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A free semigroup algebra is the wot-closed algebra generated by an
n-tuple of isometries with pairwise orthogonal ranges. The interest in
these algebras arises primarily from two of their interesting features.
The first is that they provide useful information about unitary invari-
ants of representations of the Cuntz–Toeplitz algebras. The second is
that they form a class of nonself-adjoint operator algebras which are of
interest in their own right. This class contains a distinguished repre-
sentative, the “non-commutative Toeplitz algebra,” which is generated
by the left regular representation of the free semigroup on n letters and
denoted Ln. This paper provides a general structure theorem for all
free semigroup algebras, Theorem 2.6, which extends results for impor-
tant special cases in the literature. The structure theorem highlights
the importance of the type L representations, which are the representa-
tions which provide a free semigroup algebra isomorphic to Ln. Indeed,
every free semigroup algebra has a 2 × 2 lower triangular form where
the first column is a slice of a von Neumann algebra and the 22 entry
is a type L algebra. We develop the structure of type L algebras in
more detail. In particular, we show in Corollary 1.9 that every type
L representation has a finite ampliation with a spanning set of wan-
dering vectors. As an application of our structure theorem, we are
immediately able to characterize the radical in Corollary 2.9. With
additional work, we obtain Theorem 4.5 of Russo–Dye type showing
that the convex hull of the isometries in any free semigroup algebra
contains the whole open unit ball. Finally we obtain some information
about invariant subspaces and hyper-reflexivity.

Background. The study of the non-commutative analytic Toeplitz
algebra was initiated by Popescu [19, 20, 21] in the context of dilation
theory. In particular, he obtains an analogue of Beurling’s theorem for
the structure of its invariant subspaces. A detailed analysis of this
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algebra is contained in the authors’ papers [10, 11, 12] and Kribs [16]
and Arias–Popescu [1, 2] which develop the analytic structure of these
algebras. In particular, there is a natural map from the automorphism
group onto the group of conformal automorphisms of the complex n-
ball. The connection with dilation theory comes from a theorem of
Frahzo, Bunce and Popescu [14, 15, 7, 18], which shows that every
contractive n-tuple of operators has a unique minimal dilation to an
n-tuple of isometries with pairwise orthogonal ranges. Popescu has a
collection of papers pursuing analogues of the Sz. Nagy–Foiaş theory
in this context.

In addition, [10] introduces the general class of free semigroup al-
gebras, and demonstrates how they may be used to classify certain
representations of the Cuntz–Toeplitz algebra. A representation on H
of the Cuntz–Toeplitz algebra is atomic if there is an orthonormal ba-
sis for H which is permuted up to scalars by the generating n-tuple of
isometries. Atomic representations are completely classified by making
use of certain projections in the free semigroup algebra associated to
the representation which are not apparent in the von-Neumann algebra
generated by the representation. A smaller class of representations had
already been studied by Bratteli and Jorgensen [5] in connection with
the construction of wavelets.

In [4], Bratteli and Jorgensen introduced a larger class of representa-
tions of the Cuntz algebra, the finitely correlated representations. The
terminology arises because such representations have a finite dimen-
sional cyclic subspace which is invariant for the adjoints of the iso-
metric generators. They observe that the isometries are obtained from
the Frahzo–Bunce–Popescu dilation of the finite rank n-tuple of oper-
ators obtained by compressing the isometries to this cyclic subspace.
Recently in [9], Davidson, Kribs and Shpigel have completely classi-
fied all finitely correlated representations up to unitary equivalence,
again by making use of spatial invariants evident in the associated free
semigroup algebra.

Impetus for classifying representations of the Cuntz algebra comes
from two different developments in C*-algebras. The work on wavelets
has already been mentioned, but we add that a very recent paper by
Bratteli and Jorgensen [6] shows how to systematically generate a huge
family of wavelets by connecting them to a class of representations of
the Cuntz algebra. The other direction of interest is the classification
of wot-continuous ∗-endomorphisms of B(H) initiated by Powers [22].
It is an easy result to relate these endomorphisms to representations of
the Cuntz–Toeplitz algebra.
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Our Results. Take an arbitrary isometric n-tuple S = [S1 . . . Sn],
which we may think of either as n isometries acting on a common
Hilbert spaceH or as an isometry fromH(n) intoH. The free semigroup
algebra S is the wot-closure of the algebra of (non-commuting) poly-
nomials in the Si. This is the span of the operators Sw = w(S1, . . . , Sn)
for all words w in the free semigroup F+

n on n-letters. The ideal S0

generated by {S1, . . . , Sn} plays a central role. If S0 = S, then S is a
von Neumann algebra. Unfortunately we do not know if this situation
ever occurs. Otherwise, S0 is an ideal of codimension one.

When S0 is a proper ideal, there is a canonical homomorphism of S
into Ln. We show that this map is always surjective, and the quotient
of S by the kernel is completely isometrically isomorphic and weak-∗
homeomorphic to Ln. A free semigroup will be called type L if it is
isomorphic to Ln. This result shows that these algebras all have the
same operator algebra structure in the sense of operator spaces.

