulation results, we first examine the acoustic behavior of the 2D

bell. We send down the trumpet a pulse given by

p1 =

{
1.0 + (0.01− 0.01 cos(1500 t)), if t < 2π

1500

1.0, else

which corresponds to a pressure pulse with an amplitude of approximately 2000 Pa. Since the

amplitude is only 2% of an atmosphere, we can view the pulse as linear. We do not observe

wave steepening. In the top plot of Figure 9, we show the pressure simulated at a point

located at the mid-length of the cylindrical bore. The first peak located at approximately

t = 0.0025 corresponds to the initial pulse moving from the mouthpiece towards the bell.

The second inverted peak seen at about t = 0.007 corresponds to the signal traveling back

to the mouthpiece after it has been reflected at the bell.

The reflected transfer data of Figure 9 (bottom), is calculated from the frequency content

of the reflected pulse divided by that of the incident pulse. This curve represents the power

reflected by the bell meshes. The calculated transmission data, which is the compliment of

the reflected transfer data, represent the power transmitted from the bell; the transmission

transfer data are the output of the bell meshes. The curves representing the output of the

bell meshes have a reduction in the sound pressure level (SPL). This is mainly because the

wave spreads as it exits the bell. However, we can see that the shape of the calculated and

simulated transmission data are similar, especially for frequency components greater than



December 12, 2013 21:24 WSPC/130-JCA AP1˙after˙revision

A two-dimensional study of finite amplitude sound waves in a trumpet using the discontinous Galerkin method 17

200 Hz. The spreading of the wave is slightly different for the low frequencies and high

frequencies.

Fig. 9: Simulated pressure pulse through mesh 1 and mesh 2. Top: Initial and reflected wave. Bottom:
Corresponding transfer functions of the bell.

The reflection data of Figure 9 shows that more than 50% of the incident energy at
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the mouthpiece is transmitted out of the bell for frequencies above about 600 Hz for mesh

1, and 400 Hz for mesh 2. This is where the reflection plot crosses at -3 dB (in 3D, we

expect that where the plot crosses will increase in frequency). This means, in theory, that

frequency components less than approximately 600 Hz and 400 Hz, for mesh 1 and mesh 2

respectively, are mostly reflected before or within the bell. We hypothesize that the 200 Hz

difference is due to the variation of the bell curvature. For mesh 1, the bell is not as smooth

and along the length of the instrument, the flare widens further down the tube compared

to mesh 2. For mesh 1, this will cause more of the frequency components to stay within the

confines of the duct. This would explain why the pulse for mesh 1 in Figure 9 (bottom) has

a lower peak relative to mesh 2. As the frequency increases, the wave travels further into

the bell. For frequency components greater than roughly 1000 Hz, the waves are not being

reflected at all and we see that the transmission data matches for both meshes in Figure

9 (bottom). This is to be expected since both mesh 1 and 2 have the same geometry by

the time the bell is fully flared. We will use these findings in the discussion of our trumpet

simulations.

We begin numerical experiments with notes played on a trumpet by verifying the cor-

rectness of the proposed boundary conditions (13). In classical acoustic theory, the player

provides an oscillating air particle velocity, and the instrument reacts with an appropriate

acoustic pressure. In our nonlinear simulation, we must specify both pressure and velocity

on the mouthpiece end boundary, which is unusual from an acoustic point of view. We plot

the computed frequency spectrum of the pressure sampled at the very beginning of the

simulations close to the mouthpiece boundary in Figure 10. We refer to this data as the

simulation data before reflection. We observe a good match between the experiment and

the input simulated waveforms, especially for the Bb
4 where the frequency components are

almost perfectly aligned. For the Bb
3, the frequency components below 4000 Hz are almost

identical for the experiment and simulated waveforms. For frequencies above 4000 Hz, we

observe a slight variation between one to four decibels. This indicates the validity of the

proposed boundary setup.

We again sample the pressure at the mouthpiece after the wave has traveled to the

bell, been reflected and returned to the mouthpiece (Figure 11). We refer to this data as

the simulation data after reflection. We observe that the frequency spectrum for the Bb
4 on

the right plot at the mouthpiece does not change drastically. The Bb
3 pressure (left plot)

shows more variations; specifically for the fundamental frequency, and higher harmonic

components.

The results of solving (7) with initial and boundary conditions (9), (13) on mesh 1,

mesh 2 and mesh 3 are shown in Figures 12, 13, and 14. Each note was simulated with 30

harmonics (Nf = 30 in (10)). We performed two sets of numerical experiments for each

note. In the first simulation set, denoted by S1, only one period of the mouthpiece time

pressure waveform (shown in Figures 2 and 3) will be generated at the mouthpiece boundary.

