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Abstract

First-stage larvae (L1s) of the nematode Caenorhabditis elegans aggregate after starvation. I
develop a mathematical model of this behavior based on the classic Keller-Segel model. In the
Keller-Segel model, organisms emit a diffusible signal, to which they are attracted. The model
is embodied in two partial differential equations (PDEs): an advection-diffusion equation for
density of organisms, and a reaction-diffusion equation for the concentration of chemical signal.
The PDE system has an equilibrium in which organisms and signal are uniformly distributed, but
this equilibrium becomes unstable when the density of organisms exceeds a threshold, resulting
in formation of aggregates.

To model C elegans L1 aggregation, I develop versions of the Keller-Segel model. The
Keller-Segel partial differential equations (PDEs) are solved numerically, and the results com-
pared to observed C elegans behavior. I find that I cannot reproduce observed behavior with a
single attractive signal. In particular, aggregates become very large in an attractant-only model,
while aggregates of C elegans L1s are fairly uniform in size (typically ca. 500 µm diameter) and
limited to a few hundred animals each. To reproduce this behavior, it is necessary to introduce
a second chemical signal, a repellent, with longer diffusional range than the attractant. In addi-
tion, the model is designed to prevent density within aggregates from rising above that density at
which the worms are tightly packed. With this design, two other features of actual L1 behavior
are reproduced. First, the worms form disk-shaped aggregates. Second, even after long times,
the density of worms outside aggregates remains low but positive.

To better understand the behavior of the PDE system—its equilibria, in particular—I describe
a general method for developing exact or approximate energy functionals that are stationary at
equilibrium. (Some but not all of these energy functionals are Lyapunov functionals.) I use these
energy functionals to analyze aggregation behavior. I also describe their use to determine the
properties of equilibria, e.g. the expected geometry and arrangement of aggregates.
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Chapter 1

Introduction

1.1 The importance of purpose

The first question to be asked on beginning a new research project is “Is this interesting?” In
biology, this question has a dimension not present in mathematics or physics: purpose. (To be
clear: although it is evident that the question of purpose arises in mathematics and physics, this
is because mathematics and physics are endeavours conducted by mathematicians and physi-
cists, who are living things. Permutation groups and electrons do not have intrinsic purpose,
although they may serve the purposes of mathematicians and physicists. This contrasts with the
objects biologists study.)

In almost every cell of almost every living thing, there are hundreds of copies of a molecu-
lar mill, called ATP synthase (Yoshida et al. 2001). This mill is powered not by a flow of water
or air, but of protons, which in flowing through it cause part of it to spin. The motion of this
spinning rotor against a stator does chemical work, forcing molecules of adenosine diphosphate
(ADP) to combine with phosphate ions to produce adenosine triphosphate (ATP). It is a beau-
tiful, elegant little machine, whose workings are now known in atomic detail. (You can easily
find video animations on the Internet.) It has every right to be considered interesting for this
reason alone.

Yet, if you ask a biologist why ATP synthase is interesting, you will almost certainly get a
different answer. She will tell you that ATP is the currency of chemical energy in living things,
and that ATP synthase is the machine that makes ATP and thus allows you to move and stay
alive. The burning of sugars and fats and even alcohol in your food and drink pumps protons
uphill (i.e., to locations where their energy is higher), so that they can then flow down through
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ATP synthase to capture energy. It is by this means that the food you eat and the air you breathe
give you energy.

The previous two paragraphs answer the question “Why does ATP synthase make ATP?” in
two distinct but accurate ways. The first describes in physical terms how the operation of the
mechanism makes ATP—the second describes the purpose of making ATP. (These were called
“proximate” and “ultimate” causes by Nikolaas Tinbergen—–philosopher Daniel Dennett calls
them “How come?” and “What for?” questions (Dennett 1996).) The sciences in general and
biology in particular have a historical shyness about teleology: ascribing of purposes to things.
Yet no biologist I know would seriously dispute the statement “The purpose of ATP synthase is
to make ATP”, although they might prefer to replace the word “purpose” with less loaded code
phrases. It is no more controversial than the idea that eyes are for seeing, or that lungs are for
breathing.

That we can ascribe purpose to biological machines is, of course, a consequence of evolution
by natural selection (Dennett, (1996), see also Dennett’s lecture “The Evolution of Purpose”).
But evolution is more complicated than the simple “adaptation by natural selection” picture
taught in high school biology. There are important evolutionary mechanisms that can produce
maladaptive traits, i.e. mechanisms that harm the organism they inhabit, or that result in the ap-
pearance of intricate side effects that in themselves have no adaptive significance. These are
sometimes called “spandrels” after a famous and still controversial paper by Gould and Lewon-
tin (1979).

The point I want to make is that, in deciding whether a biological phenomenon is interest-
ing, one must ask “What is its purpose?”. (“What selective advantage does it confer?’ or “Why
would such a mechanism persist in the population?” are versions of the question.) And, if no
purpose is obvious, one must ask whether there is one.

In describing the details of C elegans L1 social behavior, my goal is to present it as a set of
intricate processes with many moving parts, in order to argue that there must be an evolution-
ary mechanism to maintain it. Because they are specified by a genome that can’t be copied with
100% accuracy, complicated biological mechanisms can’t persist without a purifying mecha-
nism that eliminates the errors.

1.2 Starved C elegans L1 larvae aggregate

While working with C elegans, we noticed aggregation of starved L1s on old agar plates af-
ter the worms had exhausted the food. (In the lab, the food is typically E. coli bacteria.) One of
my colleagues suggested that larvae aggregated around worm corpses in their search for food,
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being attracted by the smell of decomposing worm bodies. If this were true, one would predict
that starved (but living) larvae transferred to a fresh plate should not aggregate. Contrary to this
expectation, Alex Artyukhin found that after brief initial dispersal starved L1 larvae aggregated
on fresh agar plates as efficiently as they did on old, exhausted plates. (The following descrip-
tion of L1 aggregation is based on Artyukhin et al (2015).) This result rules out any necessity
for worm corpses in L1 aggregation and suggests a more interesting mechanism, by which L1s
attract each other. It is this mechanism that I seek to explore and understand in this dissertation.

To avoid ambiguity in age, composition, and potential contamination of exhausted plates,
Alex performed all aggregation experiments on clean, foodless plates onto which he pipetted
a defined number of L1 larvae prestarved in a buffered salt solution for a specific amount of
time. He washed worms before pipetting on the plate to remove any soluble substances that
worms might have released up to this point. (We know there are many such substances, e.g.
Ludewig and Schroeder (2013).) He observed three distinct stages of worm behavior after L1
larvae were pipetted on a clean plate (Figure 1.1). During the first 2-3 hours worms disperse
from the starting point and gradually fill the entire plate. There is no sign of any order or corre-
lation among worms during this time; local density fluctuations quickly appear and disappear.
After 2-3 hours small fluctuations in worm density suddenly amplify and give rise to an array
of circular aggregates, which is then metastable for at least 24 h. By “metastable”, I mean that
once formed the aggregates do not dissociate, but neighboring aggregates may occasionally
merge. After 1–4 days circular aggregates start to lose their shape and aggregate morphology
transitions to stripes. The timing of this transition depends on worm density on the plate—the
more worms, the faster it happens. For low enough densities it may never happen. (We now
know that this transition occurs because of the depletion of ethanol in the agar.) In this disser-
tation, I will mostly focus on the second stage of L1 aggregation—formation of circular aggre-
gates.

As expected for many-body interactions, L1 aggregation depends critically on worm den-
sity. A threshold density (about 1500 cm−2) is required for aggregation, which suggests that
L1 aggregation is a fairly weak interaction (e.g. compared to sexual attraction). There is no
visible interaction between two L1s crawling on a plate, even when they run into each other.
They part and continue their ways. Yet, at large numbers random fluctuations can bring enough
worms together to nucleate an aggregate. We observed aggregation only after L1 larvae had
been prestarved for at least 3 days. L1s within 24 h of hatching disperse on the plate and do
not aggregate. L1s adjust their gene expression program quickly after hatching without food
(Baugh et al. 2009). Apparently, just the fact that the worms are starved and their develop-
ment is arrested is not sufficient to cause their aggregation. It requires that they be starved for
2–3 days. Since aggregation most likely relies on diffusible signals (see below), this result may
mean that the repertoire of signals that L1s release changes after 2–3 days of starvation (com-
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Figure 1.1: Time-course of C elegans L1 aggregation
One million 3-day starved L1 worms were thoroughly washed, dispersed in 100 µL of buffer,
and pipetted into the center of a clean 6 cm NGM plate at time zero (dark circular area in the
lower half of the images).
This figure is copied from Artyukhin et al (2015) with permission.

pared to day 1) or that worms change their response to existing cues, or both. Alex has found
that L1s release the most metabolites during hatching or within a few hours after hatching.
The best understood worm chemical signals are the ascaroside pheromones (Choe et al. 2012;
Ludewig and Schroeder 2013). Among the chemicals released shortly after hatching are sev-
eral ascarosides responsible for avoidance and dispersal (A B Artyukhin et al. 2013), though
ascaroside-independent avoidance signals also exist (A. Artyukhin, unpublished). Medium con-
ditioned with starved L1s for one day is a strong worm deterrent (A B Artyukhin et al. 2013).
(Conditioned Medium means solution in which organisms have been soaked for long enough
to collect chemicals they release, then separated from the organisms. Thus, for instance, beer is
yeast conditioned medium.) This deterrence is consistent with the observed dispersal behavior
during the first day of starvation. Far less is known about molecules released by L1 larvae after
48h of arrest. We hypothesize that this late conditioned medium contains an attractant responsi-
ble for L1 aggregation at later stages of starvation.

Comparing C elegans with its close relative, C briggsae (Félix et al. 2012; Stein et al. 2003),
we were surprised to find that C briggsae L1s do not aggregate. Furthermore, when we mixed
starved L1s of C elegans and C briggsae expressing different fluorescent proteins, C briggsae
were effectively excluded from C elegans clumps (Figure 1.2). We observed a mixed popula-
tion on the plate–—some worms were in aggregates, while many were individually dispersed
(Figure 1.2, left). From two-color imaging we determined that aggregates were composed pri-
marily of C elegans, whereas worms that did not participate in clumps were mostly C brig-
gsae (Figure 1.2, right). This result excludes the possibility that L1 aggregation is governed
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Figure 1.2: C briggsae do not participate in C elegans aggregation
Bright field image (left) and overlay of green and red channels (right) from the same area on the
plate with a mixture of GFP-expressing C elegans (green) and dsRed-expressing C briggsae L1
larvae (red).
This figure is copied from Artyukhin et al (2015) with permission.
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by a simple physical mechanism, such as surface tension. When crawling on the agar surface,
worms are surrounded by a thin layer of water. Due to their small size (ca. 150 µm× 25 µm)
surface tension may significantly affect the behavior of L1 larvae and thus has to be taken into
account (Gart et al. 2010). However, C elegans and C briggsae L1 larvae are physically almost
indistinguishable. The difference between C elegans and C briggsae behavior and the lack of
aggregation in certain C elegans mutants (see below) strongly suggest that surface tension is
not the determining factor in L1 aggregation.

Several examples of C elegans aggregation have been described before. One of them is me-
diated by indole-containing ascarosides (Reuss et al. 2012). Alex examined the behavior of
starved daf–22 mutant L1s. (A quick note on nomenclature: the names of C elegans genes are
three or four lower case letters, followed by a hyphen, followed by a number, e.g. daf–22. Gene
names are always italicized. The expression of a gene produces a product (almost always a pro-
tein), which is denoted by uppercase roman type. For instance, the product of daf-22 is the pro-
tein DAF–22. A daf–22 mutant is a worm both of whose daf-22 genes are abnormal. In this
document, it will always refer to a genetic knockout, i.e., a daf-22 mutant means a worm that
lacks functional daf-22 genes, and therefore has no DAF–22 protein.) daf–22 mutants lack all
ascarosides commonly released by wild type (Srinivasan et al. 2012). The product of daf–22,
DAF–22, is the enzyme peroxisomal 3-keto-acyl-CoA thiolase. DAF–22 is necessary for β-
oxidation of fatty acids and ascaroside biosynthesis (Butcher et al. 2009; Golden and Riddle
1985; Joo et al. 2009). L1s of daf–22 mutants aggregated similarly to wild type. This demon-
strates that ascarosides are not necessary for L1 aggregation. Another aggregation behavior is
modulated by the signaling molecule NPR–1 (product of the npr–1 gene) and ambient oxygen
(Bono and Bargmann 1998; Bono, Tobin, et al. 2002; Chang et al. 2006). Aggregation results
from the worm’s preference for lower than normal oxygen levels and the effect disappears at
[O2] < 10%. Alex tested L1 aggregation in low oxygen conditions and found little effect of
oxygen concentration on aggregation down to 1%. From these results he infers that the mech-
anism of starved L1 aggregation is different from known examples of social behavior in C ele-
gans.

1.2.1 Evidence that L1 aggregation is mediated by chemical signal(s)

We hypothesize that L1 aggregation is mediated by diffusible signal(s) that L1 worms re-
lease. For communication, C elegans relies extensively on chemical signals, which are sensed
by 11 pairs of chemosensory amphid neurons (Bargmann 2006). (The paired amphids, located
in the worm’s nose, are the main chemosensory organs.) To test this hypothesis Alex examined
L1 aggregation behavior in mutants that lack the function of one or more chemosensory neuron
types. The results of these experiments were inconclusive. In some experiments, mutant worms
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lacking the function of the main attractive neuron type, ASE, or the main repulsive neuron type,
ASH, showed weak or no aggregation. But the results were variable. Alex and I have a small
difference of opinion on the meaning of these results. Because of the variability, Alex thinks
they cannot be relied on. I think the weight of evidence is in favor of there being some weaken-
ing of aggregation in mutants with chemotactic defects, and that the results might be more clear
if we had a way of quantifying the strength of aggregation. (This is one of the problems I hope
to address by mathematical modeling.)

1.2.2 L1 aggregation requires acetate

Alex performed his initial experiments on Nematode Growth Medium (NGM) plates, an
agar-based gel mixture commonly used by researchers to maintain C elegans in the lab. Be-
sides agar it contains peptone (a crude protein mix), cholesterol, antibiotics, and some inorganic
salts. To determine if the aggregation is triggered by any of these components, he prepared a
set of plates where he excluded the components one by one. Quite surprisingly, he found that
the two-carbon alcohol ethanol, the solvent used for making a stock solution of cholesterol, was
necessary and sufficient for L1 aggregation. 0.1% (17 mmol/L) ethanol in water was enough to
support aggregation. (In these experiments the medium was solidified with agarose, a purified
form of agar.)

Carbon and energy metabolism in cells generally operates on two-carbon units. The main en-
ergy storage molecules are carbohydrates and fats. Carbohydrates are composed of six-carbon
monosaccharides with the formula C6H12O6. To exploit them for energy, the cell breaks each
monosaccharide into two molecules of acetate (CH3-COO-, the two-carbon acid—–the other
two carbons are lost as carbon dioxide). Acetate is then transported into mitochondria, where
it is burned to water and carbon dioxide in a process that pumps protons out of the mitochon-
drion. These protons then power the ATP synthase to produce usable energy. In the absence of
oxygen, acetate may instead be released into the environment in the form of ethanol. (This pro-
cess, called fermentation, is how beer and wine are made.) Fats contain fatty acids. Each fatty
acid is a long (typically 12–22 carbons) unbranched hydrocarbon chain with an acid group at
one end. Natural fatty acids have an even number of carbons—–they are made by joining ac-
etate units end-to-end, and broken down by sequentially removing acetate units from one end.
In the presence of oxygen, even-chain alcohols such as ethanol and butanol (four carbons) are
oxidized to the corresponding acids (acetate and butyrate) by the enzyme alcohol dehydroge-
nase, and burned for energy, or used to make longer acids. The cell is unable to make use of
odd-chain alcohols such as methanol (one carbon) or propanol (three).

On learning that ethanol was necessary for aggregation, Alex tested other alcohols. Butanol,
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Figure 1.3: Glycerophosphoethanolamides are ethanol metabolites in L1 C elegans
Molecules with longer acyl chains are additionally glycosylated on one of the free glycerol
hydroxyls, which suggests that these metabolites are tagged to be removed from the worm
body.
This figure is copied from Artyukhin et al (2015) with permission.

but not methanol or n-propanol, could substitute for ethanol. The striking difference between
even- and odd-chain alcohols suggested that it is not the alcohol molecule itself but rather its
metabolites that may play a role in the process. To explore this possibility he examined ag-
gregation behavior of worms with mutated alcohol dehydrogenase gene sodh–1 (Alaimo et al.
2012; Williamson et al. 1991). He found that mutant L1s with a nonfunctional sodh-1 gene did
not aggregate on ethanol-containing plates. Furthermore, acetate can substitute for ethanol in
the plates and support L1 aggregation. In fact, not only wild-type but also sodh-1 mutant L1s
were able to aggregate on acetate plates, clearly demonstrating that the requirement for ethanol
can be bypassed by supplementation with its metabolite. (Butyrate, which is metabolized to
two molecules of acetate, also works.) Thus, the aggregation signal appears to be downstream
of acetate.

As a first step toward establishing how starved L1 worms respond to low doses of ethanol
or acetate Alex performed differential LC/MS (liquid chromatography/mass spectroscopy—a
method for identifying the components of complex chemical mixtures) analysis of the chem-
icals released by starving L1s in the absence or presence of 0.1% ethanol or butanol. He also
compared results from wild-type worms with sodh-1 mutants. He found dozens of compounds
that were produced only in the presence of ethanol or were significantly increased compared
to the control. Many of these required functional sodh-1. Subsequent MS/MS analysis led to
structure elucidation of a large family of related metabolites, glycerophosphoethanolamides
(Figure 1.3). By comparing fragmentation spectra of these molecules produced in the pres-
ence of normal vs. 13C–labeled ethanol, he found that their acyl chains are built exclusively
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from ethanol-derived carbons (shown in red in Figure 1.3). Most likely, acetate resulting from
ethanol oxidation is used in de novo fatty acid biosynthesis to build C8–C14 fatty acids, which
are then conjugated to phosphatidylethanolamine. Derivatives with β–hydroxy, β–keto as well
as unsaturated chains appear to be intermediates from the fatty acid biosynthetic pathway,
which further supports this hypothesis. These metabolites are also present in the medium when
worms are exposed to acetate, butyrate, or n-butanol instead of ethanol. The two most abundant
members of this series in C elegans L1 extracts are glycerophosphoethanolamides of decanoic
and β–hydroxydecanoic acids (R = H, n = 1 and R = OH, n = 1 in Figure 1.3).

That the acyl chain carbons derive exclusively from ethanol was surprising. As described
above, acetate is central to cellular metabolism. There is no cell in the body that lacks acetate,
whether or not ethanol is present in the surroundings. Why doesn’t some of that acetate show
up in the acyl chains? Deepening the mystery, Alex found that on plates containing glucose or
peptone (a protein source) but no ethanol, L1 larvae do not aggregate, even though glucose, a
monosaccharide, can certainly be metabolized to produce acetate. He has also found recently
that C briggsae will aggregate very slowly and loosely on acetate plates but not at all on plates
containing only ethanol (as described above). They do not make glycerophosphoethanolamides
from ethanol.

Together, these results suggest that the acetate produced from alcohol in the environment
under conditions that promote L1 starvation is kept in a separate pool from other acetate in the
worm’s body, and that this pool is exclusively used to synthesize glycerophosphoethanolamides.
Together these results suggest that aggregation is a specific response to the presence of ethanol/acetate
in the environment. C elegans is a free-living nematode. In the wild, it forages for blooms of
bacteria that arise in rotting fruit and other decomposing material (Felix and Braendle 2010).
These environments often contain ethanol from fermentation of sugar.

What is the significance, if any, of glycerophosphoethanolamides for L1 aggregation? We
of course made the obvious guess—–that they might themselves be aggregation signals. This
does not seem to be the case. glycerophosphoethanolamides added to the plates do not attract
worms, nor do they interfere with aggregation when added at a uniform high concentration.
Although frustrating, this result is not terribly surprising. Dozens, possibly hundreds of new
chemicals are released by L1s in the presence of ethanol. Most of them are unidentified. The
glycerophosphoethanolamides prove the existence theorem–—the worms do indeed make and
release into the environment specific chemicals under the very specific genetic and chemical
conditions required for L1 aggregation. But the glycerophosphoethanolamides themselves play
no direct role in aggregation, as far as we can detect. Simple calculations (described below)
suggest that the hypothetical aggregation signal might be unstable, with a lifetime of at most
hours, and therefore difficult to isolate.
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In subsequent experiments, Alex found that many molecules with primary amino or SH
groups (e.g. amino acids) are acetylated in the L1 conditioned medium in the presence of ethanol
(Alex Artyukhin, personal communication, quoted by permission). This probably happens
through acetyl-coenzyme A as it is quite reactive. It is also safe to assume, although Alex has
not himself tested this, that under these conditions many lysine residues on proteins would be
acetylated as well. Thus, buildup of acetate (and/or acetyl-coenzyme A) results in widespread
acetylation of many small molecules and macromolecules in the cell.

1.2.3 L1 aggregation leads to longer starvation survival

While observing starved L1s on plates Alex noticed that larvae in aggregates survived star-
vation longer than individually dispersed worms. He hypothesized that longer survival in ag-
gregates is mediated by higher local worm density. To examine the effect of worm density on
L1 starvation survival quantitatively he carried out these experiments in liquid, where worm
density can be easily controlled and adjusted and survival rates quantified (A B Artyukhin et al.
2013). He found that L1-arrested C elegans survived starvation in buffer significantly longer
when they were starved at higher worm density (Figure 1.4a), referred to as density dependence
hereafter. To check if this density dependence is mediated by chemical cues, he collected the
medium from high density L1s starved for 24h (conditioned medium) and studied its effect
on starvation survival of L1 larvae at low density. Conditioned medium extended L1 survival
indicating that the density effect is mediated at least in part by released chemical(s) (1.4c).
Several simple tests with size cut-off filters and lyophilization (freeze-drying) of conditioned
medium led him to conclude that the active component was composed of nonvolatile small
molecule(s) (<3 kDa). Alex tested the effect of daf-22 conditioned medium in L1 survival of
wild type (i.e., genetically normal) worms and found that it had an effect similar to wild-type
conditioned medium. This result rules out ascarosides as necessary active ingredients of con-
ditioned medium. So far, his attempts to isolate and identify the conditioned medium signal
responsible for the density dependence using activity-guided fractionation and HPLC-MS anal-
ysis have failed. The only conclusion that we can state with reasonable confidence is that the
activity results from a synergistic effect of several components.

Similar experiments with C briggsae, which, as described above, has no L1 aggregation,
revealed that worm density has no effect on survival of C briggsae L1 larvae (Figure 1.4b)
(Alexander B. Artyukhin et al. 2013). The apparent correlation between L1 aggregation and
density dependence in C elegans and C briggsae suggests that these phenomena are related.
Alex repeated the experiments with several wild isolates of C elegans and C briggsae and found
consistent results—–all C elegans strains that he tested had strong density dependence whereas
survival of all C briggsae strains was independent of the density (Alexander B. Artyukhin et al.
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Figure 1.4: C elegans survives L1 starvation longer when starved at high density
Survival curves of C elegans (a) and C briggsae (b) in L1 starvation at different worm densities.
(c) Conditioned medium from high density C elegans L1s extends survival at low density in a
dose dependent manner. Black—survival curve in M9 buffer, blue and red—survival curves in
conditioned medium prepared at 60 and 100 worms per µL respectively.
This figure is copied from Artyukhin et al (2013), with permission.

2013). Experiments with two other Caenorhabditis species (C remanei, C. sp. 11) revealed that
L1s of the species that aggregate also have a strong density dependence and vice versa (Figure
1.5).

Alex then studied survival of C elegans L1s in conditioned medium from C briggsae. Al-
though C briggsae did not have the density dependence, C briggsae conditioned medium ex-
tended survival of C elegans L1s. Combined with the lack of an effect in the opposite exper-
iment, i.e. C elegans conditioned medium does not extend C briggsae L1 survival, this result
suggests that C briggsae produces the signal responsible for longer survival at higher densities
but does not respond to it. Conditioned medium from two other nematode species (C sp. 11 and
Oscheius myriophila) also extended C elegans L1 survival, confirming that the signals respon-
sible for longer survival are quite general and not species-specific. Since the density effect in
C elegans involves small-molecule signals, Alex hypothesized that the response pathway may
start with sensory neurons, where these signals are first detected. In keeping with this model,
he found that several chemosensory mutants had no or greatly diminished density dependence.
Among these were che-2, daf-6, osm-1, osm-3, osm-6, and tax-4 (Alexander B. Artyukhin et al.
2013). (Unlike the sensory mutant effects on aggregation, these effects on density dependence
are completely clear.) These results confirm the hypothesis that the density dependence relies
on diffusible, soluble signal(s). He also tested a che-1 mutant (lacking functional ASE neurons)
and worms with genetically ablated ASK neurons. Both had near normal density dependence,

12



Figure 1.5: L1 aggregation and density dependence correlate across Caenorhabditis
species.
(a) L1s of the species that show strong density dependence of starvation survival aggregate
and vice versa. Density dependence slopes were obtained from linear regression of 50% sur-
vival times as a function of log2(worm density). (b) L1 aggregation and density dependence
appeared independently several times during evolution of Caenorhabditis genus, which suggests
that these traits are under positive selection.
This figure is copied from Artyukhin et al (2013), with permission.

indicating that neither of these two neuron types is individually necessary for the density effect.

Despite apparent mechanistic differences between L1 aggregation and density dependence,
we think they are likely to be related phenomena. We believe that in species where survival
through long starvation benefits from high worm density, aggregation is the natural way to con-
centrate worms and obtain locally high density. It is the first step in coping with long starvation.

1.2.4 Why does survival depend on density?

Density dependence would be easy to understand if the worms released into the medium
something that was physically necessary for long survival: an energy source, for instance. This
does not seem to be the case—–the quantity of nutrient in conditioned medium is not sufficient
to prolong survival (Alexander B. Artyukhin et al. 2013). That the density effect requires sen-
sory neurons (see above) suggests that what the conditioned medium provides is information.
There is additional evidence to make this plausible—–mutant worms with reduced insulin sig-
naling also survive L1 starvation longer (Baugh 2013; Lee et al. 2012).

It is worth taking a moment to appreciate that this is surprising. The hypothesis is that, unless
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they receive certain information, the physiology of starving L1s changes in a way that causes
them to die. This implies that dying early at low density is a choice–—there is no physical rea-
son why those worms that die could not have lived. How can it possibly be to the advantage
of an animal, no matter what information it receives or fails to receive, to die earlier than it is
forced to? This question is especially acute so early in the worm’s life, before it has had an op-
portunity to contribute to its own or others’ reproductive success. (One obvious answer, that in
dying worms release nutrients that allow their sisters to survive, is implausible because of the
same experiments that show that the survival factors in conditioned medium are not nutrients.)

This paradox is easier to resolve with the help of the word “risk”: perhaps there is a benefit
that accrues to worms that risk early death. Here, for example, is a possibility: Suppose that,
to survive, a worm must keep its metabolism running at some positive rate. If it runs out of en-
ergy, it dies. Metabolic rate can be lowered almost to zero. A worm that maintains a fairly high
metabolic rate while starving risks early death, but if food appears soon enough, it can immedi-
ately start growing again. A worm that slows its metabolism down must take some time to get
everything running again when food appears, so it will resume growth with a delay. A worm
population can double in about 11 hours (Leon Avery 2014), so a worm whose development is
delayed 11 hours has only half the reproductive value of a worm that is able to start growing
immediately.

This idea has the advantage of being consistent with observation. L1s fed after one or two
days of starvation recover and grow immediately, while those fed after two weeks of starvation
recover with a variable delay, on the rough order of one day. Furthermore, the mutants with
reduced insulin signaling that survive longer than normal worms have reduced metabolic rate
(Lee et al. 2012) and their recovery is variably delayed compared to normal worms, even after
brief starvation (Youngjai You, personal communication).

Thus, we propose that if worm density is low, the best strategy for an individual hungry
worm may be to explore the surroundings and search for food. Absence of outside starvation
signals tells the worms that there are not many competitors around, so chances for finding
something eatable may be reasonable. But when population density is high, worms receive star-
vation signals from each other, which tell them that the famine is widespread and/or has been
around for some time. In this situation the chance of finding food is low, which suggests that
one would be better off minimizing unnecessary energy expenditure and preparing for a long
battle for survival—–worms aggregate.

Based on this hypothesis we would predict that lack of aggregation and density dependence
in C briggsae and some other Caenorhabditis species implies that their starved L1s seldom find
themselves at high density in nature, so their optimal strategy is to disperse and actively look
for food. In variable and unpredictable environments genotypic fitness can be maximized either
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by reducing individual-level variance in fitness or by reducing between-individual correlations
in fitness (or some combination of the two) (Starrfelt and Kokko 2012). Aggregating species
may choose to minimize individual-level variance by having a mechanism that helps them to
acquire more accurate information about their environment. Non-aggregating species may use
dispersal as a strategy to minimize between-individual correlations.

1.2.5 Other examples of C elegans aggregation behavior

As mentioned above, it has been known for many years that in the presence of food (bacte-
ria), most true wild isolates of C elegans aggregate, a behavior known as social feeding (Bono
and Bargmann 1998; Bono, Tobin, et al. 2002). (To my knowledge, it was first reported infor-
mally by Randy Cassada in 1987.) Wild strains of C elegans prefer low concentrations of oxy-
gen, and we have speculated that the consumption of oxygen in an aggregate of worms lowers
oxygen concentration and thereby attracts more worms, although this explanation is disputed
(Ding et al. 2019). The usual C elegans laboratory strain, N2, has sustained a gain-of-function
mutation in the neuropeptide receptor gene npr–1 and is, as a result, less sensitive to oxygen
than wild strains (Bono and Bargmann 1998)–—it therefore does not display social feeding
at ordinary oxygen levels. (Confusingly, N2 is generally referred to as the “wild type”—even
though it has many genetic differences from any true wild strain of C elegans–—“Wild type” is
the usual geneticist’s term for the base laboratory strain of an organism.) A mathematical model
of social feeding has recently been published (Ding et al. 2019).

Observations of a different type of aggregation have recently been published, together with
a model (Sugi et al. 2019). This form occurs in the long-term survival form of the worm—the
dauer larva— and is probably mediated largely by a simple physical mechanism, surface ten-
sion.

1.3 Goals of mathematical modeling

In this dissertation I develop a model for L1 aggregation based on the famous Keller-Segel
model (Keller and Segel 1970). My goal is to use it for numerical experiments whose results
can be compared to those of past and future real experiments to be carried out on living ani-
mals. Some of the specific goals are:

1. Reproducing the phenomenon.
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2. Understanding pattern formation.

3. Parameter estimation.

4. Working out how to quantify aggregation.

5. Simulating individual worm movements.

Goals 1 – 3 are addressed in subsequent chapters — 4 – 5 are left for future work.

1.4 The Keller-Segel Model

The model that I employ for C elegans aggregation is similar to one published by Evelyn
Keller and Lee Segel (1970) to explain the aggregation of cellular slime molds. This model
has since become one of two principal models for pattern formation in mathematical biology.
(The other is Turing (1952) instability.) Of the Keller-Segel model Gurusamy and Balanchan-
dran (2018) remark, “Chemotaxis . . . can be modelled by [a] system of partial differential equa-
tions and this system of equations is one of the favorite playgrounds of theoretical and numer-
ical analysis.” The literature on the Keller-Segel system is therefore large and has been well-
reviewed. Sections 11.1 – 11.3 of Edelstein-Keshet’s textbook Mathematical Models in Biol-
ogy (2005) are an accessible introduction. Horstmann (2003; 2004) presents a comprehensive
overview of the mathematics of the Keller-Segel system, while Hillen and Painter’s (2009) re-
view focuses on biologically plausible variations of the model. Since these excellent reviews
exist, I will not here attempt a comprehensive survey. I will merely discuss the results of past
work that will be most helpful in understanding subsequent chapters.

Cellular slime molds such as Dictyostelium discoideum are single-celled amoebae that feed
on bacteria. When the food runs out, they stream together into aggregates that erect an ele-
vated spore-filled structure called a fruiting body. It was proposed that to aggregate they se-
crete an attractant called acrasin (later identified as cyclic adenosine monophosphate (cAMP)).
It was thought that any local fluctuation towards increased cell density would become a local
source of acrasin and thereby lead to spontaneous aggregate formation. Evelyn Keller and Lee
Segel (1970) published a simple model that demonstrated that this mechanism could work. The
model comprises two PDEs, one for the acrasin, and one for the cells, represented by twice-
differentiable positive functions U(t, x) and ρ(t, x) respectively. Although they first develop the
model in a quite general form, Keller and Segel (1970) focus their attention on a simple varia-
tion. Most subsequent analysis has focused on an even simpler variation, the “minimal system”
of Childress and Percus (1981). This is the minimal system:
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ρt(t,x) = −∇x · (βρ(t,x)∇xU(t,x)) + σ∇2
xρ(t,x), t > 0,x ∈ Ω ⊆ Rd

Ut(t,x) = −γU(t,x) +D∇2
xU(t,x) + sρ(t,x), t > 0,x ∈ Ω ⊆ Rd

(1.1)

ρ(t,x) is the local density of cells
U(t,x) is the local concentration of acrasin

d ∈ Z>0 is the spatial dimension
β > 0 is the chemotactic sensitivity of the cells to acrasin

σ > 0 quantifies the random movement of the cells
γ > 0 is the spontaneous decay rate of acrasin
D > 0 is the diffusion constant of acrasin

s > 0 is the rate of secretion of acrasin per cell

The ρ PDE is an advection-diffusion equation. The diffusion term σ∇2ρ results from ran-
dom movement of the cells. The advection term∇ · (βρ∇U ) represents movement with mean
velocity v = β∇U in the direction in which acrasin concentration most rapidly increases. It
may seem surprising that chemotaxis is modeled as cells responding to the gradient of attrac-
tant, rather than the concentration itself. This is, however, a characteristic of real chemotactic
responses, at least approximately. Single cells can do calculus. Even bacteria!

Most analysis has focused on the case with reflecting boundaries,

∂ρ

∂n
=
∂U

∂n
= 0, t > 0,x ∈ ∂Ω, (1.2)

where ∂/∂n represents the derivative along the normal to the boundary. These boundary con-
ditions imply that the number of cells is conserved, i.e. d

dt

∫
Ω
ρdx = d

dt
N0 = 0, since ρt can be

expressed as a pure divergence of something, ρ∇(βU + σ log ρ), that vanishes normal to ∂Ω.
Acrasin is not conserved, but its total tends exponentially toward Ū |Ω| = N0s/γ. (|Ω| =

∫
Ω

dx
is the measure of the domain.)

Although each of equations (1.1) is linear and homogeneous in the variable whose time-
derivative it determines, the system as a whole is nonlinear because of the quadratic ρ∇U term.
To be clear, if both ρ and U are doubled (and if ρ alone is doubled, then in the long run

∫
U will

likewise be doubled), the magnitude of the ρ∇U term increases four-fold, and its importance
relative to other terms increases two-fold. Subtle though this nonlinearity may seem, it has two
dramatic consequences: density-dependent instability and finite-time blowup.
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1.4.1 Density-dependent instability

This is the effect for which the Keller-Segel model was conceived. System (1.1) always has a
uniform equilibrium: ρ(t,x) = ρ̄ = N0/|Ω|, U(t,x) = Ū = ρ̄s/γ. On a very large domain, i.e.
|Ω| → ∞, the uniform equilibrium is stable if average density ρ̄ is below the threshold density
ρthresh = σγ/(βs) and unstable if ρ̄ > ρthresh. Equivalently there is a threshold for equilibrium
acrasin concentration Uthresh = σ/β. The parameter dependence is in the expected direction for
each parameter: faster random cell movement (high σ) and greater instability of the attractant
(higher γ) oppose the formation of aggregates, i.e., raise the threshold for aggregation, while
stronger response to acrasin (high β) and increased acrasin secretion (high s) favor aggregation,
i.e. lower the threshold. Aggregation is more difficult on small domains (fewer cells overall), as
I will presently show.

The argument for density-dependent instability by linear stability analysis is simple enough
to be worth outlining here. We imagine a system close to the uniform equilibrium and express
density and signal concentration as sums of the equilibrium functions and a small deviation. We
then derive PDEs for the deviation from the original PDEs. If the deviations are small, these
PDEs can be approximated by a system of linear homogeneous PDEs, which can be solved
exactly. The exact form of these solutions is not so important as their time dependence—do
they grow or shrink? If they shrink, the equilibrium is stable, and the organisms can remain
at equilibrium indefinitely. If the deviations grow with time the equilibrium is unstable, and
typically cannot be maintained for long.

Consider a population near the uniform equilibrium ρ(0,x) ≈ ρ̄, U(0,x) ≈ Ū . Then, let
ρ(t,x) = ρ̄ + δρ(t,x), U(t,x) = Ū + δU(t,x). Because (ρ̄, Ū) is an equilibrium, ρt(t,x) =
δρt(t,x) and Ut(t,x) = δUt(t,x). Substituting into (1.1),

δρt(t,x) = ∇ ·
(
βδρ∇Ū + βρ̄∇δU

)
+∇ · (βδρ∇δU) + σ∇2ρ̄+ σ∇2δρ (1.3)

δUt(t,x) = −γδU +D∇2δU + sδρ (1.4)

∇Ū = ∇2ρ̄ = 0. Ignoring the second order term∇ · (βδρ∇δU), we have, to first order, the
linear vector PDE,

∂

∂t

(
δρ
δU

)
=

(
σ∇2 βρ̄∇2

s −γ +D∇2

)(
δρ
δU

)
(1.5)

This is easily solved by separation of variables. Eigenfunctions are of the form
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(
δρ(t,x)
δU(t,x)

)
=

(
ρke

λkteik·x

Uke
λkteik·x

)
(1.6)

k is a wavenumber vector, i.e., a vector of frequency in each spatial direction. Substituting into
1.5 produces the 2× 2 matrix eigenvalue problem,

λk

(
ρk
Uk

)
=

(
−σk2 −βρ̄k2

s −γ −Dk2

)(
ρk
Uk

)
(1.7)

where k2 = ‖k‖2. Every solution of the linearized system (1.7) is a linear combination of func-
tions (1.6) where (ρk, Uk)ᵀ is an eigenvector of the matrix in (1.7). If, for every k, Re(λk) < 0
then any small fluctuation away from the uniform equilibrium will die away, and it will be sta-
ble. If, however, there exists a k such that the matrix has an eigenvalue with positive real part,
then the uniform equilibrium is unstable. The trace of the matrix (which is the sum of the two
eigenvalues) is negative, −σk2 − γ − Dk2 < 0, so the only possible way to have an eigen-
value with positive real part is if both eigenvalues are real, one positive and one negative. Thus,
instability is expected if and only if the determinant is negative,

∣∣∣∣−σk2 −βρ̄k2

s −γ −Dk2

∣∣∣∣ < 0 (1.8)

Dσk4 − (βsρ̄− γσ) k2 < 0 (1.9)

Obviously, (1.9) can hold only if βsρ̄ − γσ > 0, and, if that condition holds, then for some
small enough k2, the negative k2 term will dominate the positive k4 term and the determinant
will be negative. Thus, ignoring boundary conditions, first-order instability occurs if and only if
γσ + βsρ̄ > 0. This is the condition I gave above.

It will be important later that condition (1.9) has no nontrivial minimum wavenumber. That
is, there is no natural maximum scale for the aggregates that form when the density exceeds
threshold. It is true that the acrasin has a natural range, κ =

√
D/γ—the distance an aver-

age molecule diffuses before it decays. However, cells attract each other, albeit weakly, even
when they are further from each other than this. There is thus no mechanism in the minimal
model (1.1) that would not favor the merging of aggregates to unlimited size. I will eventu-
ally be forced to propose a two-signal (attractant + repellent) model in order to explain the ex-
perimental observation that aggregates of C elegans L1s have a characteristic size. Keller and
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Segel (1970) were aware of this weakness: in an appendix, they lament the inability of their lin-
earized model to account for the pattern formation observed in actual Dictyostelium discoideum
aggregation.

In accord with this, restricting the size of aggregates, for instance by making the domain
Ω smaller, makes aggregation more difficult, increasing the threshold density. When the do-
main Ω is finite, there will be a minimum wavenumber nontrivial eigenfunction of the Lapla-
cian consistent with boundary conditions. For instance, in the one-dimensional problem with
Ω = [0, L], the real eigenfunctions consistent with Neumann boundary conditions (1.2) are
cos(kx), k ∈ (π/L)Z+. Instability results only if determinant (1.8) is negative for k = π/L,
leading to this threshold for instability

ρthresh =
σ

βs

(
γ +

π2D

L2

)
(1.10)

1.4.2 Finite-time blow-up

The second consequence of nonlinearity is even more dramatic. Although global time solu-
tions always exist in one dimension, in two or more dimensions, aggregation, once it begins,
may not halt short of infinite density. Even more surprising, infinite density is reached with the
formation of a Dirac delta function-like singularity in finite time, called “blow-up”. In two di-
mensions blow-up can occur only if a minimum critical number of cells is present. In three or
more dimensions, blow-up is possible with any number of cells. The possibility of blow-up was
first conjectured by Childress and Percus (1981) and subsequently proved in a series of papers
by other authors (Ferkey et al. 2007; Miguel A. Herrero and Velázquez 1996; M A Herrero et
al. 1997; Nagai and Senba 1997; Nagai and Senba 1997; Toshitaka Nagai et al. 1997; Senba
and Suzuki 2001; W. Jäger and Luckhaus 1992), usefully summarized by Horstmann (2003;
2004).

One may discern two attitudes towards blow-up in the Keller-Segel literature. To authors
whose primary interest is mathematics, blow-up is clearly the most fascinating characteristic of
the system. But for those who are interested in the Keller-Segel system as a model of biology,
blow-up is at least an annoyance (if not a catastrophic failure of the model). It goes without
saying that aggregating Dictyostelium discoideum amoebae don’t actually collapse into minia-
ture black holes. Some, e.g. Horstmann (2004) argue (not entirely implausibly) that blow-up
has meaningful biological interpretations. But blow-up is particularly a problem for those, like
me, who are interested in equilibria of the system.
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Blow-up also carries an important lesson for those interested in numerical solution: the Keller-
Segel system is prone to numerical instability, and is best simulated by methods like discontinu-
ous Galerkin capable of handling discontinuities (Epshteyn and Kurganov 2009).

Some authors refer to blow-up in the Keller-Segel model as “chemotactic collapse” (Chil-
dress and Percus 1981). This is a misleading name, because chemotaxis per se can never lead
to collapse to infinite density. Rather, the collapse is a consequence of a biologically unrealistic
model. It is not difficult to see which features of the model lead to this absurdity. First, there is
nothing in the minimal model (1.1) that reflects the reality that cells take up space. The random
movement term of the ρ PDE, σ∇2ρ, does indeed produce a kind of pressure that resists com-
pression, but it can be overwhelmed by a stronger attractive force. And the force of attraction
β∇U , is unbounded. It is plausible, if you like chocolate, that you will experience an impulse
to move from places where chocolate is scarce to places where chocolate is abundant. But the
strength of this impulse does not increase without bound as the gradient of chocolate becomes
steeper. It is a near-universal characteristic of biological responses that they saturate, i.e., the re-
sponse levels out as the strength of the stimulus becomes large (Kahneman and Tversky 1979;
Fechner 1860).

Researchers interested in the Keller-Segel model as a model of biology therefore typically
use versions more complicated than the minimal model The Hillen and Painter (2009) review,
for instance, is largely a description of biologically plausible modifications of the minimal
model whose solutions exist globally in time. The U PDE is an unproblematic reaction diffu-
sion equation and is often used exactly as presented in (1.1). Most model modifications affect
the ρ PDE. For instance, a general form of the ρ PDE with no cell growth or death is,

ρt(t,x) = −∇ · ρ(t,x)v (ρ(t,x), U(t,x),∇ρ(t,x),∇U(t,x))) (1.11)

v(ρ, U,∇ρ,∇U) is the mean velocity of cells as a function of density, acrasin concentration,
and their gradients. Equation (1.11) is so general as to be virtually useless. I will use the fol-
lowing system for worms, with appropriately chosen VU and Vρ:

ρt = ∇ · (ρ∇ (VU(U) + Vρ(ρ)− σ log ρ)) (1.12)
Ut = −γU +D∇2U + sρ (1.13)

This corresponds to 1.11 with

21



v(ρ, U,∇ρ,∇U) := −∇ (VU(U) + Vρ(ρ)− σ log ρ) (1.14)

= −
(
V ′U(U)∇U + V ′ρ(ρ)∇ρ− σ

ρ
∇ρ
)

(1.15)

The intention behind this form is to regard V (t,x) = VU(U(t,x)) + Vρ(ρ(t,x)) as a potential
energy down which worms want to move. The minimal model (1.1) is recovered with VU(U) =
−βU , Vρ(ρ) = 0.

1.4.3 Free energy functionals

Free-energy functionals are one of the most useful tools in analysis of the Keller-Segel sys-
tem. A free energy functional maps a pair of functions ρ, U ∈ C1(R × Ω) to a single real
number. Like thermodynamic free energy, it has the form E − TS, where E is a functional
that looks like some sort of energy, T is a positive number (like a temperature) that quantifies
cell activity, and S = −

∫
Ω
ρ log ρ dx is entropy (Baek and Kim 2017). (The value of 0 log 0

is taken to be 0, as usual in entropy calculations.) In the Keller-Segel literature, these free en-
ergy functionals are usually referred to as Lyapunov functionals, even though they may not be
locally positive definite. In fact, under conditions where blow-up occurs, the free energy is not
even bounded below.

A free-energy functional for the minimal system (1.1) was described independently in three
papers (Biler 1998; Gajewski et al. 1998; Nagai and Senba 1997). Here it is

F(ρ, U) :=

∫
Ω

(
β

s

(
D

2
‖∇U‖2 +

γ

2
U2

)
− βρU + σρ log ρ

)
dx (1.16)

= EU + Eρ − TSρ

EU =
β

s

∫
Ω

(
D

2
‖∇U‖2 + γU2

)
dx (1.17)

Eρ = −β
∫

Ω

ρUdx (1.18)

T = σ (1.19)

Sρ = −
∫

Ω

ρ log ρdx (1.20)
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This is a decreasing function of time: Ḟ = ∂F(ρ(t,x), U(t,x)/∂t ≤ 0, with equality only at
equilibrium. To see this, differentiate (1.16) with respect to time:

Ḟ=

∫
Ω

(
β

s

(
D∇U · ∇U̇ + γUU̇

)
− βρU̇ − βUρ̇+ σρ̇+ σρ̇ log ρ

)
dx (1.21)

Since cells are conserved,
∫

Ω
ρ̇dx = 0 and the term σρ̇ vanishes on integration. We can isolate a

factor of U̇ from the∇U · ∇U̇ term by integration by parts (IBP):∫
Ω

∇U · ∇U̇dx = −
∫
∂Ω

U̇∇U · dn−
∫

Ω

U̇∇ · ∇Udx = −
∫

Ω

U̇∇2Udx (1.22)

The boundary integral vanishes because of the boundary condition (1.2). (Henceforth, I will
silently omit vanishing boundary integrals.) Thus (1.21) becomes

Ḟ=
β

s

∫
ω

(−D∇2U + γU − sρ)U̇dx +

∫
Ω

(−βU + σ log ρ)ρ̇dx (1.23)

=
β

s

∫
Ω

−(−γU +D∇2U + sρ)(−γU +D∇2U + sρ)dx (1.24)

+

∫
Ω

∇ · (ρ(∇(−βU + σ log ρ))) (−βU + σ log ρ)dx

after using (1.1) to replace U̇ and ρ̇. Integrating by parts in the second integral,

Ḟ= −β
s

∫
Ω

(−γU +D∇2U + sρ)2dx−
∫

Ω

ρ‖∇(−βU + σ log ρ)‖2dx ≤ 0 (1.25)

Most of the terms in the free energy integrand have straightforward origins and can be iden-
tified with single terms in the PDEs (conveniently labeled by the parameters D, γ, σ). The
exception is the potential energy term −βρU . When differentiated this term gives rise via the
Leibnitz rule to terms that match the −β∇U advection term in the ρ PDE and to the sρ secre-
tion term in the U PDE. With adroit scaling (the β/s factor in the EU integral), these can be
made to match up. It not always possible, for an arbitrary Keller-Segel model (1.11), (1.12) to
achieve this fortuitous correspondence.

The worm system (1.12) cannot be analyzed by approaches previously used for Keller-Segel
variants. Horstmann (2001) developed a systematic approach for the construction of free energy
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functionals. Applied to the worm system (1.12), it is as follows. If there exists a function R(ρ)
such that

R′′(ρ) = s
ρV ′ρ(ρ) + σ

−ρV ′U(U)
, (1.26)

and R′′(ρ) ≥ 0, then a time-decreasing free energy functional exists

H(ρ, U) =

∫
Ω

(
D

2
‖∇U‖2 +

γ

2
+R(ρ)− sρU)

)
dx (1.27)

In the minimal system (1.1) R is the entropy term of the functional. It may seem that con-
dition (1.26) is simple to fulfill—one need only integrate the right-hand-side twice. The func-
tional H is useful even if R′′ is not positive, since equilibria of the PDE system are stationary
points of H even if R is not convex. The problem, however, is that R must depend only on ρ.
In general the right-hand-side of (1.26) depends on U . This will be true for all models I propose
to explain C elegans L1 aggregation.

I have developed a different method of finding free energy functionals, which I will describe
in chapter 2. This method produces useful approximate results even for the worm system.

1.4.4 Free energy and blow-up

Let us use the free energy functional (1.16) to better understand blow-up in the minimal sys-
tem. Following earlier work (Horstmann 2003; Horstmann 2004, and papers cited therein), I
will show conditions under which F is not bounded below. Let Ω = Rd. (The argument I am
about to make works equally well on finite domains, but the Green’s functions are messy. For
purposes of exposition, the infinite domain is simpler.) Assume that N0 =

∫
Ω
ρdx < ∞. I will

now show conditions under which F(ρ, U) can be made arbitrarily negative. For r > 0, Define

ρr(x) :=
N0

|Br|
θ(r − ‖x‖) (1.28)

Br is the open ball of radius r centered at the origin and |Br| is its measure, i.e. 2r in one
dimension, πr2 in two, 4

3
πr3 in three. The Heaviside θ function is, as usual,

θ(x) :=

{
x ≤ 0 0
x > 0 1

(1.29)
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Thus ρr is the configuration of N0 cells distributed uniformly in the ball of radius r. Now, let
Ur be the acrasin concentration function in equilibrium with ρr, i.e. the solution of

0 = −γUr(x) +D∇2Ur(x) + sρr(x) (1.30)

Ur = gd ∗ ρr, i.e. the convolution of the Green’s function for (1.30) with the density function.
(See Section 2.4.1.) The Green’s functions in 1, 2, and 3 dimensions are as follows

g1(x) =
s

2γκ
e−
|x|
κ

(1.31)

g2(x) =
s

2πγκ2
K0(‖x‖/κ) (1.32)

g3(x) =
s

4πγκ2

e−‖x‖/κ

‖x‖
(1.33)

κ =
√
D/γ

K0 is a modified Bessel function of the second kind

Now I will estimate F(ρr, Ur) for d = 1, 2, 3 and how it varies as a function of r.

F(ρr, Ur) =

∫
Ω

(
β

s

(
D

2
‖∇Ur‖2 +

γ

2
U2
r

)
− βρrUr + σρr log ρr

)
dx (1.34)

Using
∫
‖∇U‖2dx =

∫
∇U · ∇Udx = −

∫
U∇2Udx (IBP),

F(ρr, Ur) =

∫
Ω

(
β

s

(
−D

2
Ur∇2Ur +

γ

2
U2
r

)
− βρrUr

2
− βρrUr

2
+ σρr log ρr

)
dx (1.35)

=

∫
Ω

(
β

s

(
−D

2
Ur∇2Ur +

γ

2
U2
r −

sρrUr
2

)
− βρrUr

2
+ σρr log ρr

)
dx (1.36)

=

∫
Ω

(
−1

2

β

s

(
D∇2Ur − γUr + sρr

)
Ur −

βρrUr
2

+ σρr log ρr

)
dx (1.37)

=

∫
Ω

(
−βρrUr

2
+ σρr log ρr

)
dx, (1.38)
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using (1.30) in the last step. To proceed, we need an estimate of Ur within Br. The distance
from any point in Br to any other is less than 2r. At equilibrium, then, the concentration of
acrasin at any point in Br is greater than that produced by a point source of N0 cells at a dis-
tance 2r, i.e.,

∀x ∈ Br, Ur(x) > N0gd(2r), (1.39)

whence

∫
Ω

ρr(x)Ur(x)dx =

∫
Br

N0

|Br|
Ur(x)dx (1.40)

>

∫
Br

N0

|Br|
N0gd(2r)dx (1.41)

= N2
0 gd(2r) (1.42)

The entropy term is ∫
Ω

σρr log ρrdx =

∫
Br

log
N0

Br

= σN0 log
N0

Br

(1.43)

Let’s deal first with d = 1, 3, since those are the simplest. In one dimension we have not only
a lower bound for Ur within Br but also an upper bound, since the Green’s function is finite at
x = 0.

N0g1(2r) < Ur(x) < N0g1(0) (1.44)
N0s

2γκ
< Ur(x) <

N0s

2γκ
(1.45)

F(ρr, Ur) =

∫
Ω

(
−βρrUr

2
+ σρr log ρr

)
dx (1.46)

−βsN
2
0

2γκ
+ σN0 log

N0

2r
< F(ρr, Ur) < −

βsN2
0

2γκ
e−2r/κ + σN0 log

N0

2r
(1.47)

In one dimension, limr→0 F(ρr, Ur) = +∞. There is thus no tendency to collapse to a point.

In three dimensions
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F(ρr, U2) =

∫
Ω

(
−βρrUr

2
+ σρr log ρr

)
dx (1.48)

< − βsN
2
0

8γπκ2

e−r/κ

r
+ σN0 log

N0

4πr3/3
(1.49)

= − βsN
2
0

8γπκ2

e−r/κ

r
+ σN0 log

N0

4π/3
− 3σ log r (1.50)

lim
r→0

F(ρr, Ur) = −∞ (1.51)

As r → 0 the first term tends to −∞. At the same time, −3σ log r → +∞, but the logarithmic
divergence of this term is of lower order than the −1/r of the first, so the negative term domi-
nates.

Finally, in the two-dimensional case,

F(ρr, Ur) =

∫
Ω

(
−βρrUr

2
+ σρr log ρr

)
dx (1.52)

< − βsN
2
0

2πγκ2
K0(2r/κ) + σN0 log

N0

2πr2
(1.53)

= − βsN
2
0

2πγκ2
K0(2r/κ) + σN0 log

N0

2π
− 2σN0 log r (1.54)

For small r,

K0(r) = − log r − γEuler + log 2 +O
(
r2
)

(1.55)

where γEuler ≈ 0.577 is one of Euler’s many constants. The limiting behavior of F(ρr, Ur)
in two dimensions thus depends on the sign of the coefficient of log r in the asymptotic form.
That is, if βsn2

0

2πγκ2
> 2σN0, then limr→0 F(ρr, Ur) = −∞. Eq (1.54) only establishes an upper

bound, but more careful estimation of F(ρr, Ur) establishes that the condition, which simplifies
to N0 >

4πσD
βs

, is necessary and sufficient for F(ρr, Ur) to be unbounded below in the limit of
small r.

Of course, these results do not prove that blow-up can occur, or establish the conditions. For
that, see Horstmann (2003; 2004, and papers cited therein). Nevertheless. this failure of F to be
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bounded below in the limit of collapse to a point is at the heart of blow-up (Horstmann 2003;
Horstmann 2004). In fact, the conditions for blow-up are exactly those suggested by the calcu-
lations above. Blow-up never occurs in one dimension, can occur in two if the number of cells
exceeds 4πσD/(βs) (this threshold is lower at the edge or the corner of a bounded domain),
and can occur with any number of cells in three or more dimensions. Once the cells begin to
fall into that pit, there is no place short of −∞ for them to stop.

1.4.5 Free energy and pressure

Free energy is also unbounded below in the limit of large r for Ω = Rd for any d, because the
entropy increases without bound as the cells spread out. (For finite Ω, of course, entropy has an
upper bound). I mentioned above that the diffusion term of the ρ PDE produces a pressure that
opposes collapse. In thermodynamics pressure is the negative of the derivative of energy with
respect to volume, i.e. the energy change due to a volume change is dE = −pdV . The diffu-
sion term of the PDE is the origin of the entropy component −TS of the free energy functional.
Thus, if N0 cells are distributed uniformly within a volume V ⊂ Ω,

S = −
∫

Ω

ρ(x) log ρ(x)dx (1.56)

= −
∫
V

N0

|V |
log

N0

|V |
dx (1.57)

= −N0 (logN0 − log|V |) (1.58)

−p =
d(−TS)

d|V |
= −σ N0

|V |
(1.59)

p|V | = σN0 (1.60)

This is the Ideal Gas Law, pV = nT . (The Ideal Gas Law is more often seen in the forms
pV = nRT or pV = nkBT , according as n is measured in moles or molecules, R and kB being
the gas constant and Boltzmann’s constant. These constants, however, are just unit conversion
factors: they have the same status as 2.54 cm/in—–they express 1 in terms of interconvertible
units.)

The random movement of the cells thus produces a positive pressure that resists collapse of
aggregates to a point. The VU term of the general form of the ρ PDE (1.12) produces a negative
pressure (if VU is a decreasing function) that promotes collapse. In the minimal model (1.1)
VU(U) = −βU produces a negative pressure capable of overwhelming the diffusion pressure
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in 3 or more dimensions or in two dimensions when the number of cells exceeds threshold. If
Vρ is an increasing function, the Vρ term of (1.12) produces a positive pressure that will oppose
collapse.

There are thus two ways of engineering the Keller-Segel system (1.1,1.12) so as to prevent
blow-up: (1) Design a space-filling function Vρ that produces a positive pressure as space is
filled, and (2) Design a response function VU that produces less negative pressure. (Some nega-
tive pressure is necessary for aggregation.) Both of these strategies are in the direction of better
biological realism. I use both in my models (section 3.1).
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Chapter 2

Equilibrium and free energy functionals

2.1 Introduction and plan

This chapter develops free energy functionals for two versions of the Keller-Segel system,
the minimal system of Childress and Percus (1981) (2.1, 2.2) and the more versatile worm sys-
tem (2.1, 2.3) that will be used to model L1 aggregation.

A functional is a map from one or more spatial functions U : Ω → R to the reals. Free
energy functionals are inspired by Lyapunov functionals. A Lyapunov functional is a locally
positive definite functional with negative definite time derivative. In the best cases, the free en-
ergy functionals developed here are also Lyapunov functionals. However, in some cases free
energy functionals satisfy only weaker conditions: for instance, that the functional be stationary
if and only if the PDE system is at equilibrium.

Free energy functionals are useful tools in the investigation of the Keller-Segel system. I
demonstrated in chapter 1 how they can be used to find conditions in which solutions blow up
(and therefore, also conditions in which solutions don’t blow up). They have at least three addi-
tional uses

• They are helpful in providing intuition about the behavior of solutions. For instance, free
energies have a natural scale, that allows one to understand which differences are big, and
which small.

• They can be used to investigate properties of equilibria of the PDEs. For instance, I will
use a free energy functional to show that density follows a Boltzmann distribution at
equilibrium.
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• They can be used in computations to search for equilibria.

In later chapters, I will use the free energy functionals developed here to evaluate numerical
solutions of the PDE system.

After setting out some definitions and notation for later use (Preliminaries section), I prove
some basic theorems that reduce the problem of finding a functional with negative semidefinite
time derivative to that of finding a functional with a specified functional derivative. I then de-
scribe a general method of constructing a functional with a given functional derivative, radial
integration. I prove that some functions don’t have a functional antiderivative. However, I sug-
gest that the functional constructed by radial integration may be a useful approximation, in the
sense that the difference between its functional derivative and the desired functional derivative
is small. I produce an upper bound for the error of this approximation when certain conditions
hold. I then proceed to use radial integration to construct free energy functionals for the mini-
mal system. No exact free energy functional can be constructed for the general worm system by
these methods, but I construct approximations, which are used in later chapters.

2.2 Preliminaries

The minimal system of Childress and Percus (1981) and the more general worm system
share the same PDE for the chemical signal

U̇ = Ut = −γU +D∇2U + sρ (2.1)

The density PDE for the minimal system is

ρ̇ = ρt = −β∇ · (ρ∇U) + σ∇2ρ (2.2)

The density PDE for the worm system is

ρ̇ = ρt = ∇ · (ρ∇ (VU(U) + Vρ(ρ) + σ log ρ)) (2.3)

The functions ρ(t,x) representing density of worms and U(t,x) representing concentration
of chemical signal are defined on [0,∞)×Ω. They are assumed to have continuous time deriva-
tives and continuous second derivatives with respect to x. Functions and parameters appearing
in the PDEs are
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ρ(t,x) > 0 is the local density of cells
U(t,x) > 0 is the local concentration of chemical signal

d ∈ Z>0 is the spatial dimension
β > 0 is the chemotactic sensitivity of the cells to signal
σ > 0 quantifies the random movement of the cells
γ > 0 is the spontaneous decay rate of signal
D > 0 is the diffusion constant of signal

s > 0 is the rate of secretion of signal per cell
VU(U) is a potential function that describes the worm’s response to signal

Vρ(ρ) is a potential function that describes the worms’ direct response to other worms

I assume that both ρ and U are defined for all x ∈ Rd, but I also assume that both ρ and
U are periodic with period 1 in each spatial dimension, so that it is sufficient to study them on
Ω = [0, 1]d, and periodic boundary conditions hold.

ρ(x) = ρ(x + ei), x ∈ ∂Ω

U(x) = U(x + ei), x ∈ ∂Ω

∇ρ(x) = ∇ρ(x + ei), x ∈ ∂Ω

∇U(x) = ∇U(x + ei), x ∈ ∂Ω

(2.4)

ei is the usual unit Cartesian basis vector for i = 1, . . . , d

These assumptions imply that boundary integrals over ∂Ω that arise from integration by parts
vanish. I will omit these vanishing boundary integrals without remark. Any sufficiently regular
function f(x) in this function space can be written as a Fourier series

f(x) =
∑

k∈2πZd
f̃ke

ik·x (2.5)

The marginal potential functions VU and Vρ are the main levers through which I engineer
worm behavior in the model. It is convenient to define their integrals
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WU(U) :=

∫ U

u=0

VU(u)du (2.6)

Wρ(ρ) :=

∫ ρ

r=0

Vρ(r)dr (2.7)

The average potentials WU(U)/U and Wρ(ρ)/ρ will appear frequently. They are taken to
have their limiting values at zero

WU(U)

U

∣∣∣∣
U=0

:= VU(0) (2.8)

Wρ(ρ)

ρ)

∣∣∣∣
ρ=0

:= Vρ(0) (2.9)

The minimal model (2.2) is a special case of (2.3) with VU(U) = −βU and Vρ(ρ) = 0. (The
σ∇2ρ term in (2.2) arises from (2.3) as∇ · (ρ∇(σ log ρ)).) After developing tools, I will work
through each calculation first with the minimal model, because it is mathematically simple, and
we already know the answers (chapter 1). I will then show results for the worm model.

The signal potential VU(U) is, for an attractant, a decreasing function of U . I will have oc-
casion to consider repellent signals as well. For a repellent, VU(U) is an increasing function.
Vρ(ρ) will always be increasing—–its main use is to make the worms take up space. For com-
putational examples, I will use the following forms

VU(U) := −β log(α + U) (2.10)

The parameters α > 0 and β ∈ R control the concentration scale and the direction and
strength of the response. For an attractant, β > 0, for a repellent, β < 0.

Vρ(ρ) = σ
scale

2

(
1 + tanh

(
ρ− rhomax

cushion

))
(2.11)

scale, rhomax, and cushion are positive real parameters. In chapter 3 I will explain these
functional forms.