For the second simulation set, denoted by S2, we applied the same mouthpiece waveform

continuously. In Figures 12 and 13, we refer to S1 and S2 as the single and multiple period

simulations, respectively.
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Fig. 10: Computed pressure sampled at the mouthpiece at the beginning of simulations. Experimental data
is plotted for comparison. Left: Bb

3. Right: Bb
4.

Fig. 11: Computed pressure sampled at the mouthpiece after the incident wave traversed the length of the
trumpet twice. Experimental data is plotted for comparison. Left: Bb

3. Right: Bb
4.

The S1 and S2 solutions should be similar for most of the harmonics since the bell

transmits most of the higher frequency components (see Figure 9). This should also be

true if the boundary conditions are imposed properly. However, we anticipate that S2 may

produce slightly different amplitude values. This is because the additional reflections at

the bell will influence the standing wave pattern. Figure 11 shows that the solution with

multiple periods reaches a new numerical steady state which is somewhat different from the

experimental steady state. In fact, what we are computing for S2 is the output corresponding

to the input shown in Figure 11.

The presented results for S1 correspond to the wave directly propagating out of the bell.

For the single period simulations, the output of the trumpet is longer than one period of

the note being simulated. In order to obtain the proper frequencies that are the multiples

of the fundamental, we must force the data to have the correct period. This means that
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Fig. 12: Numerical result for Bb
3.

we must ‘fold’ the longer response into one that has the proper duration. For S2, we plot

the solution once a new steady state is reached. We found that this occurred at the second

period of the pressure wave. We ran simulations until 12 periods were emitted from the bell.

We noticed little change after the second period.

Figures 12 and 13 show the frequency spectrum of the pressure sampled 16 cm outside of

the bell for Bb
3 and Bb

4, respectively. As expected, we observe only a small difference between

the single and multiple period simulations, with the multiple period simulations having a

somewhat higher amplitude, especially for the Bb
3. We hypothesize this difference is due

to the variation of the fundamental frequency shown in Figure 11. However, a comparison

of the numerical (Figures 12 and 13) and experimental (Figure 4) data reveals that the

numerical amplitude is approximately 19 dB higher. To compare the shape of the numerical

and experimental spectra, we shifted the experimental data by the decibel difference.

With this adjustment we notice that the shape of the shifted experimental data is very

similar to the solution curves. The spectra are in good agreement for the first 30 harmonics,

i.e., up to 7200 Hz, with the exception of the lowest frequency components. We observe

that the first three harmonics of the Bb
3 are influenced by the reflections; whereas only the

fundamental frequency for the Bb
4 is affected. All of these frequency components are below

900 Hz, which are largely reflected for our trumpet (Figure 9). However, such deviations are

to be expected for lower frequencies. In 3D, the opening at the bell changes more rapidly with
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Fig. 13: Numerical result for Bb
4.

axial distance than in 2D. This will mean that more of the lower harmonic components will

be reflected because of the larger radiation impedance in 2D 9. The frequency components

that are transmitted from the bell are modeled accurately.

The adjustment (decibel shift) can be explained in the following way. The 2D - 3D

dimensionality difference is approximately 14 dB. The additional 4 dB (for Bb
3) and 5 dB

(for Bb
4) in the SPL may be a result of neglecting energy losses. Kausel et al. 27 provides

an extensive review of the literature stating that trumpet wall vibrations, and viscous and

thermal boundary layers may reduce the radiated SPL by approximately 3 dB - 6 dB,

sometimes even exceeding 6 dB. Our losses seem to be in this range.

We combine all S1 results in Figure 14 to evaluate the influence of the computational

geometry of the trumpet on the numerical results. Since there is little variation between the

single and multiple period simulations, the corresponding results for S2 are not reported.

Although we see little difference between the results on mesh 2 and mesh 3, mesh 3 is

in better agreement with the experimental data. This result may be easier to observe in

Figures 12 and 13. However, the bend does not greatly influence the wave propagation. An

axisymmetric model would be a good approximation and simplification for future work. In

addition, we notice that when the bell geometry is smoother, i.e., on mesh 2 and mesh 3,
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Fig. 14: Numerical results. Left: Bb
3. Right: Bb

4

the numerical results are slightly better than on mesh 1.

Fig. 15: Numerical result for Bb
3 outside bell simulated with curved and straight reflective boundary condi-

tions. Left: Mesh 1 results. Right: Mesh 2 results.