A functional Fmaps one or more positive functions of space U : Ω → (0,∞) to a number.
(For this dissertation, I restrict attention to positive functions of space. Of course, in other con-
texts functionals may act on more general functions. In fact, I will have occasion below to use
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complex functionals of complex functions to simplify proofs involving Fourier series.) The ac-
tual functions of interest are functions of both space and time, so it is convenient to define U(t)
as the spatial function at time t, i.e.

U(t) := x 7→ U(t,x) (2.12)

With this definition, F(U(t)) is a real function of time, because Fmaps each spatial func-
tion U(t) to a real number. Henceforth the t dependence will be implicit—i.e., F(U) will be
shorthand for F(U(t)). Furthermore,

Ḟ(U) :=
dF(U(t))

dt
(2.13)

This time derivative can be calculated with a version of the chain rule.

Ḟ(U) =

∫
Ω

δF(U)

δU(x)

∂U(t,x)

∂t
dx =

∫
Ω

δF(U)

δU(x)
U̇(x)dx (2.14)

U̇(x) :=
dU(t)(x)

dt
=

dU(t,x)

dt
(2.15)

Definition 2.1. The functional derivative δF(U)/δU(x) is defined by

lim
ε→0

F(U + εφ)−F(U)

ε
=

∫
Ω

δF(U)

δU(x)
φ(x)dx, (2.16)

where φ is an arbitrary test function. A functional is differentiable if a function of x δF(U)/δU(x)
exists such that (2.16) holds for all variations φ(x) for which F(U+εφ) exists for small enough
ε > 0. If the functional derivatives exist, then (2.14) can be used to calculate the time derivative
of the functional. The notation δF(U)/δU(x) is intended to encourage thinking of F(U) as a
function of many variables, one U(x) for each x ∈ Ω, and δF(U)/δU(x) as the rate of change
of F(U) when one of these U(x) is changed. Thus, the functional derivative δF(U)/δU(x) is
analogous to a partial derivative ∂F (U)/∂Ui of a scalar function of a vector U.
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Remark 2.2. When a functional is simply the integral of a pointwise function of U(x), the func-
tional derivative reduces to the ordinary derivative.

δ

δU(x)

∫
Ω

f(U(x))dx = f ′(U(x)) (2.17)

Definition 2.3. A functional F(U) is stationary at U0 if,

lim
ε→0

F(U0 + εφ)−F(U0)

ε
= 0, (2.18)

for every variation φ for which the limit exists.

Thus, the following are equivalent:

• F(U) is stationary at U0

• δF(U)
δU(x)

∣∣∣
U=U0

= 0 for almost every x.

Definition 2.4. A functional F(U) is Positive Definite (PD), Negative Definite (ND), Positive
Semidefinite (PSD), or Negative Semidefinite (NSD) if, for every nonzero function U : Ω →
(0,∞)

0 < F(U) PD (2.19)
0 > F(U) ND (2.20)
0 ≤ F(U) PSD (2.21)
0 ≥ F(U) NSD (2.22)

Every PD functional is also PSD, and every ND functional is also NSD.

2.3 Finding functionals with negative semidefinite time deriva-
tives

2.3.1 Basic Theorems

Theorem 2.5. Let U ∈ C1,2([0,∞)× Ω) be a function that satisfies the PDE
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U̇(x) = DU(t)(x), (2.23)

where D : C2(Ω) → C(Ω) is a spatial differential operator that depends on U(t) := x 7→
U(t,x) and its spatial derivatives. Then, if F : C2(Ω) → R is a functional with functional
derivative

δF(U)

δU(x)
= −p(x)DU(t)(x), (2.24)

where p(x) > 0 is some positive scale function, the time derivative Ḟ(U) is negative semidefi-
nite. Furthermore, U0 is an equilibrium of (2.23) if and only if F(U) is stationary at U0.

Proof. Suppose U : [0,∞) × Ω → (0,∞) is a continuously differentiable function of time
and twice-differentiable function of space satisfying (2.24) for some positive p(x) and D as
described above. From (2.14),

Ḟ(U) =

∫
Ω

δF(U)

δU(x)
U̇(x)dx (2.14) (2.25)

=

∫
Ω

(−p(x)DU(t)(x))(DU(t)(x))dx (2.23, 2.24) (2.26)

= −
∫

Ω

p(x)|DU(t)(x)|2dx (2.27)

≤ 0, (2.28)

with equality only if DU(t)(x) = 0 for almost every x. Thus, equilibrium of (2.23) implies
stationarity of F(U). Also, if F(U) is stationary at U0, then δF(U)/δU(x)

∣∣
U=U0

= 0 for
almost every x and (2.25) implies Ḟ(U0) = 0, i.e., U0 is an equilibrium.

Corollary 2.6. Let U ∈ C1,2([0,∞)× Ω) be a function that satisfies the PDE

U̇(x) = DU(t)(x), (2.29)

where D : C2(Ω) → C(Ω) is a spatial differential operator that depends on U(t) := x 7→
U(t,x) and its spatial derivatives. Then, if F : C2(Ω) → R is a functional with functional
derivative
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δF(U)

δU(x)
= −DU(t)(x), (2.30)

the time derivative Ḟ(U) is negative semidefinite. Furthermore, U0 is an equilibrium of (2.23)
if and only if F(U) is stationary at U0.

Proof. This is Theorem 2.5 with p(x) = 1.

Theorem 2.7. Let ρ ∈ C1,2([0,∞)× Ω) be a function that satisfies the conservation PDE

ρ̇(x) = −∇ · φ(ρ(t))(x), (2.31)

where φ(ρ(t)) : Ω → Rd is a differentiable flux vector function (that will in general depend on
x via ρ(t)(x) and U(t)(x) and their spatial derivatives). (d is the spatial dimension.) If F(ρ) is
a functional with differentiable functional derivative whose gradient satisfies

∇
(
δF(ρ)

δρ(x)

)
= −p(x)φ(ρ(t))(x), (2.32)

where p : Ω → (0,∞) is some positive scale function, then Ḟ(ρ) is negative semidefinite.
Furthermore, ρ0 is an equilibrium of (2.31) if and only if δF(ρ)/δρ(x) is constant (i.e., inde-
pendent of x) at ρ = ρ0.

Proof. Suppose ρ : [0,∞) × Ω → (0,∞) is a continuously differentiable function of time
and twice-differentiable function of space satisfying (2.32) for some positive p(x) and φ as
described above. From (2.14),
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Ḟ(ρ) =

∫
Ω

δF(ρ)

δρ(x)
ρ̇(x)dx (2.14) (2.33)

= −
∫

Ω

(
δF(ρ)

δρ(x)

)
(∇ · φ(ρ(t))(x)) (2.31) (2.34)

=

∫
Ω

∇
(
δF(ρ)

δρ(x)

)
· φ(ρ(t))(x)dx (IBP) (2.35)

= −
∫

Ω

p(x)φ(ρ(t))(x) · φ(ρ(t))(x)dx (2.32) (2.36)

= −
∫

Ω

p(x)‖φ(ρ(t))(x)‖2dx (2.37)

≤ 0, (2.38)

with equality only if φ(ρ(t)) = 0 for almost every x.

Now, to prove the final statement, the equivalence of equilibrium and constant δF(ρ)/δρ(x) ,
suppose first that ρ0 is an equilibrium. Then Ḟ(ρ)

∣∣
ρ=ρ0

= 0, since a functional of ρ cannot

change if ρ doesn’t change. As just argued, Ḟ(ρ) = 0 implies φ(ρ(t)) = 0 almost everywhere,
which implies (via (2.32)) that∇(δF(ρ)/δρ(x)) = 0 almost everywhere, i.e. δF(ρ)/δρ(x) is
constant. This demonstrates equilibrium =⇒ constant δF(ρ)/δρ(x) .

The converse (constant δF(ρ)/δρ(x) =⇒ equilibrium) is more straightforward.

δF(ρ)

δρ(x)

∣∣∣∣
ρ=ρ0

is constant =⇒ ∇
(
δF(ρ)

δρ(x)

)∣∣∣∣
ρ=ρ0

= 0 a.e.

=⇒ φ(ρ)(x)

∣∣∣∣
ρ=ρ0

= 0 a.e. (2.32)

=⇒ ρ̇(x) = 0 a.e. (2.31)

The following version of Theorem 2.7 applies when the flux φ takes the specific form of a
positive density ρ times the gradient of a potential.

Theorem 2.8. Let ρ : [0,∞) × Ω → (0,∞) be a positive function with continuous time
derivative and continuous second spatial derivatives, that satisfies the PDE
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ρ̇(x) = ∇ · (ρ∇G(x, ρ(x))), (2.39)

where G : (Ω × R) → R is a scalar function with continuous derivatives. Let F(ρ) be a
functional with functional derivative

δF(ρ)

δρ(x)
= q(G(x, ρ(x))), (2.40)

where q : R→ R is a differentiable increasing function (i.e., q′(G) > 0).

Then the time derivative Ḟ(ρ) is negative semidefinite. Furthermore, if ρeq is an equilibrium
of (2.39), then G(x, ρeq(x)) is constant (i.e., independent of x).

Proof. Suppose ρ, G, F, and q are as above. Then,

Ḟ(ρ) =

∫
Ω

δF(ρ)

δρ(x)
ρ̇(x)dx (2.14) (2.41)

=

∫
Ω

q(G(x, ρ(x)))∇ · (ρ∇G(x, ρ(x)))dx (2.40, 2.39) (2.42)

= −
∫

Ω

∇(q(G(x, ρ(x)))) · (ρ∇G(x, ρ(x)))dx (IBP) (2.43)

= −
∫

Ω

(q′(G)∇G) · (ρ(x)∇G)dx (2.44)

= −
∫

Ω

q′(G)ρ(x)‖∇G‖2dx (2.45)

≤ 0, (2.46)

since q′(G) > 0, ρ(x) > 0, and ‖∇G‖2 ≥ 0. (For concision, the arguments of G were elided in
(2.44, 2.45).) Equality holds only if∇G = 0 almost everywhere, i.e. if G(x, ρ(x)) is constant
in x.

Corollary 2.9. Let ρ : [0,∞)×Ω→ (0,∞) be a positive function with continuous time deriva-
tive and continuous second spatial derivatives, that satisfies PDE (2.39) where G : (Ω × R) →
R is a scalar function with continuous derivatives. Let F(ρ) be a functional with functional
derivative
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δF(ρ)

δρ(x)
= G(x, ρ(x)), (2.47)

Then the time derivative Ḟ(ρ) is negative semidefinite. Furthermore, if ρeq is an equilibrium of
(2.39), then G(x, ρeq(x)) is independent of x.

Proof. This is Theorem 2.8 with q the identity function: q(G) := G, q′(G) = 1.

Theorem 2.10. Let ρ : [0,∞) × Ω → (0,∞) and U : [0,∞) × Ω → (0,∞) be functions
possessing continuous time derivatives and continuous second spatial derivatives that satisfy
the PDEs

U̇(x) = D(ρ(t))U(t)(x) (2.48)
ρ̇(x) = −∇ · φ(ρ(t), U(t))(x), (2.49)

where D(ρ(t)) is a spatial differential operator that depends on ρ(t), φ(ρ(t), U(t)) : Ω → Rd

is a flux vector function of x that depends on ρ(t), U(t), and their derivatives. (d is the spatial
dimension of Ω.) Then, if F(ρ, U) is a functional with differentiable functional derivatives such
that

∇
(
δF(ρ, U)

δρ(x)

)
= −p(x)φ(ρ, U)(x) (2.50)

δF(ρ, U)

δU(x)
= −D(ρ)U(x), (2.51)

Here p : Ω → (0,∞) is a positive scale function (which typically depends on x via ρ(t)(x) and
U(t)(x)).

Then the time derivative Ḟ(ρ, U) is negative semidefinite. Furthermore, if ρeq, Ueq is an equi-
librium of (2.48, 2.49), then F(ρ, U) is stationary in ρ at ρeq, Ueq, and δF(ρ, U)/δρ(x) is con-
stant (i.e., independent of x) at ρeq, Ueq.

Proof. Let ρ, U , D, φ, F, and p be as above. The chain rule here takes the form
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Ḟ(ρ, U) =

∫
Ω

δF(ρ, U)

δρ(x)
ρ̇(x)dx (2.52)

+

∫
Ω

δF(ρ, U)

δU(x)
U̇(x)dx (2.53)

Each of the integrals (2.52) and (2.53) is negative semidefinite—the arguments are essentially
identical to those made in Theorem 2.7 and Corollary 2.6.

Theorem 2.11. Let ρ : [0,∞) × Ω → (0,∞) and U : [0,∞) × Ω → (0,∞) be functions
possessing continuous time derivatives and continuous second spatial derivatives that satisfy
the PDEs

U̇(x) = D(ρ(t))U(t)(x) (2.54)
ρ̇(x) = ∇ · (ρ(t)∇G(x, ρ(t)(x), U(t)(x))), (2.55)

where D(ρ) is a spatial differential operator that depends on ρ and where G : (Ω × R × R) →
R is a scalar function with continuous derivatives. Let F(ρ) be a functional with functional
derivatives

δF(ρ, U)

δρ(x)
= q(G(x, ρ(x), U(x))) (2.56)

δF(ρ, U)

δU(x)
= −p(x)D(ρ)U(x), (2.57)

where p and q are as in Theorems 2.5, 2.8.

Then the time derivative Ḟ(ρ, U) is negative semidefinite. Furthermore, if ρeq, Ueq is an equi-
librium of (2.54, 2.55), then F(ρ, U) is stationary in U at ρeq, Ueq and G(x, ρeq(x), Ueq(x)) is
independent of x.

Proof. The proof of this theorem combines the chain rule (2.52, 2.53) with the arguments of
Theorems 2.5 and 2.8.
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Theorems 2.5, 2.7, 2.8, and 2.11 reduce the problem of finding a functional whose value de-
creases with time to the functional antidifferentiation problem: given a function (possibly in-
volving derivatives) of x, ρ, and U , find a functional whose functional derivative is that func-
tion. This problem cannot always be solved. Some functions do not have functional antideriva-
tives. The difficulty is familiar from multivariate calculus. There is no function F (x, y) such
that ∂F/∂x = 2y and ∂F/∂y = x. If such an F existed, then its mixed partial derivatives
would be unequal:

∂2F

∂y∂x
=
∂ ∂F
∂x

∂y
=
∂(2y)

∂y
= 2 6= 1 =

∂x

∂x
=
∂ ∂F
∂y

∂x
=

∂2F

∂x∂y

The following lemma provides a method to construct a functional antiderivative, providing
one exists.

Lemma 2.12 (Radial Integration). Let F : C1(Ω)→ R be a differentiable functional with func-
tional derivative δF(U)/δU(x). Fcan be computed from its functional derivative as follows,
provided the integral exists

F(U) =

∫ 1

r=0

(∫
Ω

δF(rU)

δU(x)
U(x)dx

)
dr + C, (2.58)

where C is a constant of integration. (That is, C is some expression such that δC/δU(x) = 0.)

Proof. Fix a U : Ω→ R and define fU : [0, 1]→ R by

fU(r) = F(rU) (2.59)

The derivative of fU is

dfU(r)

dr
= lim

ε→0

fU(r + ε)−fU(r)

ε

= lim
ε→0

F((r + ε)U)−F(rU)

ε

= lim
ε→0

F(rU + εU)−F(rU)

ε

=

∫
Ω

δF(rU)

δU(x)
U(x)dx, (2.60)
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using the definition of the functional derivative (2.16) for the last step, with φ = U . It follows
that fU(r) is an antiderivative of the function (2.60) of r, i.e.

fU(R) =

∫ R

r=0

(∫
Ω

δF(rU)

δU(x)
U(x)dx

)
dr + C, (2.61)

provided the integral in (2.61) exists. Finally, note that by its definition, fU(1) = F(U) and
substitute R = 1 into (2.61) to get (2.58).

Remark 2.13. This lemma provides a test for the existence of a functional antiderivative. Given
a function d(U(x)) (possibly involving spatial derivatives or integrals of U ), compute the
integral F(U) =

∫ 1

r=0

(∫
Ω
d(rU)U(x)dx

)
dr. The function dmay not have a functional

antiderivative, but if it does, it must, assuming the integral exists, be F (up to a constant of
integration). To complete the test, find the functional derivative of F. If δF(U)/δU(x) =
d(U(x)), then d has a functional antiderivative and it is F. If, however, δF(U)/δU(x) 6=
d(U(x)), no functional antiderivative of d exists. (To see this, assume for contradiction that
d has a functional antiderivative. Then, as just proved, that functional antiderivative must be F

plus some constant of integration. If δF(U)/δU(x) 6= d(x) we have a contradiction and must
reject the hypothesis that a functional antiderivative of d exists.) This test of course depends on
the existence of the integral

∫ 1

r=0

(∫
Ω
d(rU)U(x) dx

)
dr, but the existence of this integral says

nothing, by itself, about whether a functional antiderivative of d exists. I exhibit examples of
both cases in the following sections.

The radial integration trick extends in a straightforward way to a functional of two functions

F(ρ, U) =

∫ 1

r=0

(∫
Ω

δF(rρ, rU)

δρ(x)
ρ(x)dx +

∫
Ω

δF(rρ, rU)

δU(x)
U(x)dx

)
dr + C (2.62)

2.3.2 The Horstmann functional

Horstmann (Horstmann 2003; Horstmann 2004; Dirk Horstmann 2001) describes a Lya-
punov functional for a general version of the Keller-Segel system. Horstmann’s functional can
be constructed using the tools developed above.

Horstmann’s general version of the Keller-Segel system is as follows

ρ̇ = ∇ · (k(ρ, U)∇ρ− h(ρ, U)∇U) (2.63)

U̇ = D∇2U − f(U)U + g(ρ, U) (2.64)
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The functions k and h describe the random movement and chemotactic response of the or-
ganisms. As before, D > 0 is the diffusion constant of the chemical signal. Functions f and
g describe the decay of signal and its production or consumption by the organisms. Horstmann
makes the following assumptions

k(ρ, U) > 0 (2.65)
f(U) ≥ const (2.66)

gρ(ρ, U) 6= 0 (2.67)

The system is not completely general—it doesn’t include models in which the total number
of organisms changes with time (death or reproduction).

Horstmann’s construction is as follows. Define

F (U) :=

∫ U

0

f(s)s ds (2.68)

G(ρ, U) := −
∫ U

0

g(ρ, s)ds (2.69)

Now, find a function R(ρ) such that

k(ρ, U)(Gρρ(ρ, U) +R′′(ρ)) + h(ρ, U)GρU = 0 (2.70)
Gρρ(ρ, U) +R′′(ρ) > 0 (2.71)

Then the following functional has a negative semidefinite time derivative

H(ρ, U) =

∫
Ω

(
D

2
‖∇U‖2 + F (U) +G(ρ, U) +R(ρ)

)
dx (2.72)

To arrive at this result using the tools developed above, use Theorem 2.10. It is easiest to
start with U . We need to find a functional H such that
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δH(ρ, U)

δU(x)
= −

(
D∇2U − f(U)U + g(ρ, U)

)
(2.73)

= −D∇2U + f(U)U − g(ρ, U) (2.74)

Let’s take this term by term. Remark 2.2 makes it easy to handle the f and g terms

δ

δU(x)

∫
Ω

(F (U) +G(ρ, U))dx = f(U)U − g(ρ, U) (2.75)

(Radial integration can also be used to arrive at the same result.) That leaves only the −D∇2U
term, whose functional antiderivative D(U) we find by radial integration.

D(U) =

∫ 1

r=0

(∫
Ω

−D∇2(rU(x))U(x)dx

)
dr + C (2.76)

=

∫ 1

r=0

(
r

∫
Ω

−D∇2(U(x))U(x)dx

)
dr + C (2.77)

=

(∫ 1

r=0

rdr

)(∫
Ω

−D∇2(U(x))U(x)dx

)
+ C (2.78)

= −
∫

Ω

D

2
U∇2Udx + C (2.79)

=

∫
Ω

D

2
∇U · ∇Udx + C (IBP) (2.80)

=

∫
Ω

D

2
‖∇U‖2dx + C (2.81)

When using the radial integration lemma, it is always necessary to check the functional deriva-
tive.
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D(U + εφ) =

∫
Ω

D

2
∇(U + εφ) · ∇(U + εφ)dx + C

=

∫
Ω

D

2

(
∇U · ∇U + 2ε∇U · ∇φ+ ε2∇φ · ∇φ

)
dx + C

D(U + εφ)− D(U) = ε

∫
Ω

D∇U · ∇φ dx + ε2
∫

Ω

D

2
∇φ · ∇φ dx

lim
ε→0

D(U + εφ)− D(U)

ε
=

∫
Ω

D∇U · ∇φ dx

=

∫
Ω

−D∇2Uφ dx (IBP)

δD(U)

δU(x)
= −D∇2U X

Putting this all together, we have the following functional

H(ρ, U) =

∫
Ω

(
D

2
‖∇U‖2 + F (U) +G(ρ, U)

)
dx + C (2.82)

The constant of integration C offers some flexibility. In fact, in this context “constant” means
only “doesn’t depend on U”. C can be any object such that δC/δU(x) = 0. In particular, it
can be a functional of ρ. To arrive at the Horstmann functional, we assume that C is the integral
of some function R(ρ). (This is not the only possibility, but it is the one that will take us to our
current destination.)

C =

∫
Ω

R(ρ(x))dx (2.83)

H(ρ, U) =

∫
Ω

(
D

2
‖∇U‖2 + F (U) +G(ρ, U) +R(ρ)

)
dx (2.84)

Now we need only work out what R has to be to satisfy the hypothesis of Theorem 2.10.

δH

δρ(x)
= Gρ(ρ, U) +R′(ρ) (2.85)

∇
(

δH

δρ(x)

)
= (Gρρ(ρ, U) +R′′(ρ))∇ρ+GρU(ρ, U)∇U (2.86)
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To use Theorem 2.10 we need the quantity (2.86) to be

∇
(

δH

δρ(x)

)
= p(x)(k(ρ, U)∇ρ− h(ρ, U)∇U) (2.87)

Matching the coefficient of∇ρ, we have

(Gρρ(ρ, U) +R′′(ρ)) = p(x)k(ρ, U) (2.88)

p(x) =
1

k(ρ, U)
(Gρρ +R′′(ρ)) (2.89)

We must have p(x) > 0, and since k(ρ, U) > 0, this requires (2.71). In addition we need
−p(x)h(ρ, U) = GρU(ρ, U). Using (2.89) and matching the coefficients of∇U in (2.86,2.87),

GρU(ρ, U) = −h(ρ, U)

k(ρ, U)
(Gρρ +R′′(ρ)), (2.90)

which is (2.70).

Thus, these tools allow the systematic construction of Horstmann’s functional.

There is another restriction, not an additional condition, but one that can be derived from
those already shown. Since k > 0 and Gρρ + R′′ > 0, (2.90) implies that h and GρU = −gρ
are opposite in sign—that is, the organisms either produce an attractant or destroy a repellent—
which is to say, they are attracted to each other. If this is not the case, H(ρ, U) may increase
with time. This issue reappears in the analysis of repellents in the worm model below (Section
2.4.7), where I argue that it is fundamental to the biology.

2.3.3 An example of nonexistence of the functional antiderivative

As shown below (sections 2.4.2, 2.4.3, 2.4.4), theorems 2.5, 2.8, and 2.11 together with ra-
dial integration are all that is needed to construct time-decreasing free energy functionals for
the minimal system. For the worm system, however, these tools fail. The problem is the dif-
fusion term D∇2U in the U PDE (2.1). Although a functional antiderivative of D∇2U can
be constructed by radial integration, this construction fails when∇2U is multiplied by a non-
constant function of U . For example, there is no functional whose functional antiderivative is
U∇2U .
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Theorem 2.14. There is no functional Dwhose functional derivative is

δD(U)

δU(x)
= U∇2U (2.91)

I will prove this theorem in two ways. I will begin by using the radial integration test. I will
then use the Fourier series, to show how this nonexistence can be framed as a problem with a
function of multiple variables.

Radial integration test (Remark 2.13). The radial integration lemma says that if U∇2U has a
functional antiderivative, it must be

D(U) =

∫ 1

r=0

(∫
Ω

rU(x)∇2(rU(x))U(x)dx

)
dr (2.92)

=

∫ 1

r=0

(
r2

∫
Ω

U(x)∇2U(x)U(x)dx

)
dr (2.93)

=

(∫ 1

r=0

r2dr

)(∫
Ω

U2(x)∇2U(x)U(x)dx

)
(2.94)

=
1

3

∫
Ω

U2(x)∇2U(x)dx (2.95)

Now let’s check the functional derivative of D.

D(U + εφ) =
1

3

∫
Ω

(U + εφ)2 (∇2U + ε∇2φ
)

dx (2.96)

=
1

3

∫
Ω

U2∇2Udx +
2

3
ε

∫
Ω

Uφ∇2Udx (2.97)

+
1

3
ε

∫
Ω

U2∇2φdx +O
(
ε2
)

D(U + εφ)− D(U)

ε
=

2

3

∫
Ω

U∇2Uφdx +
1

3

∫
Ω

U2∇2φdx +O(ε) (2.98)

lim
ε→0

D(U + εφ)− D(U)

ε
=

2

3

∫
Ω

U∇2Uφdx +
1

3

∫
Ω

U2∇2φdx (2.99)
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The first integral of (2.99) is already in the form (2.16). To put the second in the same form
takes two integrations by parts

1

3

∫
Ω

U2∇2φdx = −1

3

∫
Ω

∇
(
U2
)
· ∇φdx (2.100)

=
1

3

∫
Ω

∇2
(
U2
)
φdx (2.101)

=
2

3

∫
Ω

(
∇U · ∇U + U∇2U

)
φdx (2.102)

Leading, at last, to

δD(U)

δU(x)
=

4

3
U∇2U +

2

3
‖∇U‖2 (2.103)

δD(U)

δU(x)
6= U∇2U (2.104)

Generalizing to d(U) = Un∇2u, radial integration produces

D(U) =
1

n+ 2

∫
Ω

Un+1∇2Udx (2.105)

δD(U)

δU(x)
=
n+ 1

n+ 2

(
2Un∇2U + nUn−1‖∇U‖2

)
(2.106)

The functional derivative of Un∇2U exists only for n = 0.

Fourier series coefficients. Any functional D(U) for periodic functions on [0, 1]d is also a func-
tion of the Fourier coefficients of U , since there is a one-to-one relationship between Fourier
series and such functions. I will denote this equivalent function D̃(Ũ).

D̃(Ũ) := D

(
x 7→

∑
k∈2πZd

Ũke
ik·x

)
(2.107)
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Suppose for contradiction that there exists a functional D(U) whose functional derivative is
U∇2U . Then an equivalent function D̃ of the vector of Fourier series coefficients Ũ also exists.
How does D̃ depend on Ũk?

∂ D̃(Ũ)

∂Ũk

= lim
ε→0

D̃
(
Ũ + εek

)
− D̃

(
Ũ
)

ε
(2.108)

Here ek := (. . . , 0, 1, 0, . . . ) represents the vector indexed by 2πZd all of whose elements are
0 except for the one in position k, which is 1. Then,

D̃(Ũ + εek) = D
(
U + εeik·x

)
(2.109)

lim
ε→0

D̃
(
Ũ + (. . . , 0, ε, 0, . . . )

)
− D̃

(
Ũ
)

ε
= lim

ε→0

D
(
U + εeik·x

)
− D(U)

ε
(2.110)

=

∫
Ω

δD(U)

δU(x)
eik·xdx (2.111)

=

∫
Ω

 ∑
j∈2πZd

˜(U∇2U)je
ij·x

 eik·xdx (2.112)

=

 ∑
j∈2πZd

˜(U∇2U)j

∫
Ω

ei(j+k)·x

 (2.113)

=

 ∑
j∈2πZd

˜(U∇2U)jδj,−k

 (2.114)

= ˜(U∇2U)−k (2.115)

That is, the partial derivative of D̃with respect to Ũk is the −k coefficient of the Fourier series
for the functional derivative of D. The Fourier coefficients of∇2U are (̃∇2U)k = −k2Ũk (let-
ting k = ‖k‖). The coefficient vector of a product is the discrete convolution of the coefficient
vectors for the factors,
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(̃fg) = f̃ ∗ g̃ (2.116)(
f̃ ∗ g̃

)
k

:=
∑

j∈2πZd
f̃jg̃k−j (2.117)

=
∑

j∈2πZd
g̃jf̃k−j (2.118)

Thus,

∂ D̃(Ũ)

∂Ũk

= ˜(U∇2U)−k =
∑

j∈2πZd
−j2ŨjŨ−k−j (2.119)

Now, to find the mixed partial derivative, ∂2 D̃(Ũ)/(∂Ũm∂Ũk), I need to differentiate this
sum with respect to Ũm. Unless −k = 2m, Ũm appears in two terms in this sum, when j = m,
and when −k− j = m. If −k = 2m, these are combined in a single term

∂2 D̃(Ũ)

∂Ũm∂Ũk

=
∂

∂Ũm

{
−k 6= 2m −m2ŨmŨ−k−m − ‖k + m‖2Ũ−k−mŨm

−k = 2m −m2Ũ2
k

(2.120)

= −m2Ũ−k−m − ‖k + m‖2Ũ−k−m (2.121)

= −(2m2 + k2 + 2k ·m)Ũ−k−m (2.122)

This result is not symmetric to exchange of k and m, so, for general Ũ there is no function
D̃(Ũ) that has the partial derivatives (2.119). Therefore there is no functional D(U) whose
functional derivative is U∇2U .

2.3.4 Approximate functional antiderivatives

As just demonstrated, some expressions do not have functional antiderivatives. In this section
I explore the possibility that an approximate functional antiderivative may sometimes be de-
fined in such a case. The idea, admittedly, seems contradictory at first. Normally when we say
”X approximates Y”, we mean ”X is close to Y” or ”the difference between X and Y is small”.
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If Y, provably, doesn’t exist, how can any X be close to it? The paradox is resolved by defining
an approximate functional antiderivative to be something whose functional derivative is close to
the desired function. That is, I will call F(U) an approximate functional antiderivative of f(U)
if

δF(U)

δU(x)
≈ f(U)(x) (2.123)

eF(x) :=
δF(U)

δU(x)
−f(U)(x) is small, (2.124)

where ”is small” can be defined, for instance, as a bound on a norm of eF.

To construct a free energy function for the worm system, we will eventually look for a func-
tional antiderivative of V ′U(U)∇2U (section 2.4.5). If VU is affine and therefore V ′U constant,
then D(U) = 1

2

∫
Ω
V ′UU∇2Udx works. However, as just demonstrated (Theorem 2.14), for

nonaffine VU there may be no functional whose functional derivative is V ′U(U)∇2U . One can
nevertheless construct a functional by radial integration,

D(U) =

∫ 1

r=0

(∫
Ω

V ′U(rU(x))∇2(rU)(x)U(x)dx

)
dr (2.125)

=

(
VU(U)− WU(U)

U

)
∇2U (2.126)

= f(U)∇2U (2.127)

f(U) := VU(U)− WU(U)

U
(2.128)

Define the functional derivative error function eD as the difference between the actual and
desired functional derivative,

eD(x) :=
δD(U)

δU(x)
− V ′U(U(x))∇2U(x) (2.129)

Theorem 2.15. Let

• U ∈ C2(Ω) be a twice-differentiable positive function of space,
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• D be the functional of U defined in (2.125, 2.126).

• f(U) as defined in (2.128) be a twice differentiable function that is either either convex
(i.e., f ′′(U(x)) > 0 for all x ∈ Ω) or concave (f ′′(U(x)) < 0 for all x ∈ Ω),

• VU ∈ C2(R)

• eD be as defined in (2.129).

Then eD satisfies the following bounds

I. ∫
Ω

UeDdx = 0 (2.130)

II.
‖UeD‖1 ≤ 2

∥∥Uf ′(U)∇2U
∥∥

1
+ 2
∥∥f(U)∇2U

∥∥
1

(2.131)

Proof. Let D, f , VU , and eD, U be as above. Begin by collecting some useful identities. Iden-
tities (2.132) and (2.133) below are true for any f and U for which the derivatives exist; (2.134)
is specific for f as defined in (2.128).

∇2f(U(x)) = f ′(U(x))∇2U(x) + f ′′(U(x))∇U(x) · ∇U(x) (2.132)
= f ′(U)∇2U + f ′′(U)∇U · ∇U

Uf ′′(U)∇U = ∇(Uf ′(U)− f(U)) (2.133)

V ′U(U) =
1

U

d

dU
(Uf(U)) (2.134)

Assume first that f is convex, f ′′ ≥ 0. This is the case when VU is defined by (2.10) with β >
0. We will need δD(U)/δU(x)
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D(U + εφ) =

∫
Ω

f(U + εφ)∇2(U + εφ)dx

=

∫
Ω

(
f(U) + εf ′(U)φ+O

(
ε2
)) (
∇2U + ε∇2φ

)
dx

=

∫
Ω

(
f(U)∇2U + εf ′(U)φ∇2U + εf(U)∇2φ+O

(
ε2
))

dx

lim
ε→0

D(U + εφ)− D(U)

ε
=

∫
Ω

(
f ′(U)φ∇2U + f(U)∇2φ

)
dx

=

∫
Ω

(
f ′(U)∇2Uφ+∇2f(U)φ

)
dx (2xIBP)

δD(U)

δU(x)
= f ′(U)∇2U +∇2f(U)

= f ′(U)∇2U + f ′(U)∇2U + f ′′(U)(∇U · ∇U) (2.132)
δD(U)

δU(x)
= 2f ′(U)∇2U + f ′′(U)(∇U · ∇U) (2.135)

Now we compute the error

eD(x) =
δD(U)

δU(x)
− V ′U(U(x))∇2U(x) (2.129)

= 2f ′(U)∇2U + f ′′(U)(∇U · ∇U) (2.135)

− 1

U

d

dU
(Uf(U))∇2U (2.134)

= 2f ′(U)∇2U + f ′′(U)(∇U · ∇U)

−
(

1

U
f(U) + f ′(U)

)
∇2U

= f ′(U)∇2U + f ′′(U)(∇U · ∇U)− 1

U
f(U)∇2U (2.136)

Now we find the U -weighted total error.
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∫
Ω

UeDdx =

∫
Ω

Uf ′(U)∇2Udx +

∫
Ω

Uf ′′(U)(∇U · ∇U)dx

−
∫

Ω

f(U)∇2Udx

=

∫
Ω

Uf ′(U)∇2Udx

+

∫
Ω

∇(Uf ′(U)− f(U)) · ∇U)dx by (2.133)

−
∫

Ω

f(U)∇2Udx

=

∫
Ω

Uf ′(U)∇2Udx

−
∫

Ω

(Uf ′(U)− f(U))∇2Udx (IBP)

−
∫

Ω

f(U)∇2Udx

= 0

This completes the proof of part I.. For II., multiply the error by U and find the 1-norm.

UeD = Uf ′(U)∇2U + Uf ′′(U)(∇U · ∇U)− f(U)∇2U (2.137)

‖eD‖1 =

∫
Ω

∣∣Uf ′(U)∇2U + Uf ′′(U)(∇U · ∇U)− f(U)∇2U
∣∣ dx (2.138)

≤
∫

Ω

∣∣Uf ′(U)∇2U
∣∣ dx +

∫
Ω

|Uf ′′(U)(∇U · ∇U)| dx (2.139)

+

∫
Ω

∣∣f(U)∇2U
∣∣ dx

=

∫
Ω

∣∣Uf ′(U)∇2U
∣∣ dx +

∫
Ω

Uf ′′(U)(∇U · ∇U)dx (2.140)

+

∫
Ω

∣∣f(U)∇2U
∣∣ dx

In the final step I removed the absolute value signs from the middle integral, using U > 0 and
the convexity to f to infer that Uf ′′(U)(∇U · ∇U) ≥ 0. Now, to evaluate that middle integral,
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∫
Ω

Uf ′′(U)(∇U · ∇U)dx =

∫
Ω

(Uf ′′(U)∇U) · ∇U)dx ≥ 0 (2.141)

=

∫
Ω

∇(Uf ′(U)− f(U)) · ∇Udx by (2.133) (2.142)

= −
∫

Ω

(Uf ′(U)− f(U))∇2Udx ≥ 0 (IBP) (2.143)

Substituting into (2.140),

‖U (eD)‖1 =

∫
Ω

∣∣Uf ′(U)∇2U
∣∣ dx−

∫
Ω

(Uf ′(U)− f(U))∇2Udx (2.144)

+

∫
Ω

∣∣f(U)∇2U
∣∣ dx

=

∫
Ω

∣∣Uf ′(U)∇2U
∣∣ dx−

∫
Ω

Uf ′(U)∇2Udx (2.145)

−
∫

Ω

f(U)∇2Udx +

∫
Ω

∣∣f(U)∇2U
∣∣ dx

≤ 2
∥∥Uf ′(U)∇2U

∥∥
1

+ 2
∥∥f(U)∇2U

∥∥
1

(2.146)

For the case of concave f , simply apply the argument to −VU , −f . If f is concave, −f is
convex, and of course (2.131) is unchanged by a flip in the sign of f . f is concave for VU as
defined in (2.10) with β < 0.

There are two countervailing points to be made about this bound. First, in the context of the
Keller-Segel system, the estimate is not as useful as one might hope. Since one of the main uses
of a free energy functional is in analyzing equilibrium and exploring behavior near equilib-
rium, one would prefer that the error approach zero as the system approaches equilibrium. U
and therefore f(U) and f ′(U) are bounded but large at equilibrium. I show below that at equi-
librium, U = g ∗ ρ, where g is the Green’s function (2.152). Since convolution is a smoothing
or averaging transformation,

min
x∈Ω

(
s

γ
ρ(x)

)
≤ U(x) ≤ max

x∈Ω

(
s

γ
ρ(x)

)
(2.147)
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In principle U may transiently stray outside these bounds, when ρ changes quickly, but in prac-
tice this is essentially never observed in numerical solutions.

The mean of U at equilibrium is sρ̄/γ, where ρ̄ is the mean of ρ, a constant. Since U and
f(U) remain large at equilibrium, the only possible savior in the bound (2.131) is the factor
∇2U . Unfortunately,∇2U remains substantial at equilibrium. From (2.149),

∇2Ueq =
γ

D

(
U − s

γ
ρeq

)
(2.148)

U = sρ/γ is the local equilibrium concentration, the signal concentration that would be in equi-
librium with the local density of worms if there were no diffusion. Thus, at equilibrium,∇2U
is proportional to the difference between U and the local equilibrium concentration. Unfortu-
nately, this differs from zero at equilibrium.

The second countervailing point is that the actual performance of the functional (2.125) is
substantially better than the estimate (2.131) suggests. Intuitively, it is evident that there will
be considerable cancellation among the terms of (2.137). (∇2U is negative at maxima of U
and positive at minima, so it is negatively correlated with U .) The triangle inequality (2.139)
amounts to making the most pessimistic possible assumptions about cancellation. In fact, can-
cellation is perfect, in the sense that the U -weighted average of the error is 0 (Theorem 2.15,
part I.).

Based on these arguments, I will suggest that, even though (2.186) is not a Lyapunov func-
tional for the worm system (2.1, 2.3), it might be a good approximation. As a quick numerical
test, I convolved a step function ρ(x) in one dimension with the appropriate Green’s function
and computed the U -dependent parts of F(U) and δF(ρ, U)/δU(x), using parameters and a
configuration similar to those that arise in simulations described in chapter 3. Plots are shown
in Figure 2.1. Only the U -dependent components of the functional are plotted, since it is only
these that are not exact. Note the change in scale from Figure 2.1B, plotting the integrand of the
functional to Figure 2.1C, plotting its functional derivative with respect to U . The latter would
ideally be 0. The predicted rate of change of F(ρ, U) is about 1/60 of its value per day. Since
full simulations typically are near equilibrium after 3 h, this is a very low rate of change.
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A. Density and attractant concentration B. Integrand of components of free energy
functional derived from the U PDE
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Figure 2.1: Free energy functional as an approximation.
A. Example ρ(x) and U(x) functions, based on typical configurations from numerical sim-
ulations. U(x) is the solution to (2.149) with the ρ(x) shown and parameters s = 0.01 s−1, γ
= 0.01 s−1, D = 10−6 cm2 s−1. B. The functional F(ρ, U) is an integral over x of an expression
in ρ(x) and U(x). The sum of those terms that measure the disequilibrium of U :

F(ρ, U) = −γ/s(UVU(U)−WU(U)) +D/s(VU(U)− (WU(U)/U))∇2U + ρVU(U)

is plotted. C. The functional derivative of the functional whose integrand is plotted in B to-
gether with the target derivative: what this would be if Fwere an exact Lyapunov functional.
Since U was constructed to be in equilibrium with ρ, the target is, by construction, exactly 0.
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2.4 Energy functionals for the Keller-Segel system

2.4.1 Chemical signal equilibrium for fixed density

Equilibria of the Keller-Segel system are those functions ρ(x), U(x) such that the time deriva-
tives are zero, i.e. (2.149, 2.156) below. I will begin by considering the two components sepa-
rately. That is, if we assume a certain fixed ρ0(x), what U(x) is in equilibrium with it, and vice
versa? An equilibrium of U satisfies

0 = −γU(x) +D∇2U(x) + sρ0(x) (2.149)

This is an analytically and numerically tractable problem. Analytical solutions can be found
for simple geometries (e.g., worms uniformly distributed on a disk in two dimensions). For a
given ρ0(x), the solution U(x) is unique and globally stable (shown below) and can be com-
puted as a convolution of ρ0 with a Green’s function g(x).

U(x) = (g ∗ ρ0)(x) (2.150)

I define convolution on Ω by

(f ∗ g)(y) :=

∫
Ω

f(x)g(y − x)dx (2.151)

As usual, convolution is associative, commutative, and multilinear, and the Convolution The-
orem (CT), (̃f ∗ g)k = f̃kg̃k is easily verified with definition (2.151) and periodic functions on
Ω = [0, 1]d. (See 2.5 for Fourier series notation.)

The Green’s functions are most useful in their Fourier series form

g(x) =
∑

k∈2πZd
g̃k(x)eik·x (2.152)

g̃k =
s

γ +D‖k‖2
(2.153)

The g̃k are real and even (i.e. g̃∗k = g̃k, g̃−k = g̃k), and consequently so is g(x). Additionally,
g(x) > 0 for all x ∈ Ω.
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Assuming (2.150), (2.1) becomes in the Fourier basis,

U̇ =
∑

k∈2πZd

(
−γŨke

ik·x +D∇2Ũke
ik·x + sρ̃0ke

ik·x
)

=
∑

k∈2πZd

(
−γŨk −D‖k‖2Ũk + sρ̃0k

)
eik·x

=
∑
k

(
−γ ˜(g ∗ ρ0)k −D‖k‖

2 ˜(g ∗ ρ0)k + sρ̃0k

)
eik·x (2.150)

=
∑
k

(
−γg̃kρ̃0k −D‖k‖2g̃kρ̃0k + sρ̃0k

)
eik·x (CT)

=
∑
k

(
−(γ +D‖k‖2)g̃k + s

)
ρ̃0ke

ik·x

=
∑
k

(
−(γ +D‖k‖2)

s

γ +D‖k‖2
+ s

)
ρ̃0ke

ik·x (2.152)

= 0

Thus (2.150) is indeed an equilibrium.

2.4.2 Lyapunov (energy) functional for the chemical signal

To show that this equilibrium is unique and globally stable, I will develop a Lyapunov func-
tional for U . We use Corollary 2.6. We need a functional F(U) with functional derivative

δF(U)

δU(x)
= γU(x)−D∇2U(x)− sρ0(x) (2.154)

The hard part was already done in section 2.3.2, where I found a functional antiderivative of
∇2U . Putting this together with the integral of γU − sρ0 gives the functional

F(U) =

∫
Ω

(
γ

2
U2 +

D

2
‖∇U‖2 − sρ0U

)
dx (2.155)

To verify,
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F(U + εφ) =

∫
Ω

(
γ

2
(U + εφ)2

+
D

2
(∇U + ε∇φ) · (∇U + ε∇φ)

− sρ0(U + εφ)

)
dx

=

∫
Ω

(
γ

2
U2 +

D

2
‖∇‖2 − sρ0U

)
dx

+ ε

∫
Ω

(γUφ+D∇U · ∇φ− sρ0φ) dx +O
(
ε2
)

F(U + εφ)−F(U)

ε
=

∫
Ω

(γUφ+D∇U · ∇φ− sρ0φ) dx +O(ε)

lim
ε→0

F(U + εφ)−F(U)

ε
=

∫
Ω

(γUφ+D∇U · ∇φ− sρ0φ) dx

=

∫
Ω

(
γUφ−D∇2Uφ− sρ0φ

)
dx (IBP)

=

∫
Ω

(
γU −D∇2U − sρ0

)
φdx

δF(U)

δU(x)
= γU −D∇2U − sρ0

Thus the functional derivative of (2.155) is indeed (2.154).

To confirm that Ḟ(U) = ∂F(U(t, x))/∂t ≤ 0,

Ḟ(U) =

∫
Ω

(
γUU̇ +D∇U · ∇U̇ − sρ0U̇

)
=

∫
Ω

(
γUU̇ −D∇2UU̇ − sρ0U̇

)
dx (IBP)

=

∫
Ω

(
γU −D∇2U − sρ0

)
U̇dx

=

∫
Ω

(
γU −D∇2U − sρ0

) (
−γU +D∇2U + sρ0

)
dx (2.1)

= −
∫

Ω

(
γU −D∇2U − sρ0

)2
dx ≤ 0
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Finally, F is positive definite, with a minimum at equilibrium. Let U0 = g∗ρ0 be the solution
of (2.149), and U = U0 + φ. Then

F(U) =

∫
Ω

(
γ

2
(U0 + φ)2 +

D

2
‖∇ (U0 + φ)‖2 − sρ0 (U0 + φ)

)
dx

=

∫
Ω

(
γ

2

(
U2

0 + 2U0φ+ φ2
)

+
D

2
(∇U0 · ∇U0 + 2∇U0 · ∇φ+∇φ · ∇φ)− sρ0 (U0 + φ)

)
dx

=

∫
Ω

(
γ

2
U2

0 +
D

2
∇U0 · ∇U0 − sρ0U0

)
dx +

∫
Ω

(γU0φ+D∇U0 · ∇φ− sρ0φ) dx

+

∫
Ω

(
γ

2
φ2 +

D

2
∇φ · ∇φ

)
dx

=

∫
Ω

(
γ

2
U2

0 +
D

2
∇U0 · ∇U0 − sρ0U0

)
dx +

∫
Ω

(
γU0φ−D∇2U0φ− sρ0φ

)
dx

+

∫
Ω

(
γ

2
φ2 +

D

2
∇φ · ∇φ

)
dx (IBP)

= F(U0) +

∫
Ω

(
γU0 −D∇2U0 − sρ0)

)
φdx +

∫
Ω

(
γ

2
φ2 +

D

2
∇φ · ∇φ

)
dx

= F(U0) +

∫
Ω

(
γ

2
φ2 +

D

2
∇φ · ∇φ

)
dx ≥ F(U0) (2.149)

Thus F(U) is minimized at U = U0, and the time derivative of F(U) is negative for every
positive U 6= U0. Together these results imply that U = U0 is the unique, globally stable equi-
librium of (2.1), if ρ0(x) is fixed.

2.4.3 Worm density equilibrium for fixed signal

If we assume a fixed chemical signal function U0(x), what density function(s) ρ(x) are in
equilibrium with it?

0 = ∇ · (ρ∇ (VU(U0) + Vρ + σ log ρ)) (2.156)

Density PDE (2.3) is a continuity equation: it says that the time derivative of the density is
the divergence of a vector field, ρ∇G, where G = VU + Vρ + σ log ρ is something like a
free energy (actually, a marginal free energy). The minimal ρ PDE (2.2) can also be written
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in this form. At equilibrium (2.156), this divergence is zero. The simplest way to achieve this is
∇G = 0, which I will call the Boltzmann equilibrium because of its resemblance to the Boltz-
mann distribution of statistical mechanics,

∇ (VU + Vρ + σ log ρ) = 0 (2.157)
VU + Vρ + σ log ρ = C (2.158)

ρ = eCe−(VU+Vρ)/σ (2.159)

ρ ∝ e−V/σ (2.160)

The Boltzmann equilibrium is P ∝ e−E/T , where P is probability of occupying a state, E is
the energy of the state, and T is temperature. When V doesn’t depend on ρ, (2.160) allows an
explicit solution

ρ(x) =
N0

Z(1/σ)
e−V (x)/σ (2.161)

Z(1/σ) :=

∫
Ω

e−V (x)/σdx is the partition function (2.162)

This works for the minimal system, for instance. In the general case V depends on ρ via Vρ and
finding a density function ρ(x) that satisfies (2.161) is typically not easy.

To find a Lyapunov functional for ρ with fixed U(x) = U0(x), use Corollary 2.9. PDE (2.3)
is of the form of (2.39), with G(x, ρ) := V (ρ, U0) + σ log ρ. Therefore choose Fsuch that

δF(ρ)

δρ(x)
= VU(U0(x)) + Vρ(ρ(x)) + σ log ρ(x), (2.163)

Thus, as for U, the construction of a Lyapunov functional for ρ can be reduced to a func-
tional antidifferentiation problem. Let’s find a functional that satisfies (2.163) by radial integra-
tion.
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F(ρ) =

∫ 1

r=0

(∫
Ω

(
δF(rρ)

δρ(x)

)
ρ(x)dx

)
dr + C (2.164)

=

∫ 1

r=0

(∫
Ω

(VU(U0(x)) + Vρ(rρ(x)) + σ log(rρ(x))) ρ(x)dx

)
dr + C (2.165)

=

∫
Ω

VU(U0(x))ρ(x)dx

∫ 1

r=0

dr +

∫
Ω

(∫ 1

r=0

Vρ(rρ(x))dr

)
ρ(x)dx

+

∫
Ω

(
σ

∫ 1

r=0

log (rρ(x)) dr

)
ρ(x)dx + C

=

∫
Ω

ρ(x)VU(U0(x))dx +

∫
Ω

(
Wρ(ρ(x))

ρ(x)

)
ρ(x)dx

+ σ

∫
Ω

(log(ρ(x))− 1) ρ(x)dx + C

=

∫
Ω

(ρ(x)VU(U0(x)) +Wρ(ρ(x)) + σρ(x) log ρ(x)− σρ(x)) dx + C (2.166)

Since
∫

Ω
ρ(x)dx is constant, the term −σρ(x) in the integrand can be absorbed into the con-

stant of integration, leading to the following Lyapunov functional:

F(ρ) =

∫
Ω

(ρ(x)VU(U0(x)) +Wρ(ρ(x)) + σρ(x) log ρ(x)) dx

=

∫
Ω

(ρVU(U0) +Wρ(ρ) + σρ log ρ) dx (2.167)

It is easy to confirm that the functional derivative of (2.167) is indeed (2.163). Wρ(ρ)dx can
be understood as the total energy cost of building up to a worm density ρ in interval dx. The
expression Vρ(ρ) that appears in the PDE (2.3) is the marginal cost of moving one worm to a
place with density ρ. For the minimal system (2.2) Functional (2.167) reduces to

F(ρ) =

∫
Ω

(−βρU + σρ log ρ) dx (2.168)

This is identical to the ρ-dependent part of the minimal system free energy functional (1.16) in
chapter 1.
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Now, let us confirm that this construction worked, that the time derivative of (2.168) is nega-
tive semidefinite.

Ḟ(ρ) =
d

dt

∫
Ω

(ρVU(U0) +Wρ(ρ) + σρ log ρ) dx

=

∫
Ω

(
VU(U0)ρ̇+W ′

ρ(ρ)ρ̇+ σρ̇ log ρ+ σρ̇
)

dx

=

∫
Ω

(VU(U0) + Vρ(ρ) + σ log ρ+ σ) ρ̇dx

=

∫
Ω

(VU(U0) + Vρ(ρ) + σ log ρ+ σ) · (∇ · (ρ∇ (VU(U0) + Vρ(ρ) + σ log ρ))) dx

= −
∫

Ω

ρ∇ (VU(U0) + Vρ(ρ) + σ log ρ) · ∇ (VU(U0) + Vρ(ρ) + σ log ρ) dx

= −
∫

Ω

ρ‖∇ (VU(U0) + Vρ(ρ) + σ log ρ)‖2dx ≤ 0

This result also demonstrates that the Boltzmann distribution (2.160) always holds at equi-
librium. For the minimal system, the equilibrium, if it exists, is unique. This is not so easily
shown for the worm system (2.3).

2.4.4 Construction of the free energy functional for the minimal system

In the previous sections, I showed how to use functional integration to construct Lyapunov
functionals for the uncoupled U and ρ systems. Now I will attempt to find a time-decreasing
functional for the minimal system, with both ρ and U time-dependent. Use Corollary 2.11, with

D(ρ)U := −γU +D∇2U + sρ (2.169)
G(x, ρ, U) := −βU + σ log ρ (2.170)

To apply the theorem, we need

δF(ρ, U)

δρ(x)
= q(−βU + σ log ρ) (2.171)

δF(ρ, U)

δU(x)
= p(x)(γU −D∇2U − sρ), (2.172)
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where q is some increasing function of G and p(x) is a positive function.

If (2.171) and (2.172) hold, then

δ2F(ρ, U)

δU(x)δρ(x)
= −βq′(−βU + σ log ρ) (2.173)

δ2F(ρ, U)

δρ(x)δU(x)
= −p(x)s, (2.174)

assuming p has no explicit dependence on ρ. We must choose p and q so that these two expres-
sions are equal. This is easily done. Let q(G) := G, q′ = 1, and p(x) := p = β/s. Then

δF(ρ, U)

δρ(x)
= −βU + σ log ρ (2.175)

δF(ρ, U)

δU(x)
=
β

s
(γU −D∇2U − sρ) (2.176)

Now,

δ2F(ρ, U)

δU(x)δρ(x)
= −β (2.177)

δ2F(ρ, U)

δρ(x)δU(x)
= −sp = −β (2.178)

By radial integration we arrive at the functional

F(ρ, U) =

∫
Ω

(
β

s

(γ
2
U2 +D‖∇U‖2

)
+ σρ log ρ− βρU

)
dx (2.179)

Delightfully, this is a complete success. It has the desired functional derivatives (2.177) and
(2.178). In fact, (2.179) is identical to the free energy functional (1.16) for the minimal system
shown in chapter 1, where I also showed that its time derivative is negative semidefinite.
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2.4.5 Construction of an approximate free energy functional for the worm
system

Next I will attempt the same program for the worm system (2.1) and (2.3). We seek a func-
tional with the following functional derivatives

δF(ρ, U)

δρ(x)
= VU(U) + Vρ(ρ) + σ log ρ (2.180)

δF(ρ, U)

δU(x)
= p(U)(γU −D∇2U − sρ) (2.181)

The mixed partial derivatives implied by (2.180) and (2.180) are

δ2F(ρ, U)

δU(x)δρ(x)
= V ′U(U) (2.182)

δ2F(ρ, U)

δρ(x)δU(x)
= −sp(U) (2.183)

We must choose p(U) so that these are equal: p(U) = −V ′U(U)/s. For an attractant VU is a
decreasing function of U , V ′U(U) < 0, so p(U) is indeed positive. We are thus left with the
following functional antidifferentiation problem

δF(ρ, U)

δρ(x)
= VU(U) + Vρ(ρ) + σ log ρ (2.184)

δF(ρ, U)

δU(x)
= −1

s
V ′U(U)(γU −D∇2U − sρ) (2.185)

Radial integration yields the candidate free energy function

F(ρ, U) =

∫
Ω

− γ

s
(UVU(U)−WU(U)) +

D

s

(
VU(U)− WU(U)

U

)
∇2U

+ ρVU(U) +Wρ(ρ) + σρ log ρ

 dx (2.186)
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This candidate loses, alas. Its functional derivative with respect to U(x) is not (2.185). There
is one problematic term, the diffusion term (D/s)V ′U(U)∇2U . As shown in Theorem 2.14, this
expression does not have a functional antiderivative if V ′U is not constant. Denote the error in
the functional derivative δF(ρ, U)/δU(x) by eF,

eF :=
δF(ρ, U)

δU(x)
+

1

s
V ′U(U)(γU −D∇2U − sρ) (2.187)

Error function eF can be written in terms of the previously defined error eD (2.129).

eF(x) =
D

s
eD (2.188)

The following bounds follow from Theorem 2.15.

∫
Ω

UeFdx = 0 (2.189)

‖UeF‖1 ≤ 2
D

s

∥∥Uf ′(U)∇2U
∥∥

1
+ 2

D

s

∥∥f(U)∇2U
∥∥

1
, (2.190)

with f(U) as in (2.128).

2.4.6 The nature of the problem, and the radial integration functional as
an approximation

Of the six terms in the ρ and U PDEs, only one is a problem for functional integration: the
diffusion term D∇2U in the U PDE. Why is this term uniquely problematic? All the other
terms to be integrated are local pointwise functions of x, either via U(x) or ρ(x). These terms
create no opportunity for unequal mixed partial derivatives: if x 6= y, δ2F(f)(δf(x)δf(y)) = 0
for any such term, and it is easy to show that a functional antiderivative exists for any such
pointwise function.

The chemical diffusion term, in contrast, represents action at a distance. Action at a distance
is the first element needed to make the construction of a functional antiderivative impossible.
It is not sufficient, since∇2U by itself has a functional antiderivative, as seen, for instance, in
the case of the free energy functional for the minimal model. What is needed in addition is a
complication that introduces an asymmetry that makes mixed partial derivatives unequal, as
seen in the Fourier coefficient proof of Theorem 2.14.
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2.4.7 Repellents and multiple chemical signals

The model I will eventually develop has two chemical signals, a short-range attractant and a
long-range repellent. Individually, each signal is governed by PDE (2.1), albeit with different
parameters D, γ, s. The ρ PDE is almost the same as (2.3), but there is now a VU term for each
signal

ρ̇ = ∇ · (ρ∇ (VUa(Ua) + VUr(Ur) + Vρ(ρ) + σ log ρ)) (2.191)

The signal concentrations are Ua(x) for attractant and Ur(x) for repellent. VUa and VUr have
the same form but different parameters

VUa := −βa log(αa + Ua)

VUr := −βr log(αr + Ur)
(2.192)

The most important difference is that βa > 0, βr < 0, so that VUa (and therefore V = VUa +
VUr + Vρ is a decreasing function of Ua while VUr (and V ) is an increasing function of Ur.

A free energy functional is constructed by a straightforward generalization of the procedure
described above, but there are two problems. The desired functional derivatives are

δF(ρ, Ua, Ur)

δρ(x)
= VUa(Ua) + VUr(Ur) + Vρ(ρ) + σ log ρ

δF(ρ, Ua, Ur)

δUa(x)
= − 1

sa
V ′Ua(Ua)

(
γaUa −Da∇2Ua − saρ

)
δF(ρ, Ua, Ur)

δUr(x)
= − 1

sr
V ′Ur(Ur)

(
γrUr −Dr∇2Ur − srρ

)
(2.193)

The first problem is the factor p(Ur) = −V ′Ur(Ur)/sr in front of the derivative δF/δUr. This
factor is needed so that the mixed partial derivatives δ2F/(δUr(x)δρ(x)) and δ2F/(δρ(x)δUr(x))
are equal. But Corollary 2.11 also placed a requirement on the scale function p: that p(Ur) > 0.
For a repellent VUr is an increasing function of Ur–—that’s what makes it a repellent. Thus
p(Ur) < 0. As a consequence, the time derivative of a free energy functional that had the
functional derivatives (2.193) would not be negative semidefinite. It may increase as a result
of changes in the repellent distribution.

This is not merely a mathematical inconvenience—it is a reflection of biology. Free energy
is meant to measure how unhappy the worm population is to be where it is. The worms move
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in such a way as to make themselves less unhappy, and this is why we design differential equa-
tions that cause the free energy to decrease with time. But the distribution of worms is not the
only thing that changes. As the worms move, the distributions of chemical signals also move.
They are made by the worms and degrade as they diffuse away, so the location of the chemicals
is correlated with the location of the worms. For an attractant, this causes no difficulty, because
the attractant lowers the free energy of the worms in its vicinity (via the decreasing function
VUa), and the movement of attractant consequent to the movement of worms thus tends to de-
crease free energy. For repellent, however, free energy increases as signal distribution becomes
better correlated with that of the worms.

A functional with derivatives (2.193) is still a useful object. Although it would not necessar-
ily be minimized at equilibrium, the functional would be stationary if and only if the system
were at equilibrium.

This is the first problem. The second problem has already been explored: except for affine
VU , no functional can be constructed whose derivative properly reconstructs the diffusion term
in the Ua and Ur PDEs. The free energy functional constructed by radial integration of (2.193),
which I propose as a useful albeit approximate tool, is

F(ρ, Ua, Ur) =

∫
Ω


−γa
sa

(UaVUa(Ua)−WUa(Ua)) + Da
sa

(
VUa −

WUa

Ua

)
∇2Ua

−γr
sr

(UrVUr(Ur)−WUr(Ur)) + Dr
sr

(
VUr −

WUr

Ur

)
∇2Ur

+ρVUa(Ua) + ρVUr(Ur) +Wρ(ρ) + σρ log ρ

 dx (2.194)

2.4.8 Total energy functional of density

I will eventually search for equilibria by looking for stationary points (e.g., minima) of free
energy functionals. It is difficult to search a function space each of whose members is a vector
function with two or three (in the case of models with two chemical signals) components. But
there is an obvious shortcut: given ρ, it is straightforward computationally to find U that is in
equilibrium with it. For the periodic functions and rectangular domains Ω I am considering, this
U is the convolution g ∗ ρ, where g is the Green’s function (2.152). This idea works (chapter 5),
but some care is needed in the design of the functional whose stationary points are to be sought.
The obvious choice is (2.167), the free energy functional for density in the presence of a known
attractant distribution, but with U0 replaced by g ∗ ρ,

T(ρ) =

∫
Ω

(ρVU(g ∗ ρ) +Wρ(ρ) + σ log ρ) dx (2.195)
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This, however, is wrong. It has a new dependence on ρ via VU(g ∗ ρ), with the result that its
functional derivative is not the desired marginal free energy VU(g ∗ ρ) + Vρ(ρ) + σ log ρ. To see
this, we can use the chain rule, which for functional derivatives takes the form

δT(ρ, U(ρ))

δρ(x)
=
∂T(ρ, U(ρ))

∂ρ(x)
+

∫
Ω

(
δU(ρ)(y)

δρ(x)

)(
∂T(ρ, U(ρ))

∂U(ρ)(y)

)
dy (2.196)

Two notational clarifications: First, the derivatives ∂T(ρ, U(ρ))/∂ρ(x) and ∂T(ρ, U(ρ))/∂U(ρ)(y)
are functional derivatives, but I write them with ∂ to clarify that the derivative is being taken
with one argument of Tallowed to vary while the other is held constant. Second, in δU(ρ)(y)/δρ(x),
U(ρ)(y) is a functional of ρ that maps ρ to the number resulting from evaluation of the function
U(ρ) at point y. Specifically, we will need the following,

(g ∗ (ρ+ εφ))(y) =

∫
Ω

g(y − x)(ρ+ εφ)(x)dx

=

∫
Ω

g(y − x)ρ(x)dx + ε

∫
Ω

g(y − x)φ(x)dx

lim
ε→0

(g ∗ (ρ+ εφ)(y)− (g ∗ ρ)(y)

ε
=

∫
Ω

g(y − x)φ(x)dx

δ(g ∗ ρ)(y)

δρ(x)
= g(y − x) = g(x− y), (2.197)

where I used the evenness of g in the last step. Combining (2.195), (2.196), and (2.197)

δT(ρ, g ∗ ρ)

δρ(x)
=
∂T(ρ, g ∗ ρ)

∂ρ(x)
+

∫
Ω

ρ(x)V ′U((g ∗ ρ)(x))g(x− y)dy (2.198)

= VU((g ∗ ρ)(x)) + Vρ(ρ(x)) + σ(log ρ(x) + 1) (2.199)
+ (g ∗ ρV ′U)(x)

This, unfortunately, is not the desired result. A stationary point of (2.195) will not in general be
an equilibrium of the ρ PDE (2.3). The first three terms VU + Vρ + σ log ρ are what we want.
(The constant σ is of no consequence—it vanishes when the gradient of the functional deriva-
tive is taken.) The last term, however, g ∗ ρV ′U , is nothing but trouble.