Finally, we assess the influence of the imposed boundary conditions on the curved portion

of the trumpet in Figure 15. The S1 solution is plotted for both notes when the standard

reflecting boundary conditions and curvature boundary condition in 25 are used. The meshes

have similar cell sizes but significantly different geometry. A more crude geometry seems to

increase the SPLs of the harmonic components. On the left plot of Figure 15, we can see

that this is true for all the harmonic components below 4000 Hz. For mesh 2 (right plot),

we observe that the straight boundary conditions are especially detrimental for frequency

components greater than 4000 Hz since small wavelengths are affected more by corners in

the straight-sided meshes.
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5. Conclusions

Overall, our results are encouraging. Figures 12, 13, and 14 show that the energy repre-

sented in the measured mouthpiece pressure (Figure 4) comes out of the bell producing

similar spectra. Although the 2D - 3D amplitude discrepancy can mostly be explained (see

Appendix A), 2D simulations are not adequate to simulate nonlinear wave propagation

within the trumpet. Neglecting the spreading of the wave in the third dimension is too sig-

nificant to dismiss. However, considering an axisymmetric 2D model could provide better

results.

In future work, we intend to determine a more accurate steady-state velocity for the

boundary condition at the mouthpiece. In principle, if we know the acoustic input impedance

of the trumpet mouthpiece, we could calculate the steady-state velocity that would accom-

pany the measured steady-state pressure. However, since the bell transmits most of the

energy above 800 Hz - 1000 Hz, we do not think the correction is too serious. The details

of this will be explored in future a paper.

More importantly, we plan to examine our model in three dimensions. From our current

results, we can say with confidence that the model and numerical method chosen is an

appropriate one. Therefore, we will continue using the discontinuous Galerkin method to

examine our 3D model. Until these simulations are complete, we will refrain from making

any comments on the generation of shock waves in the trumpet.

Appendix

A. Derivation of Dimension Factor

Consider the 2D trumpet bell depicted in Figure A.1. The diameter of the bell is denoted

by s (approximately 13 cm) and the radius of the bore is denoted by R (approximately

0.7 cm). We will simply assume that the pressure will be the same across the arc denoted

by L. In other words, we are assuming that the axial pressure in both 2D and 3D is a

good measure of the total energy leaving the bell (i.e., we are assuming that the total

energy leaving the bell is conserved). The radius of the arc will be denoted by r and was

determined by approximating the exiting wavefront by a circle C, with radius 9.168 cm.

Although this circle slightly overshoots the wavefront, it is the closest approximation. We

denote the angle θo ≈ 45.95o as the angle between the arc and the horizontal line r which

only considers the wavefront approximated by C. The angle θ0 can be found using

sin θ0 =
s

2r
,

which approximately gives θ0 = 0.793252 radians or 45.95 degrees.

We want to estimate the difference in the area of the curved wavefront propagating out

of the bell for the 2D and 3D problems. In three dimensions, we examine the area of the

cap, denoted by A3. This can be found by integrating a slice of the sector, i.e.,
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Fig. A.1: Trumpet bell in two dimensions.

A3 =

∫ θ0

0
2πr2 sin(θ)dθ = 2πr2[1− cos(θ0)]. (A.1)

Notice that as θ0 → π, A3 → 4πr2 as one would expect.

Let’s now consider the analogous problem in two dimensions. The area of the cross

section of the circular bore (denoted byAb) isAb = πR2. For the 2D model the corresponding

cross section is a rectangle with the area As given by As = W2R, where W = Ab
2R = Rπ

2 .

The arc length of the 2D sector drawn in the diagram, denoted by 2L, when θ is in radians

is

2L = 2

∫ θ0

0
rdθ = 2rθ0. (A.2)

Therefore, the area of the bell in two dimensions, denoted by A2, can be written as

A2 = 2LW = 2Wrθ0. (A.3)

We will now consider the ratio A2
A3

and, using the measurements for r, R, and θo, we

obtain
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A2

A3
=

2Wrθ0

2πr2[1− cos(θ0)]
(A.4)

=
Rθ0

2r[1− cos(θ0)]

≈ 0.1066.

A wavefront exiting the bell of a trumpet will do so with a certain amount of energy, that

should be conserved between the dimensions. Thus, we have

A3p
2
3 = A2p

2
2 (A.5)(

p2

p3

)
=

√
A3

A2
p2

p3
≈ 3.13.

This gives the pressure ratio of p2
p3
≈ 3.13. Therefore, neglecting the third dimension in

our simulations could produce an amplitude that is 3.1 times larger than it should be for

the exiting wavefront, i.e., measured at 5 cm outside the bell. This corresponds to a SPL of

approximately 10 dB.

Next, we estimate what the difference in SPL will be when the wave is further outside

the bell. In two dimensions, the amplitude of the pressure waves (denoted by p2) will drop

off as a factor of 1√
r

and in three dimensions pressure (denoted by p3) will drop off as 1
r .