Fortunately, at this point we know how to fix the problem. Since we know what we want the
functional derivative of T to be, try to find a functional antiderivative.
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δT(ρ)

δρ(x)
= VU(g ∗ ρ) + Vρ(ρ) + σ log ρ (2.200)

T(ρ) =

∫ 1

r=0

(∫
Ω

(VU(g ∗ rρ) + Vρ(rρ) + σ log(rρ)) ρdx

)
dr + C

=

∫
Ω

(
ρ
WU(g ∗ ρ)

g ∗ ρ
+Wρ(ρ) + σρ log ρ

)
dx + C (2.201)

For the minimal model, Vρ = Wρ = 0, VU = −βU , WU =
∫ U
u=0

VU(u)du = −βU2/2, and
(2.201) simplifies to

T(ρ) =

∫
Ω

(
−βρ(g ∗ ρ)

2
+ σρ log ρ

)
dx (2.202)

This result is exact, in the sense that the functional derivative of (2.202) is the desired −β(g ∗
ρ) + σ log ρ (plus a constant of no importance).

For the general worm model (2.3), however, a familiar problem arises. For non-affine VU ,
VU(g ∗ ρ) does not in general possess a functional antiderivative. (g ∗ ρ)n possesses a functional
antiderivative for n = 0, 1 but not for any n > 1. The problem is almost identical to that that
arose from trying to find a functional antiderivative of V ′U(U)∇2U previously. Like ∇2U , g ∗ ρ
describes an action at a distance. In fact, the Laplacian and convolution with g have similar
effects in the Fourier basis: each of these multiplies the Fourier coefficient �̃k by a function of
‖k‖2, and the argument for the existence of unequal mixed partial derivatives with respect to
Fourier series coefficients is mutatis mutandis virtually the same.

2.4.9 Relation of the total energy functional to the free energy functional

Total energy functional (2.201) is closely related to the free energy functional (2.186).

Theorem 2.16. Let

• Free energy functional F(ρ, U) be as defined by (2.186)

• Total energy functional T(ρ) be as defined by (2.201)

• Green’s function g(x) be as defined by (2.152)
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Then

T(ρ) = F(ρ, g ∗ ρ) (2.203)

Proof. Let F, T, and g be defined above. Then,as argued above (Section 2.4.1), U = g ∗ ρ is an
equilibrium of the U PDE

0 = −γ(g ∗ ρ) +D∇2(g ∗ ρ) + sρ (2.204)
D∇2(g ∗ ρ) = γ(g ∗ ρ)− sρ (2.205)

Thus,

F(ρ, g ∗ ρ) =

∫
Ω

(
− γ

s
((g ∗ ρ)VU(g ∗ ρ)−WU(g ∗ ρ))

+
D

s

(
VU(g ∗ ρ)− WU(g ∗ ρ)

g ∗ ρ

)
∇2(g ∗ ρ)

+ ρVU(g ∗ ρ) +Wρ(ρ) + σ(g ∗ ρ) log(g ∗ ρ)

)
dx (2.206)

=

∫
Ω

(
− γ

s
((g ∗ ρ)VU(g ∗ ρ)−WU(g ∗ ρ))

+
1

s

(
VU(g ∗ ρ)− WU(g ∗ ρ)

g ∗ ρ

)
(γ(g ∗ ρ)− sρ) (2.205)

+ ρVU(g ∗ ρ) +Wρ(ρ) + σ(g ∗ ρ) log(g ∗ ρ)

)
dx (2.207)

=

∫
Ω

(
ρ
WU(g ∗ ρ)

g ∗ ρ
+Wρ(ρ) + σρ log ρ

)
dx (2.208)

= T(ρ) (2.209)

2.4.10 Error of the approximate total energy functional

Define the total energy error function eT(ρ)
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eT(ρ)(x) :=
δT(ρ)

δρ(x)
− (VU((g ∗ ρ)(x)) + Vρ(ρ(x)) + σ log ρ(x) + σ) (2.210)

=
δ
(
ρWU (g∗ρ)

g∗ρ

)
δρ(x)

− VU((g ∗ ρ)(x)) (2.211)

The final simplification follows from the fact that δWρ(ρ)/δρ(x) = Vρ(ρ) and δ(σρ log ρ)/δρ(x) =
σ log ρ+ σ.

Using Theorem 2.16, the error function eT can be expressed in terms of the free energy error
function eF (2.187).

Theorem 2.17. Let eT and eF be as defined in (2.187) and (2.210).

Then

eT(x) =

(
g ∗ eF

∣∣∣∣
U=g∗ρ

)
(x) (2.212)

Proof. If eT and eF as as above, Then

δT(ρ)

δρ(x)
=
δF(ρ, g ∗ ρ)

δρ(x)
(Theorem 2.16)

=
∂F(ρ, g ∗ ρ)

∂ρ(x)
+

∫
Ω

(
δ(g ∗ ρ)(y)

δρ(x)

∂F(ρ, g ∗ ρ)

∂(g ∗ ρ)(y)

)
dy (2.213)

= VU(g ∗ ρ) + Vρ(ρ) + σ log ρ+

∫
Ω

(
g(x− y)

∂F(ρ, g ∗ ρ)

∂(g ∗ ρ)(y)

)
dy

= VU(g ∗ ρ) + Vρ(ρ) + σ log ρ+ g ∗

(
δF(ρ, U)

δU

∣∣∣∣
U=g∗ρ

)

eT = g ∗

(
δF(ρ, U)

δU

∣∣∣∣
U=g∗ρ

)
(2.210)

(2.214)

As before, in (2.213) ∂ is used to indicate a functional derivative taken with respect to one argu-
ment of Fwhile the other argument is held constant. Now we need only evaluate δF(ρ, U)/δU
for U = g ∗ ρ. Using the definition of eF (2.187),
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δF(ρ, U)

δU
= eF−

1

s
V ′U(U)(γU −D∇2U − sρ)

δF(ρ, U)

δU

∣∣∣∣
U=g∗ρ

=

(
eF−

1

s
V ′U(U)(γU −D∇2U − sρ)

)∣∣∣∣
U=g∗ρ

= eF

∣∣∣∣
U=g∗ρ

The final simplification follows from the fact that g ∗ ρ is an equilibrium of the U PDE, i.e.
(−γU +D∇2U + sρ)

∣∣
U=g∗ρ = 0. Substituting this result into (2.214) gives (2.212).

2.4.11 Total energy functional with repellent

Total energy functional (2.201) can be modified in an obvious way to accommodate a repel-
lent,

T(ρ) =

∫
Ω

(
ρ
WUa(ga ∗ ρ)

ga ∗ ρ
+ ρ

WUr(gr ∗ ρ)

gr ∗ ρ
+Wρ(ρ) + σ log ρ

)
dx (2.215)

Then, of course, a second familiar problem arises: it may not be a strictly decreasing func-
tion of time, and, in principle, may not be minimized at equilibrium. As the worms move, the
distributions of chemical signals also move. Total energy (2.215) decreases as attractant be-
comes better correlated with worms, but increases as repellent becomes better correlated with
worms. However, if attractant is stronger in its influence on T than repellent, Tmay never-
theless be minimized at equilibrium. In practice, this appears to be the case with the numerical
models I will consider, which feature a short-range attractant (small Da, large γa) and a long-
range repellent (large Dr, small γr). This has the effect that repellent is poorly correlated with
worms while attractant is tightly correlated, so that free energy changes caused by movement of
repellent are relatively muted.

2.5 Summary of free energy functionals

For convenience, I collect here all the free energy functionals developed in this chapter.
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2.5.1 Minimal model

These functionals are exact, in the sense that their time derivatives are negative semidefinite,
and their functional derivatives are exactly those they aim to produce (except in some cases for
a constant of no consequence).

Model Ref

Chemical signal equilibrium for fixed worm density

F(U) =

∫
Ω

(
γ

2
U2 +

D

2
‖∇U‖2 − sρ0U

)
dx (2.155)

derivative

δF(U)

δU(x)
= γU(x)−D∇2U(x)− sρ0(x) (2.154)

Worm density equilibrium for fixed signal

F(ρ) =

∫
Ω

(−βρU + σρ log ρ) dx (2.168)

derivative

δF(ρ)

δρ(x)
= −βU + σ log ρ

Coupled system

F(ρ, U) =

∫
Ω

(
β

s

(γ
2
U2 +D‖∇U‖2

)
+ σρ log ρ− βρU

)
dx (2.179)

derivatives
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δF(ρ, U)

δρ(x)
= −βU + σ log ρ

δF(ρ, U)

δU(x)
=
βγ

s
U − βD

s
∇2U − βρ

Total energy functional of worm density

T(ρ) =

∫
Ω

(
−βρ(g ∗ ρ)

2
+ σρ log ρ

)
dx (2.202)

derivative

δT(ρ)

δρ(x)
= −β(g ∗ ρ) + σ log ρ

2.5.2 Worm model

These are the functionals for the worm system (2.1), (2.3) (and, in two cases, an extended
version that models an attractant and a repellent signal). Notes indicate various imperfections.

Notes Model Ref

Chemical signal equilibrium for fixed worm density

1 F(U) =

∫
Ω

(
γ

2
U2 +

D

2
‖∇U‖2 − sρ0U

)
dx (2.155)

derivative

δF(U)

δU(x)
= γU(x)−D∇2U(x)− sρ0(x) (2.154)

Worm density equilibrium for fixed signal
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F(ρ) =

∫
Ω

(ρVU(U0) +Wρ(ρ) + σρ log ρ) dx (2.167)

derivative

δF(ρ)

δρ
= VU(U0) + Vρ(ρ) + σ log ρ (2.163)

Coupled system

F(ρ, U) =

∫
Ω


− γ

s
(UVU(U)−WU(U))

+
D

s

(
VU(U)− WU(U)

U

)
∇2U

+ ρVU(U) +Wρ(ρ) + σρ log ρ

 dx (2.186)

derivatives

δF(ρ, U)

δρ(x)
= VU(U) + Vρ(ρ) + σ log ρ (2.184)

2
δF(ρ, U)

δU(x)
≈ −1

s
V ′U(U)(γU −D∇2U − sρ) (2.185)

Coupled system with repellent
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3 F(ρ, Ua, Ur) =

∫
Ω



− γa
sa

(UaVUa(Ua)−WUa(Ua))

+
Da

sa

(
VUa(Ua)−

WUa(Ua)

Ua

)
∇2Ua

− γr
sr

(UrVUr(Ur)−WUr(Ur))

+
Dr

sr

(
VUr(Ur)−

WUr(Ur)

Ur

)
∇2Ur

+ ρVUa(Ua) + ρVUr(Ur) +Wρ(ρ) + σρ log ρ


dx

derivatives

δF(ρ, Ua, Ur)

δρ(x)
= VUa(Ua) + VUr(Ur) + Vρ(ρ) + σ log ρ

2
δF(ρ, Ua, Ur)

δUa(x)
≈ − 1

sa
V ′Ua(Ua)(γUa −Da∇2Ua − saρ)

2,3
δF(ρ, Ua, Ur)

δUr(x)
≈ − 1

sr
V ′Ur(Ur)(γUr −Dr∇2Ur − srρ)

Total energy functional of worm density

T(ρ) =

∫
Ω

(
ρ
WU(g ∗ ρ)

g ∗ ρ
+Wρ(ρ) + σ log ρ

)
dx (2.195)

derivative

2
δT(ρ)

δρ(x)
≈ VU(g ∗ ρ) + Vρ(ρ) + σ log ρ (2.200)

Total energy functional of worm density with repellent
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T(ρ) =

∫
Ω

(
ρ
WUa(ga ∗ ρ)

ga ∗ ρ
+ ρ

WUr(gr ∗ ρ)

gr ∗ ρ
+Wρ(ρ) + σ log ρ

)
dx (2.215)

derivative

2,3
δT(ρ)

δρ(x)
≈ VUa(ga ∗ ρ) + VUr(gr ∗ ρ) + Vρ(ρ) + σ log ρ

Notes: 1. Same as minimal model
2. This functional is approximate. It becomes exact in the limit in which
VU is affine, or D = 0.

3. Because it models a repellent, the time derivative of this functional is
not necessarily negative semidefinite.
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Chapter 3

Numerical solutions and numerical
analysis

Parts of this chapter were published in Avery et al (2018).

3.1 Development of the worm model

In designing a model for L1 aggregation, I sought to reproduce certain general characteristics
that were obvious in recordings of worm aggregation. First, the worms aggregate. This suggests
that they are somehow attracted to each other. Given what we know about C elegans biology,
it is an obvious guess that this attraction is mediated by a diffusible chemical signal with lim-
ited range. PDE (2.1) is essentially the simplest physically plausible that meets these criteria.
Keller and Segel (1970), after designing more complicated signal models, arrived at the identi-
cal reaction-diffusion equation for the same reasons.

The design of the PDE describing the movement of the worms was more complicated. On
the time scale of the experiments, there is neither birth nor death of new worms. This suggested
that it should be possible to express the rate of change of worm density as a pure divergence
of some flow field. Since flux occurs by movement of worms, the net flux vector at any point
is the density times the mean velocity of worms at that point. These considerations lead to a
general equation of the form (1.11), in which velocity is a vector field depending on density,
signal concentration, and their gradients. I decided to assume that the velocity field is conser-
vative, i.e. that it can be represented as the gradient of some scalar potential field. There is no
compelling biological necessity for this assumption. I made it for two reasons: First it makes
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the PDE system more tractable analytically. For instance, it enables the simple description of
the equilibrium as a Boltzmann distribution (2.160). Second, in recordings of worm behavior,
we see that the worms eventually approach an equilibrium in which there is little net flow of
animals, and certainly no cyclic flows are obvious.

If the velocity field is conservative, then the ρ PDE can be expressed in terms of the gradi-
ent of some potential field V . I chose a potential function that is a sum of a signal-dependent
potential VU and a density-dependent potential Vρ, for convenience in separately engineering
signal and density dependence. This led to the final form (2.3).

For an attractant, VU must be a decreasing function of signal. In early simulations with a
linear VU numerical instability was a problem. Steep signal gradients frequently occur in the
course of simulation. With a linear VU , these led to large velocities, which meant that worm
density at one location was affected by density at distant locations. As a result it was imprac-
tical to satisfy the Courant–Friedrichs–Lewy (CFL) stability condition. I therefore sought a
potential function whose dependence on U was convex. The Weber-Fechner Law, which is
approximately true for many sensory responses (Fechner 1860), holds that response depends
linearly on the logarithm of the stimulus intensity. (Keller and Segel (1970) used a Weber-
Fechner Law chemotactic response function.) The Weber-Fechner Law has a serious defect:
it implies that response sensitivity becomes infinite as concentration approaches zero. (I.e.,
limU→0+ d(logU)/dU = ∞.) For this reason I chose the function VU(U) = −β log(α + U),
(2.10). At high signal concentrations this approximates a Weber-Fechner Law response. But at
low signal concentrations, the response is linear. Parameter α determines where the transition
from linear to logarithmic dependence takes place.

I speculated that the circular shape of the aggregates (figure 1.1) results from the worms
packing together as tightly as possible. To reproduce this effect in simulations, I designed a
potential that would reflect worms taking up space. The ideal would have been a hard sphere
potential

Vρ(ρ) =

{
ρ < ρmax 0
ρ ≥ ρmax ∞

(3.1)

This potential function implies discontinuous time or spatial derivatives of density, and there-
fore functions poorly with numerical methods for solving the PDE system. I therefore approxi-
mated the discontinuity with a tanh function, as described above (2.11).

Vρ(ρ) = σ
scale

2

(
1 + tanh

(
ρ− rhomax

cushion

))
(3.2)
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Four parameters determine the exact shape of Vρ: σ, rhomax, scale, and cushion. (I
refer to the latter three by the symbols I use to represent them in software code, since they will
play little role in the mathematics. Also, I wish to distinguish between the parameter rhomax
and the variable ρmax.) Two parameters, σ and scale, determine the vertical scale. σ is the
parameter that appears in the ρ PDE (2.3), and in the Boltzmann distribution (2.160). Vρ rises
from near 0 for small values of ρ to σ × scale for large ρ. rhomax is the density at which Vρ
reaches half its maximum possible value. It is the point at which the Vρ curve is steepest, and
therefore the closest approximation to ρmax of (3.1).

3.2 Weak forms of the PDEs

Epshteyn and Kurganov (2009) described an interior penalty Discontinuous Galerkin (DG)
numerical solution of the Keller-Segel system. Our numerical scheme resembles theirs in gen-
eral outline, but differs in many details. One of these details (the definition of flow velocity,
(3.6) below) is numerically significant.

The domain Ω is tiled with a set of elements E. (An element E ∈ E is a triangle in two
dimensions or a line segment in one.) Let Γ be the set of all interior facets, i.e. a facet e ∈ Γ
is a side of a triangle in two dimensions or a point in one dimension. Then the U PDE (2.1) is
represented by the following weak formulation

∫
Ω

U̇wUdx = −γ
∑
E∈E

∫
E

UwUdx + s
∑
E∈E

∫
E

ρwUdx (3.3)

+D
∑
e∈Γ

∫
e

[wU∇U · ne]dx−D
∑
E∈E

∫
E

∇U · ∇wUdx

− pUr
2

h

∑
e∈Γ

∫
e

[U ][wu]dx− p∇Ur2
∑
e∈Γ

∫
e

[∇U · ne][∇wU · ne]dx

The left-hand-side and the first four terms on the right (those containing parameters γ, s, and
D) are arrived at by multiplying the PDE (2.1) by an arbitrary test function wU and integrating
over Ω. The integral over Ω is broken into a sum of integrals over E ∈ E. The diffusion term
D
∫
E
wU∇2Udx is integrated by parts to produce D

∫
e
wU∇U · nedx−D

∫
E
∇U · ∇wUdx.

For numerical solution, U and wU are chosen from a finite-dimensional function space (a
”broken Sobolev” space) in which each function is approximated by a polynomial within each
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Figure 3.1: Potential function plots
Potential functions that appear in the ρ PDE (2.3), and integrals that appear in the free energy
function (2.186). All functions are scaled by σ, since e−V/σ is the probability that appears in
the Boltzmann equilibrium (2.160). The density free energy integral Wρ is plotted as a per
worm value. Parameter values are σ = 2.7848 × 10−4, α = 1500, beta = 5.56 × 10−4,
rhomax = 28000, cushion = 2000, scale = 2. These values are used in simulations later in
this chapter.
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element E ∈ E. These functions and their derivatives need not be continuous from one ele-
ment to the next (this is why the numerical scheme is called ”discontinuous” Galerkin). In a
DG solution, U can in principle become discontinuous, an undesirable result. In the last two
terms (those containing parameters pU and p∇U—the ”interior penalty” terms), r is the degree
of the polynomial approximation, h is a measure of the average element size, and pU and p∇U
are parameters controlling the strength of the penalty terms. Each edge e ∈ Γ has an arbitrarily
designated ’+’ and ’–’ side. ne is a unit vector normal to the edge pointing from the ’+’ side to
the ’–’ side. For a function f having values f(+) on the ’+’ side and f(−) on the ’–’ side, the
jump of f is [f ] := f(+) − f(−) (0 if f is continuous). The penalty terms depend on the jump
in U or∇U across the edges e ∈ Γ. These terms are zero if U and ∇U are continuous. Further-
more, their signs are such as to coerce any discontinuities that arise in the course of solution to
vanish.

Although (3.3) is different in detail from the weak formulation used by Epshteyn and Kurganov
(2009) it is substantially similar. The weak formulation of the ρ PDE (2.3), however, is substan-
tially different from that of Epshteyn and Kurganov (2009).

∫
Ω

ρ̇wρdx =
∑
E∈E

∫
E

φ · ∇wρdx−
∑
e∈Γ

∫
e

φUW(e)[wρ]dx (3.4)

− pρr
2

h

∑
e∈Γ

∫
e

[ρ][wρ]dx− p∇ρr2
∑
e∈Γ

∫
e

[∇ρ · ne][∇wρ · ne]dx

Here wρ, pρ, and p∇ρ are a test function and penalty parameters distinct from but analogous
to the similarly named wU , pU , and p∇U . Velocity vector v, flux vector φ and upwind flux φUW
are as follows.

V (x) := VU(U(x)) + Vρ(ρ(x)) (3.5)

v := −∇V − σ

ρ
∇ρ = −∇(V + σ log ρ) (3.6)

φ := vρ (3.7)
ve := max(v · ne, 0) (3.8)

φUW := ve(+)ρ(+)− ve(−)ρ(−) (3.9)

Velocity v is the sum of the advective velocity∇V and an imputed diffusive velocity −σ∇ρ/ρ,
designed to reconstruct the Fick’s Law diffusive flux φ = −σ∇ρ. At equilibrium v = 0 every-
where. Epshteyn and Kurganov (2009) instead use a upwind flux based on advective velocity
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−∇V , and handle the diffusive term σ∇2ρ separately, in the same way as D∇2U is handled in
(3.3).

The two schemes are mathematically equivalent, but quite different numerically, particularly
near equilibrium. At equilibrium, every term of each sum in (3.4) is individually 0, because v
and φ are identically 0. In the Epshteyn and Kurganov (2009) formulation, the 0 on the right-
hand-side at equilibrium is computed as the difference between sums of large absolute value,
and round-off error can be substantial. In fact, I coded both schemes, and I found that with the
Epshteyn and Kurganov formulation worms would appear from nowhere, at the expense of neg-
ative worms appearing nearby. (Epshteyn and Kurganov were not concerned with performance
near equilibrium, because their solutions were all carried out under conditions where, because
of blow-up, there is no equilibrium.)

3.3 Parameter estimates

I don’t have a precise estimate of any of the model parameters. Parameters for initial explo-
ration were chosen as follows. First, I estimated that freely moving L1s spread about 1 cm in an
hour. Thus I estimate σ = 1 cm2h−1 = 2.7778× 10−4 cm2s−1.

An L1 is approximately a cylinder of diameter 15 µm and length 242 µm (Avery and Shtonda
2003). Since worms lie on their sides, a worm occupies approximate area 15×242 = 3600 µm2.
I chose the inverse of this area, 28 000 cm−2 as the parameter rhomax. (This is undoubtedly an
underestimate of the true maximum density. When looked at from the side, one can see that
L1 aggregates have slightly mounded shape. Thus worms must be heaped up on each other in
the center. Parameters cushion and scale have no real biological significance. Parameter
cushion makes the ideal hard-sphere potential (3.1) continuous and differentiable, so that the
PDEs can be solved numerically with differentiable functions. The value 2000 cm−2 worked.
The scale parameter need only be chosen large enough to constrain the maximum density—I
chose 2.

I chose a mean density of 9000 cm−2 so that aggregates would occupy about 1/3 (i.e. 9000/28000)
of the area.

Small molecules in water typically have diffusion constants in the range 1× 10−6 cm2s−1 to
1× 10−5 cm2s−1. I chose D, the diffusion constant of attractant, at the lower end of this range.
The aggregates that form have diameters of hundreds of micrometers. I therefore chose the de-
cay rate of attractant to give it a range

√
D/γ of 100 µm.

I will always choose units of concentration such that s and γ are numerically equal. This
ensures that concentration U and worm density ρ are in the same range numerically.
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ρ̄ mean density 9000 cm−d

σ random worm movement 2.7778× 10−4 cm2s−1

rhomax midpoint of Vρ potential rise 28 000 cm−d

cushion breadth of Vρ rise 2000 cm−d

scale height of Vρ rise 2
β strength of attraction 5.56× 10−4 cm2s−1

α concentration scale 1500 cm−d

γ attractant decay rate 0.01 s−1

D attractant diffusion constant 1× 10−6 cm2s−1

s secretion rate 0.01 cm−ds−1

Table 3.1: Chapter 3 parameter values

Alex Artyukhin found that the minimum worm density for aggregation is 1500 cm−2 (Alexan-
der B Artyukhin et al. 2015). I identified this with the density threshold for instability. I chose
α = 1500 cm−2, to make VU linear near the threshold, and to be obviously convex near rhomax.
I then chose β = 5.56× 10−4 cm2s−1 to reproduce the 1500 cm−2 density threshold for instabil-
ity.

These numbers are summarized in Table 3.1.

3.4 Numerical methods and software

3.4.1 Software

I implemented the solution of (3.3, 3.4) in the finite-element package FEniCS (Logg et al.
2010) with backend PETSc (Balay, Abhyankar, et al. 2019a; Balay, Abhyankar, et al. 2019b;
Balay, Gropp, et al. 1997). FEniCS is a specialized Computer Algebra System (CAS), in which
the integrals that arise in finite element formulations of PDEs can be written in a form closely
related to their mathematical representation. FEniCS is written mostly in C++, but has python
language bindings. For instance, the following term in the U weak form (3.3)

− γ
∑
E∈E

∫
E

UwUdx (3.10)

was implemented by the following python code
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self.U decay = −self.gamma ∗ self.iU ∗ self.wU ∗ self.dx

In this expression, self.gamma was previously defined as a FEniCS Constant, self.iU
as a Function, self.wU as a TestFunction, and self.dx as a Measure. Multiplica-
tion of a Function by a Measure implies integration. The Functions were defined on a
Mesh that defines a tiling of the domain with elements (intervals or triangles). The FEniCS ex-
pression (3.10) is represented by a Form. FEniCS constructs the sum over elements in (3.10),
and writes and compiles C++ code to “assemble”, i.e. evaluate, it. The Form is a linear
function of the test function self.wU, and when assembled produces a vector of floating
point numbers that approximate the coefficients of this function.

PETSc is the “Portable Extensible Toolkit for Scientific computation”. (As for why “com-
putation” is not capitalized, your guess is as good as mine.) It “is a suite of data structures and
routines for the scalable (parallel) solution of scientific applications modeled by partial differ-
ential equations” (Balay, Abhyankar, et al. 2019a). Among the tools included is the TS (time-
stepper) package, a library of Ordinary Differential Equation (ODE)/Differential Algebraic
Equation (DAE) solvers (Abhyankar et al. 2018).

FEniCS allows the mathematical formulation of the problem to be changed with little coding
effort. PETSc provides similar flexibility in numerical methods—for instance, one can select
different linear solvers and ODE solvers at run time with the use of command line options. This
makes it possible to quickly test dozens of different solvers and choose the one with the best
performance. Both FEniCS and PETSc are designed for parallel computation under the Mes-
sage Passing Interface (MPI) standard.

3.4.2 Random initial conditions

To reveal Keller-Segel instability, I start each simulation with a uniform initial condition per-
turbed by a small random variation

ρ(0,x) =
N0

|Ω|
+ ε(x) (3.11)

U(0,x) =
s

γ
ρ(0,x) (3.12)
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This left me with the problem of constructing a random continuously differentiable function
ε(x). Begin by tiling the domain Ω = [0, 1]d with a grid of small intervals or squares of linear
dimension 1/n, with vertexes

V=
1

n
{1, . . . , n}d (3.13)

Define the kernel function

k(x) =

{
|x| < 1 2|x|3 − 3|x|2 + 1
|x| ≥ 1 0

(3.14)

k has a continuous first derivative, supp(k) = [−1, 1], and ∀i ∈ Z, k(i) = δi0. Now, select a
random number εv for each vertex v ∈ V, for instance by sampling from a normal distribution.
Finally, define the random function ε(x)

ε(x) =
∑
v∈V

εv

d∏
i=1

k(n× (xi − vi)) (3.15)

This function has a continuous derivative, since it is a sum of products of continuously dif-
ferentiable functions. At a vertex v ∈ V, the value of the function is ε(v) = εv. Because it
is a piecewise polynomial of degree 3d, it will not be possible to project this function exactly
onto the broken Sobolev space in which ρ and U are represented by by polynomials of degree
r < 3d. To alleviate the problem caused by this mismatch, I choose a grid V sparser than the
vertexes of the mesh on which ρ and U are defined.

3.4.3 Numerical details

The remainder of this chapter will present several simulations produced by numerical solu-
tion of the PDEs (2.3), (2.1). The following numerical details are common to all the following
simulations.

Unless otherwise noted, the parameter values in Table 3.1 are used.

The initial condition for each simulation was a uniform density of 9000 cm−d, with normally
distributed random noise of standard deviation 90 cm−d added. Simulations ran for 200 000 s
(2.3 d). All one-dimensional simulations in this chapter started from the same initial state (i.e.,
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the pseudorandom noise was identical among all runs), and all two-dimensional simulations
started from the same initial state. In this document I show plots of the final state, which is
close to equilibrium. A time point of a single simulation is represented by two plots, one for
ρ and one for U . (Later, when I introduce repellent, there will be plots for Ua and Ur.) I also
attach movie files showing how these plots change with time (Appendix 1).

One dimensional simulations take place on a mesh of 128 equal-width intervals. Functions
are approximated by polynomials of degree 3, so there are 4 degrees of freedom per interval
per function, for a total of 2 functions × 4 df/element/function × 128 elements = 1024 degrees
of freedom. Each degree of freedom is the value of the polynomial at some specific x. The de-
grees of freedom at the end of an interval have the same coordinate location as those at the ends
of the adjacent interval—in principle this allows functions to be discontinuous. In practice, the
penalty terms of the weak forms (3.3,3.4) coerce the functions to continuity. Spatial resolution
is therefore 1/(3× 128) = 1/384 cm.

Two dimensional simulations take place on a mesh of 2 × 128 × 128 triangles. To construct
this mesh, the 1× 1 cm square domain is divided into 128× 128 equal squares, and each square
is bisected into two isosceles right triangles. Functions are approximated by polynomials of
degree 3. There are 10 degrees of freedom per triangle per function. Nine of these are on the
boundary and share coordinate locations with degrees of freedom of adjacent elements. There
are thus 2× 10× 2× 128× 128 = 655360 degrees of freedom (983040 with repellent).

The left-hand-side of each of the weak forms (3.3,3.4), i.e.

∫
Ω

ρ̇wρdx (3.16)∫
Ω

U̇wUdx (3.17)

is a bilinear function of the trial function ρ̇, U̇ and the test function wρ, wU , respectively.
FEniCS assembles this Form to a matrix. The time derivative ρ̇ at any point is computed
by solving

Aρ̇ = b(ρ,U) (3.18)

where A is the matrix produced by assembleing (3.16) and b the vector produced by
assembleing the entire right-hand side of (3.4). In this equation ρ and U represent the vector
of degrees of freedom of the finite-dimensional approximations of the functions ρ(x) and U(x).
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(3.18) is thus a large system of ODEs. Numerical solution of the PDEs thus reduces to solution
of this ODE. Linear equations were solved with the MUMPS parallel direct solver (Amestoy,
Guermouche, et al. 2006; Amestoy, Duff, et al. 2001).

The following solutions were produced with the PETSc Rosenbrock-W solver ra34pw2
(Rang and Angermann 2005), an implicit third-order method. I used PETSc’s basic adaptive
step size mechanism. This method uses error estimates from the embedded stepper to adjust
step size so as to maintain error below predetermined absolute and relative tolerances. Step
sizes were small at early times, when ρ and U were changing rapidly. Towards the end step
sizes became large as the system approached equilibrium.

PETSc supplies a few dozen different ODE/DAE solvers (Abhyankar et al. 2018). I tried
all of them and the ROSW methods gave the best results. Implicit Runge-Kutta solvers also
worked well. The implicit Runge-Kutta steppers were more accurate, so that larger time steps
were feasible. However, each step took longer than for the ROSW methods. ROSW was quick-
est overall, while also providing better temporal resolution.

Implicit methods require the Jacobian of the nonlinear vector function b (3.18). This was
computed using the FEniCS function derivative, which can automatically differentiate a
Form.

3.4.4 Periodic boundary conditions from Dirichlet and Neumann bound-
ary conditions on odd and even components

When I began simulations of the worm system I used Neumann boundary conditions (1.2).
This is equivalent to assuming the domain is surrounded by an impermeable wall through which
neither worms nor attractant can pass. A problem quickly became evident. With Neumann
boundary conditions, a worm on the boundary is twice as attractive to others as a worm in the
interior (assuming the range of the attractant is much less than the dimension of the domain).
The attractant released by a worm on the border diffuses into a hemiball of half the volume of
the ball into which the attractant released by a worm in the interior diffuses. A worm in the cor-
ner of a two-dimensional square domain is likewise four times as attractive as a worm in the
interior. As a result, the formation of aggregates is biased towards the boundary, although they
do also form in the interior (Figure 3.2).

This problem has an obvious solution: periodic boundary conditions. Under periodic bound-
ary conditions there is perfect translational symmetry: each point in the domain is equivalent
to every other. In principle the implementation of periodic boundary conditions is straightfor-
ward. One merely identifies the left boundary with the right boundary and the bottom bound-
ary with the top, thus creating a logical space that has the topology of a torus. There is even a
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A. Neumann boundary conditions, d = 1

B. Neumann boundary conditions, d = 2

Figure 3.2: Simulation with Neumann boundary conditions
The left plot in each panel shows density ρ—the right plot shows attractant concentration U .
The two numbers below the plot are the minimum and maximum values of the plotted function
over the entire domain.
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mechanism in FEniCS to do exactly this. Unfortunately, there is also a bug in FEniCS: periodic
boundary conditions don’t work with discontinuous Galerkin methods, (FEniCS DG periodic
boundary conditions bug). This bug was first noted in 2016. As of August 2019, it has not been
fixed.

I developed a workaround that allows production of solutions that satisfy periodic boundary
conditions by solving a system satisfying Dirichlet and Neumann boundary conditions.

The key trick is to separate the even and odd components of the function. I will begin by
showing how this works in one dimension, then explain how to extend the trick to two or more
dimensions. In the following I use the assumption that ρ and U are periodic with period 1, i.e.
∀x ∈ R, n ∈ Z, ρ(x+ n) = ρ(x), U(x+ n) = U(x). Define

ρe(x) :=
ρ(x) + ρ(−x)

2
=
ρ(x) + ρ(1− x)

2
(3.19)

ρo(x) :=
ρ(x)− ρ(−x)

2
=
ρ(x)− ρ(1− x)

2
(3.20)

Ue(x) :=
U(x) + U(−x)

2
=
U(x) + U(1− x)

2
(3.21)

Uo(x) :=
U(x)− U(−x)

2
=
U(x)− U(1− x)

2
(3.22)

It is easy to verify that ρe and Ue are even and periodic, that ρo and Uo are odd and periodic, and
that

ρ(x) = ρe(x) + ρo(x) (3.23)
ρ(1− x) = ρe(1− x) + ρo(1− x) = ρe(x)− ρo(x) (3.24)

U(x) = Ue(x) + Uo(x) (3.25)
U(1− x) = Ue(1− x) + Uo(1− x) = Ue(x)− Uo(x) (3.26)

Now, every odd periodic function is odd about every half-integer multiple of its period. E.g.
ρo(1/2− x) = −ρo(1/2 + x)

ρo

(
1

2
− x
)

= −ρo
(
x− 1

2

)
ρo odd

= −ρo
(
x+

1

2

)
ρo periodic
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It follows that ρo(1/2) = 0. Of course, as for any odd function, ρo(0) = 0. Similarly an even
periodic function is even about every half-integer multiple of its period. Furthermore, if an even
function is differentiable, then its derivative is zero at every point of even symmetry. Thus, ρo,
ρe, Uo, and Ue satisfy the following Dirichlet and Neumann boundary conditions on [0, 1/2],

ρo(0) = ρo(1/2) = 0 (3.27)
Uo(0) = Uo(1/2) = 0 (3.28)
ρ′e(0) = ρ′(1/2) = 0 (3.29)
U ′e(0) = U ′e(1/2) = 0 (3.30)

This works in reverse, as well. If ρo and Uo are continuously differentiable functions on
[0, 1/2] satisfying Dirichlet boundary conditions (3.27, 3.28) and ρe and Ue continuously dif-
ferentiable functions on [0, 1/2] satisfying Neumann boundary conditions (3.29,3.30), then the
functions ρ and U defined on [0, 1] by (3.23 – 3.26) are continuous and differentiable and sat-
isfy periodic boundary conditions on [0, 1] for both function values and derivatives. The peri-
odic boundary condition problem can thus be solved by the following steps

1. From the ρ, U initial conditions, use (3.19 – 3.22) to compute ρo, ρe, Uo, Ue initial condi-
tions.

2. Solve the ρo, ρe, Uo, Ue time-dependent PDE system (3.31, 3.32, 3.33, 3.34 below) on
[0, 1/2] with boundary conditions (3.27 – 3.30).

3. Use (3.23 – 3.26) to compute ρ and U on [0, 1] from ρo, ρe, Uo, Ue. Since we only have
ρo, ρe, Uo, Ue on [0, 1/2], use (3.23) and (3.25) to find ρ and U on [0,1/2] and (3.24) and
(3.26) to find ρ and U on [1/2, 1].

Time-dependent PDEs for ρo, ρe, Uo, Ue can be derived from the ρ and U PDEs (2.1,2.3).
Because the U PDE is linear, the Uo and Ue PDEs have the same form as the U PDE
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U̇o(x) =
U̇(x)− U̇(−x)

2
(3.31)

=
1

2

(
−γU(x) +D∇2U(x) + sρ(x)

)
− 1

2

(
−γU(−x) +D∇2U(−x) + sρ(−x)

)
= −γU(x)− U(−x)

2
+D∇2U(x)− U(−x)

2
+ s

ρ(x)− ρ(−x)

2
= −γUo(x) +D∇2Uo(x) + sρo(x)

U̇e(x) = −γUe(x) +D∇2Ue(x) + sρe(x) (3.32)

The PDEs for ρo and ρe are more complicated. Using the shorthand V (x) := VU(U(x)) +
Vρ(ρ(x)),

ρ̇o =
ρ̇(x)− ρ̇(−x)

2
(3.33)

=
1

2
(∇ · (ρ∇(V (x) + σ log ρ(x))))

− 1

2
(∇ · (ρ∇(V (1− x) + σ log ρ(1− x))))

ρ̇e =
1

2
(∇ · (ρ∇(V (x) + σ log ρ(x))))

+
1

2
(∇ · (ρ∇(V (1− x) + σ log ρ(1− x)))) (3.34)

To evaluate the weak forms derived from these PDEs, it is necessary to find ρ(x), ρ(1 − x)
and V (x), V (1− x) for each x ∈ [0, 1/2] from ρo, ρe, Uo, Ue. ρ(x), ρ(1− x), U(x), U(1− x) are
computed from (3.23 – 3.26). Then

V (x) = VU(U(x)) + Vρ(ρ(x)) (3.35)
V (1− x) = VU(U(1− x)) + Vρ(ρ(1− x)) (3.36)

The trick works similarly in two or more dimensions. However, instead of two component
functions, there are 2d. In two dimensions each of ρ and U is the sum of four functions: one
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even in x1, x2, one even in x1 and odd in x2, one odd in x1 and even in x2, and one odd in both
x1 and x2. The original system of two PDEs becomes a system of 8 PDEs on [0, 1/2]2.

This workaround is less costly than one might at first imagine. Steps 1 and 3 are compu-
tationally trivial. As in the original version of the problem, numerical solution of the time-
dependent PDE system is the computationally intensive step. Because the odd/even system is
solved only on [0, 1/2]d, the number of degrees of freedom is the same as for the ρ, U system
on [0, 1]d. There is, however, a computational cost from the nonlinear ρ PDEs (3.33,3.34). Be-
cause of all the cross-talk among the component equations, the matrices that arise have more
non-zero elements and take longer to factor.

There is also a cost in code complexity. Coding steps 1 and 2 in a scalable (i.e., parallel-
executable) way took some effort. My code for step 3 runs only sequentially. This step is car-
ried out as post-processing on a solution stored in terms of odd/even component functions.

There are two conspicuous differences between the results with Neumann boundary condi-
tions (Figure 3.2) and periodic boundary conditions (Figure 3.3). First, as expected, the bias to-
wards edges and corners with Neumann boundary conditions vanishes with periodic boundary
conditions. Second, in two dimensions all the aggregates coalesced into a single large aggre-
gate.

All remaining simulations in this chapter employ periodic boundary conditions.

3.5 A repellent is necessary

The coalescence of the aggregates is a problem for this model. In movies of aggregating
worms one sees that, at densities between the threshold for aggregation and densities so high
that worms fill the entire area, the aggregates that form have a roughly constant size and spac-
ing (Figure 1.1). I could not reproduce this behavior in numerical experiments with attractant-
only models. There is also theoretical reason to believe it is unlikely. As pointed out in chapter
1, there is no natural maximum scale for instability in the minimal model (1.9). This is true for
any attractant-only model.

Brian Ingalls suggested, by analogy with activator-inhibitor models of biological pattern for-
mation, that the addition of a negative signal to oppose the attractant, a repellent, would solve
the scale problem. Linear stability analysis supports this intuition.
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A. Periodic boundary conditions, d = 1

B. Periodic boundary conditions, d = 2

Figure 3.3: Simulation with Periodic boundary conditions
The left plot in each panel shows density ρ—the right plot shows attractant concentration U .
The two numbers below the plot are the minimum and maximum values of the plotted function
over the entire domain.
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3.5.1 Linear stability analysis

Intuitively, and by analogy with activator-inhibitor models, what one requires is a short-range
attractant and a long-range repellent. I therefore added to the model a repellent with diffusion
constant Dr = 10Da = 1× 10−5 cm2s−1 and decay rate γr = 0.1γa = 0.001 s−1. The range of
this repellent κr =

√
Dr/γr = 1 mm is ten times that of attractant, and is approximately equal

to the observed spacing between aggregates. As explained above, I choose units of repellent
concentration such that sr and γr are numerically equal, i.e. sr = 0.001 cm−ds−1.

For simplicity, I will assume Vρ = 0 in the following. With the parameter values in Table 3.1,
this is very close to true in the vicinity of the instability threshold.

Linearization of the PDE system around a uniform equilibrium at ρ(x) = ρ̄, Ui(x) = Ūi =
siρ̄/γi produces the following linear PDE system

d

dt

 δρ
δUa
δUr

 =

σ∇2 ρ̄V ′Ua(Ūa)∇
2 ρ̄V ′Ur(Ūr)∇

2

sa −γa +Da∇2 0
sr 0 −γr +Dr∇2

 δρ
δUa
δUr

 (3.37)

The ansatz  δρ
δUa
δUr

 =

 ρk
Uak
Urk

 eλkteik·x (3.38)

yields the eigenvalue problem

λk

 ρk
Uak
Urk

 =

−σk2 −ρ̄V ′Ua(Ūa)k
2 −ρ̄V ′Ur(Ūr)k

2

sa −γa −Dak
2 0

sr 0 −γr −Drk
2

 ρk
Uak
Urk

 (3.39)

=

(
−σk2 −ρ̄k2(V′(Ū))ᵀ

ρ̄s −Γ−Dk2

)(
ρk
Uk

)
(3.40)

= −N(ρ̄, k2)

(
ρk
Uk

)
(3.41)

In (3.40), the matrix is in a block form that can be extended easily to any number of signals,
with
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s =

(
sa
sr

)
(3.42)

Uk =

(
Uak
Urk

)
(3.43)

V′(Ū) =

(
V ′Ua(Ūa)
V ′Ur(Ūr)

)
(3.44)

Γ =

(
γa 0
0 γr

)
(3.45)

D =

(
Da 0
0 Dr

)
(3.46)

In (3.41), N(ρ̄, k2) is defined as the negative of the matrix in (3.40). (I define N as the negative
to avoid an annoying factor of (−1)1+nsignals in the determinant I am about to calculate.) The
uniform equilibrium is unstable at mean density ρ̄ if for some k, N(ρ̄, k2) has an eigenvalue
with negative real part. If |N(ρ̄, k2)| < 0, the equilibrium is certainly unstable. After some
tedious spadework, this leads to the following criterion for instability

−σ > ρ̄(V′(Ū))ᵀ(Γ + Dk2)−1s (3.47)

= ρ̄
∑
i∈{a,r}

V′Ui(Ūi)si
γi +Dik2

(3.48)

= ρ̄

(
V′Ua(Ūa)sa
γa +Dak2

+
V′Ur(Ūr)sr
γr +Drk2

)
(3.49)

How does this work? Remember that V ′Ur > 0 because it is a repellent and V ′Ua < 0 be-
cause it is an attractant. Thus the two terms in (3.49) are opposite in sign. Also, γr < γa and
Dr > Da, because the repellent is a longer-range signal than the attractant. Thus, at low k,
if the relative magnitudes of V ′Ursr and V ′Uasa are appropriately adjusted (by evolution or the
modeler), the sum in (3.49) is positive and the uniform equilibrium is stable to perturbations of
small wavenumber = large scale. As k rises the Drk

2 factor in the denominator of the repellent
term makes the positive term small compared to the negative attractant term. The sum in paren-
theses can become negative, and if ρ̄ is large enough, the right-hand-side drops below −σ, and
instability to perturbations of intermediate wavenumber = medium scale results. For large k the
right-hand-side approaches zero because of the Dk2 factors in the denominators. The uniform
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A. Attractant+repellent model, d = 1

B. Attractant+repellent model, d = 2

Figure 3.4: Attractant+repellent simulation
The left plot in each panel shows density ρ—the right plot shows attractant concentration U .
The two numbers below the plot are the minimum and maximum values of the plotted function
over the entire domain. Note the different scale of the attractant and repellent plots. The means
are the same, but because repellent is a longer-range signal, it is smoothed much more by the
convolution with density and varies less than attractant.

equilibrium is thus stable to perturbations of large wavenumber = small scale. It is therefore
possible for an attractant-repellent Keller-Segel model to have a finite natural scale.

Based on calculations of this sort I chose βr = −βa = −5.56× 10−4 cm2s−1. Attractant
parameters remained as in Table 3.1. The addition of a repellent increases the threshold for in-
stability, but the uniform equilibrium is still predicted to be unstable at ρ̄ = 9000 cm−d.

As shown in Figure 3.4, addition of a repellent to the model produced the predicted effect.
Aggregates formed with characteristic size and spacing approximately matching those seen
in experiments on worms. There is even a hint of pattern formation, with the aggregates in an
approximate hexagonal array. If there is a problem with the result, it is that the array is too per-
fect. More irregularity is seen in experiments with real animals.
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3.6 Free and total energy

In order to evaluate the numerical solutions, I computed the free energy functional F(ρ(t), U(t))
(2.186), (2.194) and total energy functional T(ρ(t)) (2.201), (2.215) at each time point of each
numerical solution above. Figure 3.5 shows plots corresponding to the solutions shown in Fig-
ure 3.3 and Figure 3.4. Ideally these energy functions would be strictly decreasing functions
of time. This expectation might fail for three reasons. First, numerical solutions of the PDE
system calculated with finite time steps on a finite element spatial mesh only approximate the
true solutions of the PDEs. Second, as described in the previous chapter, free energy function-
als for systems that include repellents (Figure 3.5C and D) can have positive time derivatives.
Third, the diffusion term of the PDE is only approximated by the functional derivative of the
free energy functional, and similarly the convolution term of the total energy derivative is only
approximated by the the functional derivative of the total energy functional.

In fact, the energy functionals perform well. In the model without repellent (Figure 3.5A
and B) both energy functionals appear to be strictly decreasing. More careful analysis of the
numbers shows very small increases at some time steps. These increases can be ascribed to the
discretization error in the numerical PDE solutions. (For instance, the increases become smaller
when the time steps are reduced.)

There is no evidence that the approximation errors eF and eT detectably distort the perfor-
mance of either the free energy or the total energy functional as a Lyapunov functional. In fact,
the diffusion term of the free energy functional (the only term that does not have a functional
antiderivative) is rather small in magnitude compared to the other terms, so it is not surprising
that error in this term would fail to detectably distort the free energy.

The influence of the repellent, in contrast, is clear. At very early times (t < 10 s) free energy
rises (Figure 3.5C, D), and analysis of the individual components of the free energy functional
show that this is caused by the movement of repellent towards its equilibrium with the worms—
as repellent becomes better aligned with the worms, the energy rises. Total energy also rises
during these early times, but the rise is small, and is not visible in Figure 3.5C, D. However, in
other solutions based on models with stronger repulsion, I have seen quite large increases in
free energy and smaller but noticeable increases in total energy attributable to repellent at early
times. These effects vanish as equilibrium is approached.

Also, because the free energy functional becomes the total energy functional when chemi-
cal signals approach equilibrium with the worms (Theorem 2.16), we expect that at late times
the two functions should converge. This does indeed occur to the numerical precision of the
calculations—in each plot, the two curves superimpose at late times.
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A. Attractant only, d = 1 B. Attractant only, d = 2
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C. Attractant+repellent, d = 1 D. Attractant+repellent, d = 2
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Figure 3.5: Free and total energy functionals
These plots show the free energy and total energy functionals as a function of time for one and
two-dimensional attractant only and one- and two- dimensional attractant+ repellent models.
They correspond to the solutions of Figures 3.3 A and B and 3.4 A and B.

The upshot of these computations is that, except at very early times (t < 10 s), the total en-
ergy functional appears to function as a near-perfect numerical Lyapunov functional.

3.7 Time-dependent parameters

In the movies of the attractant+repellent simulation, one sees formation of irregularly shaped
aggregates at early times. These aggregates reminded me of an unpublished result of Alex
Artyukhin’s. Attempting to understand molecular mechanisms of L1 aggregation, Alex mea-
sured gene expression in starved L1s. He identified a gene, srh-2, whose activity increases at
the time that starved L1s become capable of aggregation. srh-2 is predicted to encode a sen-
sory receptor, i.e., a protein expressed on the surface of a sensory neuron, capable of detecting
chemicals in the environment. (Unfortunately, it is not possible from gene sequences alone to
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Figure 3.6: srh-2 mutants form irregular aggregates
Starved L1s of mutant worms lacking a functional srh-2 gene aggregate, but the aggregates they
form are irregularly shaped. Alex Artyukhin calls this the ”animal crackers” phenotype.

predict what chemicals it responds to.) To find out if srh-2 places a role in L1 aggregation, Alex
knocked the gene out. (That is, he genetically engineered a mutant strain that lacks a functional
srh-2 gene.) He then tested them for aggregation. As shown in Figure 3.6, these mutant worms
still aggregate, but the aggregates remain irregular in shape. (Alex calls this the ”animal crack-
ers” phenotype.)

Watching movies of aggregating L1s, I had noticed that there is a lot of rapid movement
at early times, but that as time goes on, fewer worms are seen moving. This suggested to me
that worm movement might cool down with time, perhaps because the worms run low on en-
ergy. (They are, after all, starving.) When I saw that irregular aggregates form at early times in
simulations, it suggested a hypothesis for the animal crackers srh-2 phenotype—perhaps the
movement of these mutant worms slows down faster. In the model, such a movement cooldown
would be reflected in the decrease of the parameters σ (representing random worm movement)
and βa, βr (representing signal- responsive movement) with time. I therefore added model pa-
rameters to the differential equation model as additional degrees of freedom.

When the attractant+repellent simulation is run with cooldown (i.e., with σ, βa, and βr de-
caying exponentially with time constant 1000 s), the result was indeed the formation of persis-
tent irregular aggregates (Figure 3.7).
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A. Cooldown model, d = 1

B. Cooldown model, d = 2

Figure 3.7: Cooldown simulation
The left plot in each panel shows density ρ—the right plot shows attractant concentration U .
The two numbers below the plot are the minimum and maximum values of the plotted function
over the entire domain. This simulation is identical to that of Figure 3.4, except that parame-
ters σ, βa, and βr decay exponentially with time constant 1000 s from initial values used in the
previous simulation.

104



3.8 Summary

I have developed methods for the numerical solution of the worm PDE system (2.1,2.3) and
an expanded version of the model that includes a repellent signal in addition to the attractant.
This exercise was successful in the very limited sense that the simulations produce results that,
by a subjective visual evaluation, resemble the behavior of the animals they are meant to repre-
sent. With 11 only weakly constrained biologically meaningful parameters in the final model,
this result is perhaps not surprising.

In fact, I believe the most encouraging result of this chapter is a failure. I was not able to
achieve a tolerable match of model predictions to experimental results with the attractant-only
model (the closest thing to the classic Keller-Segel model tried). This failure suggests that, in
addition to the attractive force suggested by the worms coming together, there is some sort of
repulsive force. Of course, neither of these forces need take the form of an unstable, diffusible
chemical signal. That is only a simple mechanism made plausible by what we know of C ele-
gans biology.

Further work is necessary to systematically evaluate how well model results match experi-
ment (Chapter 4) and to explore how tightly constrained the model is by experimental results
(Chapter 5).
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Chapter 4

Morphological analysis

Near the end of chapter 3, I alluded to the need for more objective methods of comparing
the results of PDE solutions to the observed behavior of aggregating worms. For this purpose
I adopted Fourier analysis and the mathematical morphology toolkit (Serra 1982). These are
independent methods of comparing experimental results to PDE solutions.

4.1 Fourier analysis to measure spatial patterning

At late times, the aggregates that form in PDE solutions of the attractant- repellent model
(Figure 3.4) are regularly arranged. One can also perceive a much less convincing hint of regu-
larity in experimental images. Fourier transforms are a way to measure such patterning.

Figure 4.1 shows such an analysis of the final time point of a solution of the attractant+repellent
model. It is of course perfectly periodic on the 0.5 cm × 0.5 cm domain, because it was solved
with periodic boundary conditions. But an approximate hexagonal symmetry is also evident.
(Exact hexagonal symmetry is impossible on a square domain with periodic boundary condi-
tions.) The power spectrum vividly confirms that the arrangement is regular. At low wavenum-
bers all the power is in discrete regularly arranged points. The points at k = (13, 6) × 4π and
k = (7, 14)× 4π are diagnostic of approximate hexagonal symmetry—the angle between these
two wavenumber vectors tan−1(14/7) − tan−1(6/13) is 38◦—for perfect hexagonal symme-
try the angle would be 30◦. All the other spots are at integer linear combinations of these two
generator wavenumber vectors.

Since there was no imposition of periodicity on the experimental aggregates, no such perfect
regularity is to be expected. I hoped to see what is known in X-ray crystallography as a pow-
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A. Original image B. Power spectrum
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Figure 4.1: Fourier analysis of simulation results
A. Image of density from a solution of the attractant+repellent model. Parameters as in Figure
3.4, except for βa =0.0011 cm2s−1, βr = −0.0094 cm2s−1. This solution was carried out on
an 0.5 cm square for better resolution. B Low wavenumber region of the power spectrum of the
image in A. (Densities were normalized to extend up to 1.0 before computing the power spec-
trum, for better comparison to the power spectra of Figure 4.2.) This image shows the region
extending from 0 wavenumber up to 25 × 4π, i.e. waves whose wavelength is 1/25 the 0.5 cm
width of the domain.
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der diffraction pattern. When a collimated X-ray beam is sent through a crystal, the X-rays are
scattered by the electrons. The result is a pattern that is the Fourier transform of the electron
density. Since a crystal is a near-perfect periodic array of molecules, the result is a pattern of
spots (each called a reflection in the jargon of crystallography) very like Figure 4.1B. Suppose,
instead of sending the X-ray beam through a single crystal, you aim it at a box of powdered
sugar. Each particle of sugar is a crystal and diffracts the beam into spots. But because the crys-
tals in the powder are in all possible orientations, each reflection gives rise to a ring of X-ray
intensity. This pattern of rings is called a powder diffraction pattern.

Figure 4.2 shows that an experimental image does indeed produce a powder diffraction pat-
tern. Two rings are evident in Figure 4.2B, a sharp one at k = 8 × 2π and a more diffuse one
around k = 20 × 2π. Do these features in fact arise from the aggregates? There is a sim-
ple way to test. I filtered the spectrum by setting the amplitudes at all wavenumbers outside
[6 × 2π, 30 × 2π] to 0 (Figure 4.2C), then inverted the Fourier transform to produce a filtered
image arising only from the two rings. The result, Figure 4.2D, shows that the rings do indeed
arise from the pattern of aggregates. Further filtering shows that the ring at 20 × 2π arises from
the patterning of individual aggregates, while that at 8× 2π/8 arises from a series of concentric
rings of aggregates surrounding the central blob.

I have not yet attempted to fit the diffraction pattern to a hexagonal symmetry pattern.

4.2 Morphological analysis of PDE solutions and experimen-
tal results

Mathematical morphology provides algorithms for identifying objects in an image (segmen-
tation) and quantifying their characteristics. I used Mathematica’s (Wolfram Research 2019)
implementation of the mathematical morphology toolkit.

4.2.1 Segmentation and measurement

Figure 4.3 shows how aggregates were identified in video images. First, the image was bina-
rized (i.e., each pixel was assigned a value 0—bright—or 1—dark) by comparing its brightness
to the median brightness over all pixels. Next, connected components were identified. A con-
nected component is a maximal set of dark pixels each of which is adjacent to at least one other
dark pixel in the same component. (Pixels at x, y are considered adjacent if ‖x− y‖∞ ≤ 1 in
pixel coordinates.) This step is particularly straightforward (both for the experimental images
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A. Original image B. Power spectrum
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C. Filtered spectrum, 5 ≤ 2π/k ≤ 30 D. Filtered image, 6× 2π ≤ k ≤ 30× 2π
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Figure 4.2: Fourier analysis of experimental results
A. Image at 719 min from a video recording of aggregating worms. B Low wavenumber re-
gion of the power spectrum of the image in A. This image shows the region extending from
0 wavenumber up to 40 × 2π (in units of the inverse width of the image), i.e. waves whose
wavelength is 1/40 the width of the image. In this image and in C, power has been artifi-
cially truncated at 10 arbitrary units. C. Spectrum in B filtered by setting the amplitudes of
all wavenumbers not between 6 × 2π and 30 × 2π to 0. D. Inverse Fourier transform of the
amplitudes whose power spectrum is shown in C.
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A. Original image B. Connected components labeled

C. Border components censored D. Selection by distance from start

Figure 4.3: Image segmentation
A. Image from a video recording of 5× 105 aggregating L1s after 100 min. Starved L1s were
concentrated and pipetted onto an agar surface in a 6 cm diameter petri plate. The worms ini-
tially disperse, producing a convenient gradient of density. The large circular spot in the center
is where the worms were initially placed, and where the density remains above the maximum.
B. The image in A was binarized by selecting those pixels darker than the median brightness
and connected components identified. A unique color was assigned to each component. C.
Every component that touches the edge of the original image is deleted. D. Those components
within a acceptable radius (determined by the distance from the center of the start spot to the
top or bottom edge) of the start spot are selected for further analysis.
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and PDE solutions) because the density rapidly evolves to a near binary distribution, in which
the density at every point is either maximal or low. (The pronounced bimodality of the den-
sity distribution is the focus of chapter 5.) Figure 4.3A shows an image from an early time in
the recording, before the density had become convincingly binary—nevertheless it is straight-
forward to segment. Furthermore, the aggregates that form are in almost every case simply
connected—no holes. After identifying connected components I eliminate the following: (1)
components at the edges of the image, since their shapes are not completely known, (2) com-
ponents that are further from the start point than the nearest horizontal edge (to remove a large
number of irregular small structures at low density), (3) very small structures (in order not to
count individual worms), and (4) the large structure in the center.

The segmentation of density functions from PDE solutions was slightly different. First, the
1 × 1 periodic domain on which the solution was computed was extended to a 3 × 3 area by
replication. The image was binarized into high and low-density by comparison with a threshold
determined by Ostu’s method (Otsu 1979) and connected high-density components identified.
Finally only components whose centroids were within the central square of the 3 × 3 area were
kept.

I selected four experimental images (taken at times 100, 200, 500, and 719 min after the be-
ginning of the aggregation experiment) and nine images from a PDE solution (times 500, 1,000,
2,000, 5,000, 10,000, 20,000, 50,000, 100,000, and 200,000 s).

After identifying components in these 13 images, their properties were measured with the
Mathematica function ComponentMeasurements. This function produces a dataset list-
ing, for each aggregate, 83 properties. Examples of properties are Centroid, ”center of mass
coordinates”, Circularity, ”ratio of equivalent disk perimeter to the perimeter length”,
Holes, ”number of holes in each component”, and Shape, ”shape of the component given as
a binary image”. (Quotes are from documentation of the Mathematica function
ComponentMeasurements.) For the following analysis I discarded all but scalar proper-
ties, i.e., I kept only those properties whose value is a single number. Thus, Centroid and
Shape were discarded at this step, leaving me with 61 properties. I then discarded properties
that didn’t vary. For instance, Holes was discarded at this stage because it was 0 for all aggre-
gates. This left me with 48 measurements of each aggregate.

4.3 Dimensional reduction and comparison

Many of these 48 measurements were highly correlated with others. I therefore turned to di-
mensional reduction. I began by clustering the properties with the mean-shift algorithm (Cheng
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Count number of pixels (area)
BoundingDiskCoverage coverage of bounding disk area by the component area
CaliperElongation 1− (caliper width/caliper height)
Circularity ratio of equivalent disk perimeter to the perimeter length
Elongation elongation, computed as 1− width/height
MinCentroidDistance minimum distance of all pixels from the centroid

Table 4.1: Aggregate shape properties

and Cheng 1995), using as distance measure 1− |rs|, where rs is the Spearman rank correlation
coefficient. The Spearman rank correlation coefficient is an ordinary correlation coefficient,
except that is is computed not on the property values themselves, but on their ranks (i.e., their
positions after sorting into an ordered list). Rank correlation rs therefore ranges from −1 to 1.
The value 1 means that the two properties are in exactly the same order, and −1 that they are
in exactly opposite order. Thus |rs| ranges from 0 to 1, with the value 1 indicating a perfectly
monotonic (either increasing or decreasing) relationship.

This procedure grouped the 48 properties into 11 clusters (Figure 4.4). All of these clus-
ters were easily interpretable. For instance, the largest cluster, comprising 24 properties, con-
tained properties that in effect measure the size of the aggregate. Four clusters contained prop-
erties concerned with the statistics of the signal values (i.e., darkness for experimental data,
ρ for simulations) within the aggregate. Since the contrast mechanism for experimental data
and simulation images are not easily related, I discarded these four clusters. I also discarded
Orientation. That left me with six clusters. I chose one representative property from each
cluster (Table 4.1). (Although there are more sophisticated dimensional reduction techniques
than simply choosing a subset, I elected this method because it leaves one with measurements
whose meanings are clear.)

4.3.1 Multidimensional scaling

Six is still an inconveniently large number for easy visualization. I therefore resorted to Mul-
tidimensional Scaling (MDS) to visualize the relationships of the 13 images. MDS works as
follows: one defines a measure that quantifies how far each of the 13 images is from each of
the others. The images are then embedded in a low (two, in this case) dimensional space such
that their 2 or 3-space distances from each other match as closely as possible the distance mea-
sure. Measure and distance are used loosely here. In general the distance measure need not be
a proper metric: for instance, MDS can be used with measures that don’t satisfy the triangle
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Properties clustered by rank correlation
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Figure 4.4: Properties clustered by rank correlation
Clusters of component properties. The darkness of each square indicates |rs| the absolute value
of the Spearman rank correlation coefficient.
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inequality. This is, in fact, the strength of the method: it is very flexible in how one defines a
distance.

The distance measure to use requires some thought. We don’t want to simply ask whether
the aggregates in one image are individually like those in another. For instance, we would like
to score an image in which the aggregates vary widely in Circularity as similar to another
image in which aggregates vary widely in Circularity. That is, we want to consider two
images similar when the distribution of a property is similar in one image to the distribution in
the other. The Kolmogorov-Smirnov (KS) statistic Dij = supx |Fi(x)− Fj(x)|, where Fi is
the Cumulative Distribution Function (CDF) of sample i, is a useful measure of the difference
between two distributions. It ranges from 0 for identical distributions to 1 for distributions that
do not overlap at all.

I rapidly found, however, that the Kolmogorov-Smirnov statistic didn’t work well for com-
paring experimental data to simulation results. Figure 4.5A illustrates the problem. This com-
pares the distribution of Circularity for the experimental image taken at 719 min and
the 50 000 s image from simulation. Superficially these images are similar—in both cases the
worms have stabilized in a distribution in which most are found in circular aggregates, but a
few are moving around between the aggregates. The Circularity distributions, however, do
not overlap at all, and the KS Statistic is 1, indicating that the two images are, for this property,
as far apart as possible.