Therefore, the relationship between pressure at position a (denoted by pa) and pressure at

position b (denoted by pb) for two dimensions will be

p2,b

√
b = p2,a

√
a, (A.6)

and in three dimensions

p3,bb = p3,aa. (A.7)

Therefore, p2,b = (
√
a√
b
)p2,a and p3,b = (ab )p3,a. Considering the ratio between p2 and p3 gives

p2,b

p3,b
= α

(
p2,a

p3,a

)
(A.8)

where α =
√
ba
a . In our case, α is approximately 1.5374 and p2

p3
≈ 4.77. Therefore, we conclude

that the amplitude measured outside the bell will be approximately 14 dB too high.
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B. Frequency Components

Table 3: Data used in the boundary conditions for Bb
3 note according to (5).

Index i Frequency Fi [Hz ] Coefficient Ai Phase φi [rad]

1 242.1307506053 0.0241039701 -2.3998599843

2 484.2615012107 0.0173638758 -1.6517886419

3 726.3922518160 0.0084349905 -0.8176568965

4 968.5230024213 0.0047298543 -0.2133008263

5 1210.6537530266 0.0033935648 -0.0655308956

6 1452.7845036320 0.0025695118 0.5243913475

7 1694.9152542373 0.0016134162 0.8604561928

8 1937.0460048426 0.0008113565 0.9217503119

9 2179.1767554479 0.0005827414 0.6229672421

10 2421.3075060533 0.0005015204 -0.2200386659

11 2663.4382566586 0.0004743206 -0.4341971836

12 2905.5690072639 0.0002840805 -1.2187641059

13 3147.6997578692 0.0001776235 -0.9824755922

14 3389.8305084746 0.0002692897 -1.5134465545

15 3631.9612590799 0.0001657290 -2.1666134433

16 3874.0920096852 0.0000612890 -2.2469981904

17 4116.2227602905 0.0000410981 -3.0718515385

18 4358.3535108959 0.0000098495 3.1217791911

19 4600.4842615012 0.0000295860 2.1787935295

20 4842.6150121065 0.0000276109 2.2441751234

21 5084.7457627119 0.0000718223 1.8159917771

22 5326.8765133172 0.0000377127 2.1726743847

23 5569.0072639225 0.0000392250 1.6726336078

24 5811.1380145278 0.0000208027 2.1763484676

25 6053.2687651332 0.0000281628 0.6244992167

26 6295.3995157385 0.0000211836 0.3845313608

27 6537.5302663438 0.0000463784 1.6615760855

28 6779.6610169491 0.0000238014 1.1883766564

29 7021.7917675545 0.0000338559 2.3188758038

30 7263.9225181598 0.0000119861 -2.2344618963
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Table 4: Data used in the boundary conditions for Bb
4 note according to (5).

Index i Frequency Fi [Hz ] Coefficient Ai Phase φi [rad]

1 484.2615012107 0.0308221480 -1.8557759854

2 968.5230024213 0.0070994743 -0.8967978456

3 1452.7845036320 0.0049450532 -0.3589912885

4 1937.0460048426 0.0008004100 0.3405715860

5 2421.3075060533 0.0012647681 -1.8409398815

6 2905.5690072639 0.0007447962 -2.5283707634

7 3389.8305084746 0.0002186134 -1.8779479147

8 3874.0920096852 0.0000888137 0.9044171863

9 4358.3535108959 0.0000593364 2.4589184751

10 4842.6150121065 0.0000272908 -0.9338145732

11 5326.8765133172 0.0000310905 0.9409443235

12 5811.1380145278 0.0000063116 3.1009038661

13 6295.3995157385 0.0000372662 0.2893748454

14 6779.6610169491 0.0000704671 0.7520546044

15 7263.9225181598 0.0000457795 1.5555365779

16 7748.1840193704 0.0000271710 2.2707815906

17 8232.4455205811 0.0000277986 2.0016742736

18 8716.7070217917 0.0000386123 2.0452294706

19 9200.9685230024 0.0000242123 2.2205670522

20 9685.2300242131 0.0000060413 1.6653082554

21 10169.4915254237 0.0000192693 1.4715414339

22 10653.7530266343 0.0000290413 1.9483626136

23 11138.0145278450 0.0000183053 2.1801855089

24 11622.2760290556 0.0000143986 1.6520225430

25 12106.5375302663 0.0000189479 2.1506604657

26 12590.7990314769 0.0000088018 2.4548264290

27 13075.0605326876 0.0000063889 1.6491937036

28 13559.3220338982 0.0000199512 1.5693955572

29 14043.5835351089 0.0000214452 2.0327473422

30 14527.8450363195 0.0000148274 2.1657610034
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