This result is easy to understand. The aggregates in the simulation are almost perfectly cir-
cular. However, the aggregates in the experimental image are made of worms, large enough to
be individually visible. In addition, because worms are still actively entering and leaving aggre-
gates, some of the aggregates are imaged with part (or all) of a worm protruding from the edge,
and this worm is counted as part of the aggregate. Neither of these facts is in conflict with the
simulation results. In particular, the density of worms outside aggregates in the 50 000 s image
is about 200 cm−2, or 2 per square millimeter. Because in the simulations worms are approxi-
mated by a continuous density function, imperfections in aggregate shape are not represented.

A crude workaround for this problem is to assume a degree of imprecision for each mea-
surement. The Kernel Density Function (KDF) is a convenient tool for this purpose. It is con-
structed essentially by replacing each observation with a distribution. Figure 4.5B compares
KDFs constructed from the v719 and 50 000 s images by convolving them with a normal dis-
tribution with standard deviation 0.1. The KS statistic for these two KDFs is 0.206, indicating
a substantial but not huge difference between the images with regard to Circularity. I de-
veloped a computationally efficient method of approximating KS statistics between KDFs and
used it to compute pairwise distances for each of the six properties for each pair of images.

Four of the six properties are dimensionless and can be directly compared between simula-
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A. Histograms
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Figure 4.5: Comparison of Circularity distributions
Plots of the distribution of Circularity in the experimental image ”v719” and the PDE
solution image ”50000 s”. A. Histograms. Kolmogorov-Smirnov statistic 1. B. Kernel Density
functions with a Gaussian of standard deviation σ = 0.1. Kolmogorov-Smirnov statistic 0.206.
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tions and experimental images. The exceptions are Count and MinCentroidDistance. I
normalized these by their medians before computing the KS statistic of the KDFs.

I used the python machine learning package sklearn.manifold.MDS to find nonmetric
MDS embeddings in two dimensions of the images based on KDF KS statistics. Because MDS
depends only on the distances between points in the embedding, any Euclidean transformation
(i.e., translation, rotation, or reflection) of an embedding yields another embedding of equal
quality. Since sklearn.manifold.MDS.fit initiates its search with random coordinates,
the results are not reproducible from run to run. I therefore normalized embeddings by translat-
ing them so that the mean of all points was the origin, rotating the coordinate system so that the
point representing image v100 was on the positive x-axis, and reflecting if necessary to make
the y-coordinate of image v200 positive.

Figure 4.6 shows embeddings based on each of the six properties. Since the shapes of ag-
gregates evolve in a generally consistent way with time, I hoped to see points within a series
arranged roughly in order of time. Based on these results and other considerations, I narrowed
the list of six properties (Table 4.1) to three, discarding Count, CaliperElongation, and
MinCentroidDistance.

Count is the property that measures aggregate size. While this is clearly an important mea-
surement, Figure 4.6A suggests it provides little useful information in this analysis. I believe
that aggregate size is best addressed as a component of spatial patterning. That is, if you know
the mean density of worms, the spacing of aggregates, and how they are arranged (e.g., hexago-
nal vs rectangular array), then the size of the aggregates is determined. I will show this calcula-
tion explicitly in chapter 5.

The MinCentroidDistance looks quite random. In retrospect, this is predictable from
how it is calculated. MinCentroidDistance is the smallest distance from the centroid of
an aggregate to one of the pixels within it. That is, it is basically the distance (in pixel coordi-
nates) from the centroid to the nearest location in Z2. While this is a useful property for non-
convex shapes, in the context of C elegans L1 aggregation, it is essentially a random number.

CaliperElongation also looks very noisy. Furthermore, a close look at Figure 4.4
shows that it is highly correlated with Eccentricity and Elongation—this appears to
be the highest intercluster correlation among the 48 properties. It is even a little puzzling that it
was not clustered with Eccentricity and Elongation. I believe I can explain this. The
aggregates in the simulation evolve towards near perfect circles at late times. Elongation
and CaliperElongation are zero for a perfect circle. Thus in many of the images these
properties have values very near zero, and a small change in the way elongation is measured
can produce large relative change in these small numbers, degrading the rank correlation.

Figure 4.7 shows the MDS embedding based on BoundingDiskCoverage, Elongation,
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A. Count B. BoundingDiskCoverage

C. CaliperElongation D. Circularity

E. Elongation F. MinCentroidDistance

Figure 4.6: Image MDS based on single properties
MDS based on the distribution of the named property was used to place images in two di-
mensions. Each point represents one image. Those labeled v100, v200, v500, and v719 are
experimental, those labeled 500 s – 200000 s are from a PDE solution. The number above each
plot is the stress: a small number means that the distance measures are well matched.
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Figure 4.7: Image MDS based on BoundingDiskCoverage, Elongation, and
Circularity

and Circularity collectively. More usefully, since three is a small enough number of prop-
erties to be visualized directly, Figure 4.8 shows scatter plots of all aggregates in all images,
colored by the image of origin.

There is a general similarity between the evolution of aggregates in experimental data and
in simulations. At early times aggregates are diverse, poorly circular, often elongated. As time
passes, there is an evolution towards near-perfect circles. The aggregates in simulations are
arranged close to a one-dimensional curve in 3-space. Experimental results are scattered below
this curve.

This is not a once-and-done analysis. The choice of properties to characterize the aggregates
was based on their correlations among 13 selected images: 9 from simulation and 4 from one
experiment. We have more than 200 movies of C elegans L1 aggregation, of different geno-
types, taken under varying conditions. There is no limit to the number of numerical simulations
that can be done. It is to be expected that some of the correlations seen among characteristics in
the 13 images analyzed above will be different in a broader dataset.

Although this analysis is a qualified success, the mismatch between experimental results and
PDE solutions is unquestionably a problem, and to some degree a failure. The crucial question
is whether it is a failure of the PDE model or of the morphological analysis. The first would be
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A. Circularity vs.
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BoundingDiskCoverage

0.0 0.2 0.4 0.6 0.8 1.0
BoundingDiskCoverage0.0

0.2

0.4

0.6

0.8

1.0
Circularity

100

200

500

719

500

1000

2000

5000

10000

20000

50000

100000

200000

0.0 0.2 0.4 0.6 0.8 1.0
BoundingDiskCoverage0.0

0.2

0.4

0.6

0.8

1.0
Elongation

100

200

500

719

500

1000

2000

5000

10000

20000

50000

100000

200000

C Elongation vs. Circularity D. Three-D plot

0.0 0.2 0.4 0.6 0.8 1.0
Circularity0.0

0.2

0.4

0.6

0.8

1.0
Elongation

100

200

500

719

500

1000

2000

5000

10000

20000

50000

100000

200000

100

200

500

719

500

1000

2000

5000

10000

20000

50000

100000

200000

Figure 4.8: Scatter plots of three shape properties for all aggregates
Each aggregate is plotted as a single point, colored by the image of origin, and located ac-
cording to the values of properties BoundingDiskCoverage, Elongation, and
Circularity.
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a very serious problem—the second merely an issue to be corrected. I am at present inclined
to be optimistic on the question. I have already pointed out how modeling worms as a contin-
uous density leads inevitably to discrepancies between experimental images and images from
simulations. This is not an insuperable problem.

4.4 Summary

This chapters describes two independent methods of quantifying aggregate formation. Fourier
analysis measures the spatial patterning of aggregates. Mathematical morphology measures the
shapes of the aggregates. Eventually I hope to use them to fit models to experimental results.
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Chapter 5

The binary density approximation

5.1 PDE solutions give density fields that are close to binary

In both experiments and simulation, worm density ρ rapidly evolves to an approximately bi-
nary function of space (Figure 5.1). By calling it a ”binary function”, I mean that ρ takes on
only two values. For some x ∈ Ω, ρ(x) = ρmax, the density at which the animals are tightly
packed. For other x, ρ(x) = ρmin, a value much less than the close-packed density. (It is, of
course, only approximately binary. Since ρ is a continuous function, at least when it is the solu-
tion of a PDE, it necessarily takes on all values between ρmin and ρmax.)

The rapid evolution of ρ to a binary state is easily documented for the PDE solutions (Fig-
ure 5.1B, D). Even after only 1 h, the distribution of pixel intensities in an image of ρ is obvi-
ously bimodal (Figure 5.1B). (The peaks of this histogram are ρmin ≈ 200 cm−2 and ρmax ≈
26 000 cm−2. I use these values in calculations below.) As a simple way of quantifying this evo-
lution, I computed the Bimodality Coefficient (BC) (Pfister et al. 2013) as a function of time.
The Bimodality Coefficient (5.1) is a crude measure of bimodality based on excess kurtosis m4

(peakiness) and skewness m3 of the distribution.

BC :=
m2

3 + 1

m4 + 3 · (n−1)2

(n−2)(n−3)

(5.1)

For a normal distribution, BC = 1/3—for a Bernoulli Distribution (the ideal binary distribu-
tion), it is 1. Thus one typically expects BC to take on values between 1/3 and 1, with larger
values indicating bimodality. For t < 440 s, BC ≈ 1/3 for the simulation results, as expected,
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A. Experimental image histogram, t = 719
min B. Simulation density histogram, t = 56 min
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Figure 5.1: Worm density becomes bimodal
A. Histogram of pixel darkness in the experiment image taken after 719 min of aggregation.
(The brightness axis is inverted, so that worm density increases to the right.) B. Histogram of ρ
from a PDE solution at t = 3347 s. C. The experimental image at 719 min. (This is the image
from which the histogram in A is derived. D. Bimodality coefficient as a function of time.
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since the simulation was initiated with normally distributed random fluctuations. During the
first 440 s, the small initial fluctuations grow exponentially while Vρ remains close to zero ev-
erywhere. Thereafter the distribution of densities abruptly becomes strikingly bimodal, and
remains so for as long as the simulation continues.

In experiments density also evolves quickly toward a binary state. The best way to convince
oneself of this is simply to look at the images (e.g. Figure 5.1C) and let the image-processing
supercomputer in the occipital lobe of your brain process them. Measurements confirm the
bimodality, but less dramatically than for PDE solutions. The histogram (Figure 5.1A) of the
image in Figure 5.1C is clearly bimodal. The low density peak is broad because of uneven il-
lumination of the field, and the bimodality coefficient is consequently 0.456, only modestly
above 1/3. (It is of course possible to correct the image for uneven illumination, but the more
one massages the data to make the density distribution look bimodal, the less convincing the
demonstration becomes.) Because the experiment is initiated by pipetting 5× 105 worms onto
the center of the agar surface, the density distribution is almost perfectly bimodal at time 0.
The bimodality coefficient drops rapidly as the worms spread out, approaching 1/3 at 136 min.
Thereafter worms outside the central blob come together in aggregates of maximal density and
the bimodality coefficient grows modestly to its final value 0.456.

5.2 Plan for this chapter

In the rest of this chapter, I will take the observation that density is binary as an assumption
and work out its consequences. That is, I will assume that ρ has the form

ρ(x) = ρmin + (ρmax − ρmin)IA(t)(x), (5.2)

Here A(t) is the set of points occupied by aggregates at time t and the indicator function IA(t)(x)
is 1 for x ∈ A(t), 0 elsewhere. I will assume A is as nice as convenient (i.e., a Borel set with
piecewise smooth boundaries).

One consequence is immediate. The measure of A(t) is constant, Remember that the number
of worms is constant, and consequently the mean density, ρ̄, is also constant. Thus, the total
number of worms is
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ρ̄|Ω| = ρmax|A(t)|+ ρmin(|Ω| − |A(t)|) (5.3)

|A(t)| = ρ̄− ρmin

ρmax − ρmin
|Ω| (5.4)

a :=
|A(t)|
|Ω|

=
ρ̄− ρmin

ρmax − ρmin
(5.5)

The proportion of the area occupied by aggregates is the constant a. Thus, for instance, with
ρ̄ = 9000 cm−d, ρmax = 26 000 cm−d, and ρmin = 200 cm−d, a = 44/129 ≈ 0.341.

5.3 Equilibrium and Pattern formation

Figure 4.1 shows that at equilibrium a simulation produces aggregates with an approximate
hexagonal pattern. Figure 4.2 suggests that some sort of patterning also takes place in experi-
ments. How can such a pattern be explained? Can we do better than ”That’s the result the nu-
merical solution produces”?

No linear analysis can explain a hexagonal pattern. That is in fact the burden of Appendix A
of Keller and Segel (1970), ”Further Discussion of Stability Theory”. It is certainly true that a
hexagonal pattern can arise as a combination of sinusoidal density fluctuations. In particular,
the sum of any two sinusoids of the same wavelength the angle between whose wavenumber
vectors is 60◦ is a hexagonal pattern. However, in an isotropic system the stability of any si-
nusoid eik·x depends only on the magnitude ‖k‖ of the wavenumber. In a linear system, the
stability of each sinusoid is independent of any others to which it is added. There is thus no
mechanism that can prefer the angle 60◦ over, for instance 90◦, producing a rectangular array,
or indeed an equal sum of all angles, producing a Bessel function.

The free energy functions developed in chapter 2 offer a possible approach to this question.
In particular, the equilibrium density ρeq is, subject to two caveats, expected to be a minimum
of the total energy functional (2.215). The two caveats are (1) T(ρ) is at best an approximate
functional antiderivative, and is therefore not necessarily exactly stationary at equilibrium. (2)
Because of the repellent, the time derivative of T(ρ) is not necessarily negative. Thus an equi-
librium is not necessarily a minimum. However, a minimum, if one exists, is certainly a station-
ary point and therefore an equilibrium (ignoring point 1).

I will therefore proceed to search for binary functions ρ(x) that minimize T(ρ). One simpli-
fication is immediate. T(ρ) is the integral of functions of Ua = ga ∗ ρ and Ur = gr ∗ ρ and a
function of ρ: Wρ(ρ) + σ log ρ. The latter integral is constant:
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∫
Ω

(Wρ(ρ) + σ log ρ)dx (5.6)

= (a(Wρ(ρmax) + σ log ρmax) + (1− a)(Wρ(ρmin) + σ log ρmin))|Ω|

These terms can therefore be ignored in the minimization problem, leaving

TU(ρ) =

∫
Ω

(
ρ
WUa(Ua)

Ua
+ ρ

WUr

Ur

)
dx (5.7)

as the quantity to be minimized. It is convenient to divide this quantity by the constant number
of worms N0 =

∫
Ω
ρdx to define

T̄U(ρ) =
1

N0

∫
Ω

ρ
WUa(Ua)

Ua
dx +

1

N0

∫
Ω

ρ
WUr(Ur)

Ur
dx (5.8)

= T̄a(Ua) + T̄r(Ur)

T̄a(Ua) is the mean value of WUa(Ua)/Ua experienced by a worm, and likewise for T̄r. Using
(2.10) it is convenient to define

TU(U) :=
WU(U)

U
(5.9)

= β
U + α logα− (U + α) log(U + α)

U
(5.10)

= β

(
1− logα− log(1 + U/α)

U/α
− log(1 + U/α)

)
(5.11)

Form (5.11) is convenient as it requires only a dimensionless form of the concentration, U/α,
and the constant β(1− logα) can be ignored for minimization.

5.3.1 Optimization in one dimension

While there are an infinite number of possible periodic patterns in one dimension, symmetry
suggests the optimum is likely to be an infinite series of equally sized, equally spaced mesas—
i.e., a square wave. That is, ρ(x) is periodic with period λ (a parameter to be optimized), with
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mesas of density ρmax and width λa separated by lowlands of density ρmin and width λ(1 − a).
To find the optimum wavelength λ, we calculate T̄U as a function of λ and search for the mini-
mum. I will show how to calculate T̄U for a single signal, in particular an attractant with β = 1.
T̄ will depend on the ratio λ/κ, where κ is the range of the signal κ =

√
D/γ. In the follow-

ing, I write T̄U(λ/κ, a, Umax, r) to indicate the dependence on dimensionless parameters λ/κ
and a, as well as Umax = (ρmaxs/γ)/α and r = ρmin/ρmax.)

Two limiting cases can easily be calculated: λ/κ → 0 and λ/κ → ∞. The first case rep-
resents a wavelength much shorter than the diffusion range of the signal. In this limit U ap-
proaches its mean everywhere: U(x) = (aρmax + (1− a)ρmin)s/γ for all x. Since U is constant,
TU(U) is also constant and its mean is that constant:

T̄U(0, a, Umax, r) = TU

(
aρmax + (1− a)ρmin)s

γα

)
(5.12)

= TU

(
(a+ (1− a)r)ρmaxs

γα

)
(5.13)

= TU ((a+ (1− a)r)Umax) (5.14)

In the λ/κ→∞ limit, the signal has a very short diffusion range, so it is everywhere in local
equilibrium with the worm density, U(x) = ρ(x)s/γ. Thus

T̄U(∞, a, Umax, r) = aTU(Umax) + (1− a)TU(rUmax) (5.15)

The trick, of course, is to evaluate T̄U(λ/κ, a, Umax, r for finite λ/κ. In the following demon-
stration I will use parameters based on the attractant in the PDE solution of Figure 5.1B,D, but
(for this example) in only one dimension. In particular

λ/κ = 1 cm/0.01 cm = 100 (5.16)
a = 44/129 (5.17)

ρmax = 26 000 cm−1 (5.18)
ρmin = 200 cm−1 (5.19)
Umax = ρmaxs/γ(1500 cm−1) = 52/3 (5.20)

r = ρmin/ρmax = 1/130 (5.21)
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Now, to estimate T̄U(100, 44/129, 52/3, 1/130) represent a 1 cm wavelength by 512 points
(Figure 5.2). We will set ρ = ρmax at 175 of these points and ρ = ρmin at the remaining 337.
We will thus estimate T̄U(100, 175/512, 52/3, 1/130). Note that 44/129 ≈ 0.3411 < 0.3418 ≈
175/512. To estimate the desired T̄U(100, 44/129, 52/3, 1/130), we can estimate, for instance
T̄U(100, 174/512, 52/3, 1/130) and interpolate.

Now calculate U = g ∗ ρ by computing the Fast Fourier Transform (FFT) of ρ, multiplying
by the Fourier coefficients (2.152) of the Green’s function, then inverting the Fourier transform.
Calculate TU(U/α). (In plotting this example I dropped the −β logα term, which has the con-
venient effect of making TU(0) = 0.) Multiply by ρ, total the product, and divide by the total
of ρ itself. The quotient estimates T̄U(100, 175/512, 52/3, 1/130). Because ρmax � ρmin, this
is very close to the mean of TU in the central mesa where ρ = ρmax, but there is also a small en-
ergy contribution from the low density plain. The estimate is T̄U(100, 175/512, 52/3, 1/130) ≈
−2.02122. The long and short-range limiting values are T̄U(0, 175/512, 52/3, 1/130) = −1.27161,
T̄U(∞, 175/512, 52/3, 1/130) = −2.04715. The estimate for λ/κ = 100 is close to the limit-
ing value for λ/κ = ∞, as expected, since this is a short-range signal and U closely follows
ρ (Figure 5.2A). The small difference between -2.02 and -2.05 is because U is smaller than its
maximum value ρmaxs/γ just inside the boundary of the mesa. Consequently the energy is a lit-
tle higher there. For a short-range signal, the energy cost of failure to perfectly follow ρ occurs
at the boundary of the high-density mesa.

We are now ready to search for the optimum wavelength. The dimensionless function
T̄U(λ/κ, a, Umax, r) is tabulated for a range of values of λ/κ ∈ [0,∞], a ∈ [0, 1], Umax ∈
[0,∞), r = 1/130. (Since r matters little as long as it is small, I only tabulated T̄U for one
r.) Then a polynomial interpolation is used to estimate βaT̄U(λ/κa, 44/129, 52/3, 1/130) and
βrT̄U(λ/κr, 44/129, 52/3, 1/130) as a function of λ. The result is plotted in Figure 5.3A. The
minimum occurs at λ ≈ 0.086 cm.

Three independent solutions of the PDE on a 1 cm interval with periodic boundary condi-
tions and these parameters, but different pseudorandom initial conditions in each case evolved
to final equilibria with 10, 11, and 12 equally spaced mesas, corresponding to wavelengths λ ≈
0.01, 0.091 and 0.083 cm, in reasonable agreement with the predicted λ ≈ 0.086 cm. (Perfect
agreement is not expected, since, with periodic boundary conditions, the wavelength must be an
integer divisor of the domain size.)

5.3.2 Optimization in two dimensions

The two-dimensional calculation is similar to the one-dimensional case, but there is a new
complication. There is only one way of arranging balls periodically in one dimension such that
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A. Discretized ρ and U/α
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B. Estimation of T̄U

0 20 40 60 80 100

-2.0

-1.5

-1.0

-0.5

0.0

-50000

-40000

-30000

-20000

-10000

0

x (κ)

T
U
(U

)

ρ
T
U
(U

)

TU(U)

ρTU(U)

Figure 5.2: Estimation of T̄U
A. Discretized ρ and U on a λ = 1 cm interval. The units of x are κ = 0.01 cm, the range
of the signal. U is computed by convolution of ρ with the Green’s function (2.152) and tends
exponentially towards ρ with space constant κ. B. TU(U/α) is plotted in blue. It is negative,
since the signal is an attractant. In orange is plotted the product ρTU(U). Since ρ is very small
outside its central mesa, this product is almost flat there. T̄U is estimated by totalling these
numbers and dividing by the total of ρ.
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A. Optimization of wavelength in one dimension
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B. Optimization of pattern in two dimensions
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Figure 5.3: Optimization of pattern
A. Mean energy T̄U as a function of λ, calculated as the β-weighted sum of attractant and re-
pellent contributions. To aid in interpretation, T̄U is normalized by division by the energy scale
σ and by subtracting the λ = 0 value. The minimum occurs at λ ≈ 0.086 cm. B. Normal-
ized T̄U as a function of λ for the square array (blue) and the hexagonal (orange) patterns. The
minimum energy occurs on the hexagonal curve at λ ≈ 0.097 cm. Compare to Figure 4.1A.
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each ball is equivalent to every other. In two dimensions there are several. I will now do the
calculation for two of them, a square array and a hexagonal array, and compare the results.

The calculation begins by defining, for each pattern, a unit cell that produces the pattern
when the plane is tiled with it. For the square array this is easy: the unit cell is a 1× 1 square
with a circle centered in it. The radius of the circle can be up to 0.5 without overlap. Given an
a, we must choose the radius such that

a = πR2 (5.22)

R =
√
a/π (5.23)

Thus the largest possible a on a square array of nonoverlapping circles is a = π/4 ≈ 0.7854.
You should imagine that we will scale the unit cell up by a factor λ before tiling the plane, so
we will end up with circles of radius λ

√
a/π separated from each other by distance λ.

Figure 5.4 shows the unit cell for a hexagonal array. It is a
√

3 × 1 rectangle containing the
centers of two disks at (

√
3/4, 3/4), (3

√
3/4, 1/4) relative to the lower left corner. The distance

between the centers is 1, so the maximum possible radius without overlap is 1/2. Given a, we
choose the radius such that

a =
2πR2

√
3× 1

(5.24)

R =

√
a
√

3

2π
(5.25)

The maximum value of a is thus π/(2
√

3) ≈ 0.9069.

The λ → 0 and λ → ∞ limits of T̄U are the same as in one dimension (5.12, 5.15). Estima-
tion of T̄U for finite positive λ/κ is similar to the one-dimensional case (Figure 5.5). The

√
3 ×

1 unit cell is represented by an 888 × 514 grid. Since
√

3/888 6= 1/514, the spacing of points
in the horizontal dimension is slightly different from the vertical. It is convenient to think of the√

3 × 1 unit cell as divided into rectangular (but not quite square) elements. This slight discrep-
ancy can be accounted for in the distance measure used to assign low or high density to each
element (Figure 5.5A). It also needs to be accounted for in the convolution g ∗ ρ to calculate U
(Figure 5.5B). Then TU(U) is calculated using (5.11) (Figure 5.5C). Finally, multiply TU by ρ,
add up the product and divide by the total of ρ to estimate T̄U .
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Hexagonal array unit cells

3

1

Figure 5.4: Hexagonal array unit cells
Each unit cell is a

√
3 × 1 rectangle containing the centers of two disks at (

√
3/4, 3/4),

(3
√

3/4, 1/4) relative to the lower left corner. A unit cell may contain segments of disks cen-
tered in the cells above and below, as in this example. This figure was drawn with a = 44/129,
corresponding to ρ̄ = 9000 cm−2, as in previous examples.

131



A. ρ on the unit cell B. U on the unit cell

C. TU on the unit cell D. ρTU on the unit cell

Figure 5.5: Estimation of T̄U in two dimensions
A. Shows ρ on a 888 × 514 grid. The radius of the disks was chosen to approximate
a = 44/129 ≈ 0.3411. The actual coverage of this pattern is a = 0.3422. B. Convolution
of ρ with the Green’s function blurs the edges. For this calculation λ/κ = 100, i.e., a short-
range signal, so the blurring is slight. C. TU(U) calculated using an attractant potential. Thus
TU is negative where U is large and positive. D. TU is multiplied by ρ in order to compute the
ρ-weighted mean T̄U . In this plot I have artificially set the background color black in regions
of low ρ, in order to make the yellow (less negative) edges of the high-density disks more vis-
ible. It is these bright rims that are mainly responsible for making T̄U more positive than the
minimum achieved with a signal whose range is 0. The black regions contribute little to the
ρ-weighted mean T̄U , since ρ is so low there.
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In this way I tabulated estimates of T̄U for the square and hexagonal arrays. Figure 5.3B
plots T̄U as a function of λ for both geometries. With the parameters used in the solution im-
aged in Figure 4.1A, the minimum mean energy for these two geometries is achieved at λ ≈
0.0966 cm with the hexagonal array. Since the distance from the center of each circle to the
centers of the nearest circles is 1 in the canonical unit cell, the prediction from this analysis is
that with these parameters a hexagonal pattern is preferred over a square pattern, and that the
spacing should be 0.0966 cm. The actual spacing of circles in the numerical simulation of this
equilibrium is 0.102 cm (Figure 4.1A). As in the one dimensional case, perfect agreement is
not expected, because the periodic boundary conditions constrain possible spacings. (In fact,
since the domain was only 0.5 cm× 0.5 cm for this simulation as opposed to 1 cm for the one-
dimensional solution, the constraints are even tighter.)

Even ignoring doubts that inevitably arise from the use of numerical approximations, and
restricting attention to those patterns that consist of circles all equivalent to each other under
the symmetry of the pattern, this is of course not a proof that the hexagonal pattern is optimal,
because I did not exhaustively test all possible patterns. However, such an exhaustive test is
possible in principle and probably not even terribly taxing. There are only 17 classes of repeat-
ing patterns in two dimensions (not including quasiperiodic patterns such as Penrose tilings)—
the 17 wallpaper groups (Schattschneider 1978). (This is far less daunting than the 230 three-
dimensional space groups.)

Thus, this approach, minimizing energy of binary density functions, offers the prospect of
solving the problem Keller and Segel’s (1970) appendix lamented their inability to solve.

5.4 Simplifying approximations

To get an intuitive understanding of how the binary model works, it is useful to make some
further approximations. First, we can neglect the worms in the low density region. Since we are
minimizing a ρ-weighted approximation of T̄U , the low-density regions have little effect. The
second and third approximations are much less good than the first one. Second: assume that the
range of the attractant is much shorter than λ, the spacing between aggregates, i.e. λ/κa � 1.
Third, assume that the range of repellent is much larger than λ, i.e. λ/κr � 1.

Under the approximation λ/κa � 1, there is an energy cost to small aggregates. This cost
results from the lower attractant concentration at the surface of the aggregate and the conse-
quent higher energy. Figures 5.2B, 5.5D show this clearly. (In fact they show it somewhat too
clearly—the calculations in these figures are based on λ = 1 cm, whereas the optimal λ is ac-
tually close to 1 mm.) This cost manifests as a T̄U contribution approximately proportional to
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the perimeter/area ratio. Using (5.23) and (5.25) as well as the obvious analogs for the line seg-
ment, the following formulas for P/A ratio are easily derived

Segment in one dimension:

PAsegment =
2

aλ
(5.26)

Square array in two dimensions:

PAsquare =
2
√
π

λ
√
a
≈ 3.55

λ
√
a

(5.27)

Hexagonal array in two dimensions:

PAhex =
2
√

2π

31/4λ
√
λ
≈ 3.81

λ
√
a

(5.28)

The cost (in this approximation) is always inversely proportional to λ, confirming the oft-
reiterated conclusion that an attractant-only model has no natural maximum length scale.

It is interesting to use these formulas to calculate P/A ratios for the optimal λs from Figure
5.3. They are

PAsegment = 67.875 cm−1

PAsquare = 69.199 cm−1

PAhex = 67.52 cm−1

No such simple heuristic is available for the repellent. The effect of λ on the energy due to
repellent has two components. First, because repellent can diffuse long distances, the energy of
worms in an aggregate is increased by the repellent that diffuses in from other aggregates. To a
first approximation, there is little influence of λ on this cost: increased λ means adjacent aggre-
gates are further away, and thus less influential, but also bigger and thus more influential. These
factors cancel approximately. Second and more important, the positive influence of an aggre-
gate’s own repellent on itself increases as the aggregate gets bigger. Asymptotic forms can be
derived for this cost (In fact, they are closely related to (1.47, 1.54).) The important points are
that T̄Ur has a finite limit as λ → 0 while T̄Ua is blowing up approximately as 1/λ. However, as
λ grows, T̄Ur grows and can, if its strength (i.e. βr) is great enough overcome the influence of
attractant and make larger scales costly. Thus, energy minima exist (Figure 5.3).
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5.5 The dynamics of binary density fields

5.5.1 Weak form predictions for binary density

It is important to realize that the binary density is not just an equilibrium condition. The den-
sity has already become almost as binary as it is going to be by t = 10 min, but the pattern is
still far from static. The shapes of the aggregates continue to change.

PDE (2.3) is not directly useful in predicting the dynamics of a binary density field. Binary
density functions, i.e., functions of the form (5.2), are necessarily discontinuous. Even though
these functions are discontinuous, there is still a notion of continuity on the space of binary
functions. For any finite positive p, the p-norm is a norm on this space, and given any den-
sity function ρ0(x) one can find functions within the space such that ‖ρ− ρ0‖p is arbitrarily
small. (The∞ norm, however, is not useful.) Thus, one can meaningfully speak of binary den-
sity fields that change continuously. If the aggregate set A in (5.2) consists of a finite collection
of connected regions with piecewise smooth boundaries, continuous change will typically take
the form of continuous movement of the boundaries.

Unfortunately, the derivatives that appear in (2.3) do not exist and the PDE is meaningless.
Fortunately, there is a well-known tool to solve this problem: the weak form of the PDE. From
this point onward I will restrict attention to the one-dimensional problem. PDE (2.3) can be
written as a general continuity equation:

∂tρ(t, x) + ∂xφ(t, x) = 0 (5.29)

Here φ(t, x) is a flux. In our problem it takes the form

φ(t, x) = ρ(t, x)v(t, x) (5.30)
v(t, x) = −∂x(V (t, x) + σ log ρ(t, x)) (5.31)

Potential V is of course V = VUa + VUr + Vρ, as described above. VUa and VUr are differen-
tiable functions of space, but Vρ(ρ(x)) is discontinuous, since it depends on the discontinuous
function ρ(x). Continuity equation (5.29) is the strong form of the ρ PDE. To derive the weak
form, we multiple the strong form by a function of space, the test function w(x), which is arbi-
trary, except that we require it to have continuous derivatives and to satisfy any boundary condi-
tions we have imposed. We integrate over the spatial domain. Now, zero times anything is zero,
and the integral of zero is zero, so we have
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0 =

∫
Ω

w(x)(∂tρ(t, x) + ∂xφ(t, x))dx (5.32)∫
Ω

w(x)ρt(t, x)dx = −
∫

Ω

w(x)φx(t, x)dx (5.33)

It is convenient now to integrate the right-hand-side of (5.32) by parts, leading to∫
Ω

w(x)ρt(t, x)dx =

∫
Ω

wx(x)φ(t, x)dx (5.34)

By this trick we exchange differentiation of the discontinuous function φ with differentiation of
w, which is as nice as we need it to be. (5.34) is called the weak form of (5.29), because (5.34)
is a weaker assertion than (5.29). That is, if (5.29) is true, than (5.34) must also be true. How-
ever, to derive (5.29) from (5.34) requires additional assumptions—assumptions about the reg-
ularity of the functions ρ and φ, which are needed to make sense of (5.29). It is frequently the
case that the weak form is more fundamental than the strong form: i.e., that the weak form is
more closely related to the underlying physics, and the strong form derived from it with the
addition of the necessary regularity assumptions. (In this particular case, (2.3) is essentially a
Fokker-Planck equation, the derivation of which does indeed proceed through a weak form.)

Let us therefore use the weak form to analyze the dynamics of binary functions, in particular
the movement of the boundary of an aggregate. I will now assume the following form for ρ on
some interval [−L,L],

ρ(t, x) = ρmin + (ρmax − ρmin)θ(x− ut) (5.35)

That is, at time 0 we have a aggregate whose left border is at 0. The boundary of this aggre-
gate is moving rightward at velocity u (or leftward at velocity −u). Now,

ρt(t, x) = −(ρmax − ρmin)uδ(x− ut) (5.36)
ρx(t, x) = (ρmax − ρmin)δ(x− ut) (5.37)

Choose w to be a bump function with support [−ε, ε], where 0 < ε < L. For instance, the
following will work,
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w(x) = θ(ε− |x|)e1− 1
1−(x/ε)2 (5.38)

Note also that w(0) = 1, wx(0) = 0. Then the left-hand-side of (5.34) becomes

∫
Ω

w(x)ρt(t, x)dx =

∫ L

−L
−w(x)(ρmax − ρmin)uδ(x− ut)dx (5.39)

The right-hand-side is

∫
Ω

w(x)(∂x(ρVx) + σρxx)dx =

∫ L

−L
w(x)(∂x(ρ(VU,x + Vρ,x + σ∂x log ρ)))dx (5.40)

=

∫ L

−L
w(x)(ρxVU,x + ρVU,xx)dx (5.41)

−
∫ L

−L
wx(x)ρ(Vρ,x + σ∂x log ρ)dx (5.42)

=

∫ L

−L
w(x)((ρmax − ρmin)δ(x− ut)VU,x + ρVU,xx)dx (5.43)

−
∫ L

−L
wx(x)ρ

(
Vρ(ρmax)− Vρ(ρmin) + σ log

ρmax

ρmin

)
δ(x− ut)dx

(5.44)

Now take the limit as ε → 0 at t = 0. Since w(x) → 0 for any x 6= 0, the integral in (5.39)
reduces to

lim
ε→0

∫
Ω

w(x)ρt(0, x)dx = −(ρmax − ρmin)u (5.45)

Now for the right-hand-side. The second integral, (5.44), vanishes because wx(0) = 0 and
wx(x)→ 0 for any x 6= 0. The first integral, (5.43), becomes∫

Ω

w(x)(∂x(ρVx) + σρxx)dx = (ρmax − ρmin)VU,x (5.46)

Equating these, we get the simple result
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u = −VU,x (5.47)

That is, the velocity of movement of the boundary is negative the gradient of VU , which is ex-
actly the advection velocity due to chemical signals.

Now we need to deal with the second integral. For this purpose, design a new test function
w2(x) with supp(w2) = [−ε, ε], supp(w2,x) ⊆ [−ε, ε], w2(0) = 0, and w2,x(0) = 1. With this
test function we get

ρmax

ρmin
= e−(Vρ(ρmax)−vρ(ρmin))/σ (5.48)

That is, the jump in Vρ is as predicted from the Boltzmann distribution (2.161).

5.5.2 Why is it wrong?

This analysis produces results that are simple, clear, and wrong. The most serious wrong re-
sult is (5.47). Remember that VU = VUa + VUr . Attractant is a short-range signal compared to
repellent. Thus, at the edge of an aggregate, the gradient of attractant is steep, while the gradi-
ent of repellent is shallow. The result is that VU,x is almost always negative (i.e. attractive) in
the direction of the aggregate. The prediction, then, is that in a configuration like that analyzed
above, with an aggregate extending rightward from 0, the movement of the edge will essentially
always be in the positive direction. That is, aggregates will always shrink at every edge. This
makes no sense. First, worms are conserved, so it is not possible for all aggregates to shrink at
the same time. More fundamentally, a steep gradient of attractant in the direction of an aggre-
gate should make it attractive—it should cause worms to move towards the aggregate, causing
it to grow, which means that the boundary should move away from the center of the aggregate,
not towards it.

It is fairly obvious where this wrong result is coming from. In the binary model as analyzed
above, worms just inside the aggregate experience just one reason to move: the negative gradi-
ent of VU , which tells them to march rightward. Worms just outside the aggregate experience
the same VU gradient (remember, VU has continuous derivatives), so they also march rightward
at velocity −VU,x. With everyone marching rightward at the same speed, the boundary must
also move rightward.

The problem here is the assumption that Vρ is constant within the aggregate and also constant
(although different) outside the aggregate, and therefore not influencing movement. In reality,
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there must be a steeply increasing Vρ gradient. This can occur despite ρ being almost constant
within the aggregate, because V ′ρ(ρ) becomes large as ρ → ρmax. In fact, if I look closely at
plots of ρ and V = VU + Vρ, I find that ρ is slightly rounded near the edge of aggregates, while
V is much flatter. In the hard sphere limit (3.1) that (3.2) is intended to approximate, Vρ is not
really a function. It is vertical at ρmax, i.e., Vρ can have any positive value when ρ = ρmax. Thus,
just inside an aggregate Vρ,x > 0 and Vρ,x ≈ −VU,x.

I have attempted to develop a better theory that accounts for this by noting that, deep within
an aggregate, where ρ, Vρ, and VU really are all constant, the flux must be zero. If the flux is
zero in the center of a cluster, conservation dictates that it be zero elsewhere in the cluster.
From here I attempted to use the Rankine-Hugoniot condition to predict the velocity of the
boundary. This analysis also gives a clear and wrong answer. Under the assumption that there
is no flux within an aggregate, the aggregate can only grow. To correct this problem it is neces-
sary to hypothesize an ablative process by which worms leave the edge of an aggregate to coun-
teract the accretive process by which worms from outside pile on. The steep gradient of ρ at the
boundary should via the random movement of the worms, provide such an ablative process, as
can the (presumably) steeply increasing gradient of Vρ.

I feel confident that the answer is something along these lines, but they leave me with a puz-
zle. In the last few paragraphs I have utterly demolished the argument for the calculations I
did above, which were based on VU alone. My rationale for ignoring Vρ and the entropy term
σ log ρ was based on the assumption that their integrals were entirely predictable from a, ρmax,
and ρmin. Now I’m arguing that variation of Vρ is essential to make the binary model work.

And yet the binary model appears to work. Minimization of T̄U makes quantitative and qual-
itative predictions that agree with numerical solutions of PDEs (Figure 5.3). It seems unlikely
this is purely coincidence.

5.5.3 Can the problem be fixed?

Here is a possible resolution: it may be that the structure of ρ and Vρ very near the boundary
of an aggregate are always the same, and that (especially in the hard-sphere limit), the width
of this rim of altered Vρ approaches zero. If that is the case, then it makes sense that pattern is
predicted by T̄U . There should still be some influence of Vρ, but it would mostly be proportional
to the perimeter/area ratio. As I already argued, this is largely what T̄Ua amounts to. It should
be straightforward to explore this possibility numerically.
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5.6 Summary

In conclusion, PDE solutions and aggregation experiments show that the distribution of
worms rapidly approaches a state in which the density function is close to binary, i.e., having
only two values. Incorporating this observation into the model is a computationally tractable
way to predict equilibria of the PDE model, which seems to agree with the results of PDE so-
lutions. As a nonlinear model, it can even account for patterning, e.g. the apparent preference
for hexagonal symmetry. The theory is tractable in the sense of producing clear results. Those
results are clearly wrong, so more work is needed.
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Chapter 6

Prospects

6.1 This dissertation is a prolog

The long-term goals of this research are to determine the mechanisms of C elegans L1 aggreg-
ation—ultimately, both the proximate mechanism (“how” questions) and ultimate causation
(“why” questions). The work presented in this dissertation obviously falls far short of those am-
bitious goals. I have not addressed “why” questions at all. A satisfactory answer to the “how”
questions would necessarily have experimental and mathematical components. The experimen-
tal part of the answer would probably include identification of the chemical signals mediating
the behavior as well as the molecular mechanisms of the sensory response. Alex Artyukhin has
made some progress on this, for instance the identification of a sensory receptor gene srh–2 that
may be involved.

Previous chapters address the mathematical question, whether proposed physical mecha-
nisms can produce behavior like that observed. This question also is incompletely answered.
I believe I have shown that a model of the type proposed (i.e., PDEs (2.1) and (2.3) with an
attractant and a repellent signal) can produce behavior that resembles that experimentally ob-
served, at least superficially.

I would also like to claim that no simpler model based on known plausible biological and
physical mechanisms can do this. Of course, without some formal way of ordering models by
simplicity, I cannot prove this assertion. For instance, I have considered models in which a sin-
gle signal acts as a repellent at long range and an attractant at short range by virtue of distinct
negative and positive perceptual mechanisms. I can only get these models to work with careful
fine-tuning of perceptual parameters (i.e., the function VU ). It is a matter of judgment whether
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the need for fine-tuning does greater damage to the elegance of the model than having two sig-
nals does.

It is for these reasons that I say this dissertation is a prolog. It is not in any respect a com-
plete study.

Even if one accepts the claim to having identified simple mechanisms that can produce some-
thing very like the observed behavior, the work justifying this claim is incomplete. In the course
of the previous chapters I have frequently pointed out questions needing further work.

The rest of this chapter is divided into three sections. In the first, I describe questions brought
up in previous chapters (or questions that arise in a straightforward way from them) and the fur-
ther work needed on them. The next two sections are devoted to the bigger questions described
above: What are the actual physical and biological mechanisms of C elegans L1 aggregation
(“how”, and what is its purpose (“why”)?

6.2 Completion and continuation of ideas raised in previous
chapters

6.2.1 Energy functional errors

Chapter 2 was devoted to the development of time-decreasing free energy functionals for
the Keller-Segel system. I described a method of developing such functionals based on find-
ing functional antiderivatives of expressions that appear in the right-hand-side of PDEs. This
method fails for the worm model because the diffusion term, scaled by the derivative of a non-
affine VU , doesn’t have a functional antiderivative. I suggested nevertheless that the functionals
produced by radial integration of the expression from the PDEs might be useful approxima-
tions.

One thing to try is to improve on radial integration (2.58). Radial integration derives a can-
didate functional antiderivative by starting at F(0) and integrating radially out to F(ρ). There
is no reason to suppose that 0 works better than any other starting point. If the function whose
antiderivative you are looking for has a functional antiderivative, it doesn’t matter where you
start—you will always end up with the same answer (up to a constant of integration) . But if the
best you can do is an approximation, the approximation you end up with will indeed depend on
where you start. Perhaps the second most obvious place to start (after ρ = 0) is ρ = ρ̄, i.e., with
the density equal to the mean everywhere.
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6.2.2 Dynamics of binary density fields

In chapter 5 I described a puzzling result. In both experiments and numerical solutions of
PDEs, the density distribution becomes binary. Taking this observation as given, one can pre-
dict patterns of aggregation by minimization of the signal-dependent part of the total energy
function.

This works. But it shouldn’t, because, by using the weak forms of the PDEs to predict the
dynamics of binary density fields, one gets results that don’t agree with PDE solutions, and
that, indeed, don’t make sense. Apparently the only way to rescue these contradictions is to
take the Vρ-dependent terms into account. I suggested a possible resolution of this puzzle near
the end of chapter 5. It should be possible to test whether this idea works by numerically testing
the structure of the density function at the borders of aggregates.

6.2.3 Cellular automaton model of binary density fields

In chapter 5, I looked for binary density fields that minimize the total energy functional
(2.215) as a way of predicting equilibria. A weakness of the approach as I described it there
is that it can only explore patterns the searcher has foreseen in advance, for instance square or
hexagonal arrays of circles. While this is useful—in fact, I remain enthusiastic about exhaus-
tively testing the wallpaper groups in order to find out for certain what arrangement of circular
aggregates is optimal—this approach is limited by the imagination of the searcher. For instance,
in one study I didn’t describe, I tried to predict the pattern that would form at higher mean den-
sity (i.e., higher a) by testing which of three patterns minimized total energy. When, however, I
tested the results by numerical solution of the corresponding PDE, I found that it settled into a
fourth pattern that was not one of those I had tested.

A better way of exploring the possibilities, I think, would be to initialize (for instance) a
512× 512 array of cells randomly to either ρmax or ρmin, such that the number of ρmax cells ap-
proximates the desired a, then evolve the pattern forward according to the computed Ua = ga∗ρ
and Ur = gr ∗ ρ. This is formally a cellular automaton model, although it violates the spirit of
ordinary cellular automata by having a rule for evolution that is based on a very large neighbor-
hood.

There are, I think, two obvious useful ways of doing this. The first, closest in spirit to the
computations in chapter 5, is simply to seek minimum energy configurations by gradient de-
scent. For instance, compute the energy for every point in the grid. Find the ρmax cell with the
highest energy and the ρmin cell with the lowest energy, and swap them. Then adjust Ua and Ur
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to account for the changed density function. Such steps can be efficiently parallelized if the ad-
justments to Ua and Ur are small enough not to greatly affect the energies at most points. In this
way (with perhaps an Markov Chain Monte Carlo (MCMC) assist to avoid being trapped in lo-
cal optima) one hopes to find equilibrium density configurations without preconceptions about
the forms of those configurations.

The second way of using the cellular automaton model would attempt not just to find energy
minima, but also to simulate dynamics. One would assign a propensity to every possible move-
ment of worms from a ρmax to a ρmin cell. (Computation of propensities depends on progress on
the dynamics of binary density fields). From there the Stochastic Simulation Algorithm (SSA)
(or one of its more computationally efficient variants) is used to evolve forward in time, simu-
lating a possible trajectory of the binary field.

6.2.4 Morphological analysis

In chapter 4 I developed two methods for quantifying the pattern of aggregates: mathemat-
ical morphology, which quantifies the shapes of the aggregates, and Fourier analysis, which
quantifies their spatial pattern. These techniques can be applied to simulation results and im-
ages of aggregating L1s. In both cases, I noted differences between the experimental and simu-
lation results.

Fourier analysis of simulation results with periodic boundary conditions predictably pro-
duces a pattern of discrete spots. Fourier analysis of experimental images produces a powder
diffraction pattern, i.e., a series of rings rather than discrete spots. To compare these, I plan to
produce kernel density functions for power as a function of wavenumber magnitude k = ‖k‖
for both types of results and compare them.

Simulations produce aggregates with idealized shapes (e.g., near perfect circles). The shapes
observed in experiments are necessarily less ideal than those in simulations. There is an ob-
vious explanation of this discrepancy. In PDE solutions, the worms are represented by a con-
tinuous density function of space. The reality is discontinuous, and individual worms are big
enough to produce visible distortions of the shape. I believe this problem can be addressed by
sampling the density function produced by simulations. That is, instead of analyzing the con-
tinuous density function directly, place 9000 worms on a 1 cm× 1 cm square (for a simulation
carried out at ρ̄ = 9000 cm−2) with location probabilities proportional to ρ(x), replace each
with a worm-shaped pattern of dark pixels (at whatever degree of realism is necessary), and
then carry out the morphological analysis.

The analysis in chapter 4 was based on just a single simulation and a single experiment. I
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have some 200 time-lapse videos of experiments made by Alex Artyukhin under different con-
ditions.

The endgame for this part of the project is fitting and identifiability analysis. In broad strokes,
one runs simulations of different models, quantifies the results, and compares the vector of
numbers from Fourier and morphological analysis from the simulations with the vector of num-
bers from experiment and searches for the best match. “Simulations of different models” here
refers not just to qualitatively different models, but to simulations of the same model with dif-
ferent parameter values. Because of the large number of simulations required, this process is
computationally demanding. I don’t believe it is computationally feasible with numerical PDE
solutions of the type described in chapter 3. I hope, however, that binary density cellular au-
tomaton models will make fitting computationally feasible. (Probably the simple gradient de-
scent computation would be adequate.)

6.2.5 Quantification of aggregation

There is one specific additional way in which morphological analysis may be useful. Many
of the experiments Alex did had the aim of finding out what things are necessary for aggrega-
tion to happen. For instance, he tested mutants lacking the function of specific chemosensory
neurons. These experiments were inconclusive. When he first did them, he thought that mutants
lacking functional ASE and ASH neurons failed to aggregate. In later experiments, however,
he did see aggregation of these genotypes. In these experiments aggregation was evaluated vi-
sually. I believe quantification of aggregation might clarify the interpretation of these experi-
ments.

6.2.6 Three dimensional models

In the laboratory we maintain C elegans on agar surfaces. This two-dimensional environment
is unnatural. In the wild they live and move through three dimensions, for instance the interior
of a rotting apple. Furthermore, even in the experiments we have done, the agar on which the
worms move is about 3 mm deep. The worms are confined to the surface, but diffusible chemi-
cal signals are not.

I developed an approximate method of simulating a hybrid two/three dimensional model, in
which worms are confined to a two-dimensional agar surface but chemical signals diffuse into
the depth of the agar. In this model the concentration of a chemical signal U is a function of
space in three dimensions, which I will represent as a two-vector x and a depth, z ∈ [0, L],
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where z = 0 is the surface where the worms are and L is the depth of the agar, 3 mm. I assume
Neumann boundary conditions in the z dimension:

dU(x, z)

dz

∣∣∣∣
z=0

=
dU(x, z)

dz

∣∣∣∣
z=L

= 0 (6.1)

Now write U(x, z) as a Fourier series in z

U(x, z) =
∞∑
k=0

Ûk(x) cos(kπz/L) (6.2)

U(x, z) follows (2.1), but the Laplacian is now three-dimensional. I will write it as∇2
3 =

∇2
x + ∂2/∂z2 . Substituting (6.2) into (2.1),

U̇(x, z) =
∞∑
k=0

(
−γÛk(x) cos(kπz/L) +D∇2

3(Ûk(x) cos(kπz/L))
)

(6.3)

+ sρ(x)δ(z)
∞∑
k=0

˙̂
Uk cos(kπz/L) =

(
∞∑
k=0

−γÛk(x) +D∇2
xÛk(x)−Dk

2π2

L2
Ûk(x) +

s

L
ρ(x)

)
cos(kπz/L)

(6.4)

=

(
∞∑
k=0

−(γ +D
k2π2

L2
)Ûk(x) +D∇2

xÛk(x) +
s

L
ρ(x)

)
cos(kπz/L)

(6.5)

˙̂
Uk = −(γ +D

k2π2

L2
)Ûk +D∇2

xÛk +
s

L
ρ(x) (6.6)

In (6.3), new signal released by the worms at z = 0 is exactly at z = 0, hence the Dirac δ
function. To get from (6.3) to (6.4), I used the Fourier series for the Dirac δ function δ(z) =
(1/L)

∑
k cos(kπz/L). (The 1/L factor reflects the dilution of the signal into depth L—in

practice, I simply absorb this factor into the parameter s.) The upshot, (6.6), is that each Fourier
component Ûk(x) satisfies a two-dimensional PDE that is exactly like (2.1), except that the de-
cay rate is increased from γ to γ + Dk2π2/L2. Thus this model is just like a multiple signal
model, in which each of the original signals is split into an infinite series of signals of decreas-
ing life time. For instance, with D = 1× 10−5 cm2s−1, γ = 0.001 s−1 (these are the parameters
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used for repellent above), the lifetimes of Fourier components 0 to 3 are 1000 s, 477 s, 186 s and
92 s. In practice one truncates the series at some finite k on the grounds that a signal that decays
very rapidly can have little effect on behavior.

I ran some PDE solutions that simulated diffusion of signals in three dimensions in this way.
It had little effect on the results. The behavior was dominated by the effect of the k = 0 Fourier
component, which acts just like the single U in two dimensions.

The obvious way to simulate both worms and signals moving in three dimensions is simply
to run the finite element solution on a three-dimension mesh. In principle the PDE solutions al-
ready done in one and two dimensions could be just as easily carried out in three dimensions.
This of course would be computationally intensive. I don’t have any plans to try it. If, however,
cellular automata models can be efficiently parallelized, it might be worth trying three dimen-
sional versions.

6.3 What is really going on?

Can these modeling studies contribute to the elucidation of biological mechanisms of C el-
egans L1 aggregation? I will discuss two possibilities here: determining characteristics of the
chemical signals, and predicting the results of an experiment that could be done to investigate
the details of worm behavior.

6.3.1 Signal characteristics

The model postulates two chemical signals. Can the mathematical modeling help in identify-
ing these molecules? Four model parameters (two for each molecule) are characteristics of the
chemical signals: the diffusion constants Da and Dr and the decay rates γa and γr. These show
up in the results in two main ways. First, the decay rates set the time scale for changes in signal
concentrations. Without any way to observe the chemical signals themselves, this is difficult
to measure directly. More useful is the range of each molecule

√
D/γ. This determines such

things as size and spacing of the aggregates. Based on a few numerical experiments, the range
of the repellent is probably the main thing that determines aggregate spacing.

Diffusion constants of small molecules in water don’t vary a great deal. One way to under-
stand this is the Stokes-Einstein diffusion law (Miller 1924). A molecule of molecular mass M
is predicted to have diffusion constant

147



D ≈ kBT

η
3
√

6π2Mv̄
(6.7)

Here kB is Boltzmann’s constant, T is the temperature, η is the viscosity of water, and v̄ is the
partial specific volume of the molecule. The formula is based on the (dubious) assumption that
molecular motions can be described by viscous drag forces, and that the molecule is spherical.
It is, in that sense, an upper bound: elongated molecules diffuse more slowly than the Stokes-
Einstein relation predicts. For water (M = 18 Da, v̄ = 1 cm3g−1), the smallest molecule a
biologist typically encounters, (6.7) predicts D ≈ 1.1× 10−5 cm2s−1 at T = 293 K. (An exper-
imental estimate of the diffusion constant of water is 2.3× 10−5 cm2s−1 (Agmon 1995), so the
Stokes-Einstein approximation is at least of the correct order of magnitude.)

Assuming T = 293 K, η = 1 cP, and v̄ = 0.7 cm3g−1 (a typical value for organic molecules),
the Stokes-Einstein approximation reduces to

D ≈ 3.3× 10−5M−1/3cm2s−1, (6.8)

for M in Da. Larger molecules have smaller diffusion constants (especially if elongated), but
since it is an inverse cube root relationship, even macromolecules of modest size diffuse fairly
rapidly. For instance, the molecular weight corresponding to D ≈ 1× 10−6 cm2s−1 is 35 000 Da,
e.g., a small protein.

Since the observed spacing of aggregates is about λ = 1 mm, for D ∈ [10−6, 10−5] cm2s−1

the relation λ ≈
√
D/γ suggests that one of the signals has a lifetime (1/γ) in the range 1000

to 10 000s, i.e. hours.

6.3.2 Simulating individual worm movement

The previous section was concerned mostly with those aspects of reality that appear in the
U PDE (2.1). The U PDE is mostly physics and chemistry (although the sρ term does reflect
biology). The ρ PDE (2.3), in contrast, is about biology, and its relationship to reality is more
fraught than that of the U PDE.

The parameter σ describes random worm movement, This movement is presumably ex-
ploratory, and presumably energetically costly. Although it is just a constant in the model,
in reality it is probably a function of the worm’s internal state and environment. (Indeed, ex-
ploratory behavior has been a focus of C elegans research, e.g. Gallagher et al (2013), Helms
et al (2019).) The potential functions Vρ, VUa , and VUr are the most complex interfaces between
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the model and biology. The chemotactic response potentials VUa and VUr are based on little
more than guesswork.

There is, in principle, a straightforward way to measure σ (which may be a function) and the
potential functions. If we track individual worms, σ and ∇V can be measured from the second
and first moments of ∆x(t). We also can observe ρ directly, and, while we can’t observe Ua
and Ur directly, it is reasonable to presume that they decrease monotonically with distance from
the center of the nearest aggregates. There is a problem with this plan: we can’t track individual
worms in the existing bright-field video images. There are too many of them, and they are too
crowded. This problem has a solution. We can genetically engineer worms to be fluorescent
(but normal in every other way). Then, by introducing a small number of the fluorescent worms
into an aggregation experiment and acquiring fluorescence images in addition to bright-field,
it should be possible to track the fluorescent tracer worms. Although Alex Artyukhin has done
experiments with fluorescently tagged worms (e.g. Figure 1.2), he has not done this precise
experiment with dilute tracer worms.

I believe it would be useful to generate the kind of data we would expect such tracer exper-
iments to produce, and preview tracking and analysis methods. Although the PDE solutions
(chapter 3) do not directly produce such data, it is, I believe, straightforward to introduce some
tracer worms into the simulated environment and generate tracks for them. That is, given a PDE
solution, we know ρ(x), Ua(x) and Ur(x) and therefore the potentials that depend on them for
every point in the domain. By placing a tracer worm randomly and simulating its movement
(for instance, with normally distributed ∆x’s of the proper mean and variance) we can generate
trajectories x(t). We can then test tracking and analysis methods on these simulated data to find
out which experimental conditions (e.g., how many tracer worms to use?) and analysis methods
produce the best results.

6.4 The “Why?” question: what is the selective advantage of
aggregation, or of the mechanisms behind it?

In this work I have emphasized the use of free energy functionals (which are sometimes but
not always Lyapunov functionals) because, I believe, they offer explanations at a level interme-
diate between ”We made up these equations.” and ”When we solve our equations, this is what
the results look like.” I would like to finish by mentioning an additional reason for being inter-
ested in these functionals.

Variational principles are fundamental to classical physics. This is partly for the reason I just
mentioned: they provide insights at a level between equations of motion and trajectories. But
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there is a second reason—variational explanations are more fundamental—more closely linked
to underlying quantum mechanical mechanisms. The question then arises—is there a funda-
mental underlying explanation for variational principles in biology?

There is! It is arguably even more fundamental than in physics. Organisms evolve to maxi-
mize fitness. The peculiar genetics of C elegans makes this point even more relevant. C elegans
has two sexes, but they are not male and female: they are male and self-fertilizing hermaphrodite.
The hermaphrodite is best understood, in the words of Judith Kimble, as ”a female who has
become independent”. That is, the hermaphrodite is a female in almost every way. However,
during development she makes and stores a few hundred sperm. She then switches to produc-
ing ova. She can fertilize her own ova with stored sperm. The self-progeny of a hermaphrodite
are themselves almost all hermaphrodites. She can also mate with a male and use his sperm to
fertilize ova. However, in the wild self-fertilization is the predominant mode of reproduction
(Barriere and Felix 2005).

Self-fertilization means that a single worm can colonize an environment. Thus, it is not un-
common that, in a single rotting apple, almost all the worms are hermaphrodites and all de-
scended from a single hermaphrodite. (But see also Sivasundar and Hey (2005).) Under these
conditions it is advantageous to maximize not arithmetic mean fitness, but geometric mean fit-
ness. (Rivoire and Leibler (2011) give the most thorough exposition of the reasons and conse-
quences. But the central argument is presented in a delightfully simple paper by Kelly (1956).)

When maximizing arithmetic mean fitness, it is every worm for herself—each worm is ex-
pected to behave in the way that maximizes her individual fitness. But geometric mean fitness
is maximized by collective behavior, in which worms act to benefit the genotype. It therefore
becomes plausible that C elegans L1 behavior may have evolved to maximize a functional that
is a sum over the entire population.

As an example, it is striking that, even after long times, not all worms end up in aggregates.
There are always a few, around 1% of the population, moving freely outside the aggregates.
How can this behavior be optimal? In free energy functional terms this behavior arises from
the entropy term σρ log ρ. The derivative of entropy becomes infinite as ρ approaches zero. If
other terms of the free energy functional are bounded, there is always some entropy benefit to
be gained by increasing ρ from 0 to a small positive number. Entropy terms arise naturally from
maximization of geometric mean fitness.

Suppose that there are two possible environments the worms may unpredictably find them-
selves in. In environment 1, which over many generations occurs with probability p1, worms
in aggregates survive, while worms outside aggregates die. In environment 2, (probability p2)
probability worms in aggregates die, while those outside aggregates survive. Let us also sup-
pose environment 1 is much more probable than 2, e.g. p1 = 0.99, p2 = 0.01. (This is, of
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course, a grossly oversimplified model for the purpose of illustration.)

If the population strategy is to place Na worms in aggregates and No = N − Na out-
side, (where N is the population size) the mean fitness of the population (i.e., the proportion
of worms that survive) is f1 = Na/N when environment 1 happens and f2 = No/N in environ-
ment 2. The arithmetic mean fitness is then

AM(f) = p1f1 + p2f2 (6.9)

=
Na

N
p1 +

No

N
p2 (6.10)

=
1

N

(
N∑
i=1

f̄i

)
(6.11)

= AM(f̄i), (6.12)

where f̄i = p1 if worm i is in an aggregate and f̄i = p2 is the mean fitness (over the possible
environments) of individual worm i. That is, the arithmetic mean fitness of the population is
simply the arithmetic mean of the individual worm arithmetic mean fitness. With p1 > p2 as
above, the strategy that optimizes AM(f) is Na = N , No = 0. That is, every worm should be
in an aggregate.

The strategy that maximizes geometric mean fitness GM(f) is different.

GM(f) = fp11 fp22 (6.13)
log(GM(f)) = p1 log(f1) + p2 log(f2) (6.14)

= p1 log
Na

N
+ p2 log

No

N
(6.15)

= p1 log(Na) + p2 log(No)− logN (6.16)
= AM(log(Ni))− logN (6.17)

Since log is an increasing function, maximizing geometric mean fitness is equivalent to maxi-
mizing the arithmetic mean of the log of fitness. For optimization purposes, we can ignore the
constant logN . Thus, to maximize geometric mean fitness we maximize the mean of log(Ni).
Under the constraints Na, No > 0, Na + No = N , geometric mean fitness is maximized when
Na = Np1, No = Np2. In other words, most of the worms are in aggregates, but a small num-
ber are outside, just as observed. The optimum geometric mean fitness, then, is
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log(GM(f)) = p1 log(p1) + p2 log(p2) = −S, (6.18)

where S is entropy.

Thus, the strategy that is optimal to maximize geometric mean fitness (in this oversimpli-
fied model) is the one that minimizes entropy. Although the expressions are not the same, this
entropy and the σρ log ρ entropy term in the free energy functionals are related.
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Appendix: Videos

Several video files are provided.

N2 5e5 washed.avi This video (courtesy of Alexander Artyukhin) shows the time course of
aggregation after 500 000 starved L1s were pipetted onto the center of a petri plate. The
recording covers 720 min. There is one frame per minute of real time, and the playback
rate is 7 s−1. Still images in Figures 4.1A, 4.3A, 5.1C.

neumannBC1d.mov Numerical solution of attractant-only model in one dimension with Neu-
mann boundary conditions (Figure 3.2A. This and all following videos are 200s long at
15 s−1. Time is displayed as “days, H:MM::SS”. The first 100 s (1500 frames) of video
cover the interval from 0 to 10 000 s (2:46:40) —the remaining 100 s from 10 000 to
200 000 s (2 days, 7:33:20). The two numebrs below each panel are the minimum and
maximum of the plotted field.

neumann.mov Numerical solution of attractant-only model in two dimensions with Neumann
boundary conditions (Figure 3.2B.

periodicBC1d.mov Numerical solution of attractant-only model in one dimension with periodic
boundary conditions (Figure 3.3A.

periodic.mov Numerical solution of attractant-only model in two dimensions with periodic
boundary conditions (Figure 3.3B.

repellent1d.mov Numerical solution of attractant+repellent model in one dimension with peri-
odic boundary conditions (Figure 3.4A.

repellent.mov Numerical solution of attractant+repellent model in two dimensions with peri-
odic boundary conditions (Figure 3.4B.
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cooldown1d.mov Numerical solution of attractant+repellent model with cooldown in one di-
mension with periodic boundary conditions (Figure 3.7A.

cooldown.mov Numerical solution of attractant+repellent model with cooldown in two dimen-
sions with periodic boundary conditions (Figure 3.7B.
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