Moreover, we identify the kernel of the canonical homomorphism of
S onto Ln as the ideal J =

⋂
k≥1 Sk

0. This ideal contains a greatest pro-
jection P , and it is shown that J = WP where W is the von Neumann
algebra generated by {S1, . . . , Sn}. This leads to our central structure
theorem which decomposes S as a lower triangular 2× 2 matrix with
WP occupying the first column, and the 22 entry is a type L algebra.
This allows us to weaken the definition of type L from an isometric
isomorphism to a strictly algebraic isomorphism. We also obtain a
description of the radical of S.

Our structural results extend the structural results of [9, 10]: in
those papers, the classes of atomic representations [10] and finitely cor-
related representations [9] are classified by obtaining a structure theo-
rem of this type. In the more concrete contexts considered in [9, 10],
complete classification up to unitary equivalence is possible because of
additional information which can be read off from this structure.

We further delve into the structure of type L algebras. A wander-
ing vector is a unit vector ξ such that {Swξ : w ∈ F+

n } is orthonormal,
whence the restriction of S to the subspace they span is unitarily equiv-
alent to Ln. The most perplexing riddle about these algebras is whether
they necessarily have wandering vectors. However, while we have been
unable to determine whether wandering vectors exist for every type L
algebra, we show that if S is type L, then some finite ampliation of
S has wandering vectors. In fact, we show that there is a finite am-
pliation which has a spanning set of wandering vectors. We strongly
suspect that every type L representation has wandering vectors. If so,
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the question of whether every free semigroup algebra has a wandering
vector then reduces to whether one can be self-adjoint.

In section 3, we provide a variety of examples which exhibit some
of the results in interesting contexts. A reader who is unfamiliar with
the earlier literature may wish to examine some of the examples before
going on. In particular, Example 3.9 provides many easy examples of
type L representations. Example 3.5 provides some easily described
examples which are not type L.

We show that every isometry in Ln is mapped to an isometry in
every type L representation. This lies much deeper than the fact that
the map is completely isometric because it depends on the existence
of sufficiently many wandering vectors. This allows us to study the
geometry of the unit ball. We show that every element of the open ball
in any free semigroup algebra is the convex combination of finitely many
isometries. The key device is a factorization theorem which shows that
whenever A lies in the open unit ball of S, there is another element B
such that A∗A+B∗B = I, or equivalently that [ AB ] is an isometry.

Finally, we examine invariant subspaces of these algebras. The re-
sults are not definitive, and serve to highlight certain problems which
remain. However when the representation of On is type III, the algebra
S is hyper-reflexive with distance constant 3.

Notation. The free semigroup on n letters F+
n consists of all

(non-commuting) words in n symbols {1, . . . , n} including the empty
word, which is the identity element. Use |w| to denote the length of
the word w. Form the Fock space Kn = `2(F+

n ) with orthonormal basis
{ξw : w ∈ F+

n }. The left regular representation λ of F+
n is given by

λ(v)ξw = ξvw for v, w ∈ F+
n . Set Li := λ(i). Then Ln is the free

semigroup algebra generated by L = [L1 . . . Ln]. We write Lw for
w(L1, . . . , Ln).

The C*-algebra En = C∗(L1, . . . , Ln) is the Cuntz–Toeplitz algebra.
The C*-algebra generated by any n-tuple of isometries S such that
SS∗ =

∑n
i=1 SiS

∗
i = I is uniquely determined up to ∗-isomorphism as

the Cuntz algebra On. There is a canonical quotient map of En onto
On sending Li to Si whose kernel equals the compact operators K on
Kn. Any representation of En therefore decomposes as a multiple of the
identity representation plus a representation that factors through On.
This decomposes any isometric n-tuple S into a multiple of L plus a
Cuntz n-tuple. In operator theoretic terms, this is known as the Wold
decomposition.

Let An denote the norm-closed unital nonself-adjoint algebra gener-
ated by L. The norm-closed unital nonself-adjoint algebra T generated
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by an arbitrary isometry S is a subalgebra of either En or On. However
the quotient from En onto On is completely isometric on An. Thus
there is a unique operator algebra structure on An, and T is always
completely isometrically isomorphic to An. Popescu calls An the non-
commutative disk algebra.

Every element A of Ln has a Fourier series A ∼
∑

w∈F+
n
awLw deter-

mined by Aξ∅ =
∑

w∈F+
n
awξw. To make sense of this, we use the Cesaro

means
Σj(A) =

∑
|w|<j

(
1− |w|

j

)
awLw.

These are completely positive unital maps from Ln into An such that
A = sot–limj→∞Σj(A) (see [10]).

The ideal L0
n of Ln generated by {L1, . . . , Ln} has codimension one,

and consists of all elements of the form
∑n

i=1 LiAi, where Ai ∈ Ln. The
powers of this ideal, L0,k

n , will play a useful role.
If H is a Hilbert space, H(k) denotes the direct sum of k copies of H.

For an operator T ∈ B(H), we use T (k) to denote the direct sum of k
copies of T acting on H(k). Let Mk denote the k × k scalar matrices.
If A is any operator algebra contained in B(H) and ϕ is a linear map
of A into another operator algebra B, then ϕ(k) denotes the map from
Mk ⊗ A into Mk ⊗ B which acts as ϕ on each matrix entry. Recall
that ϕ is completely bounded if ‖ϕ‖cb := supk≥1 ‖ϕ(k)‖ is finite.

Acknowledgements. The first author would like to thank East
Carolina University for providing the Thomas Harriott Distinguished
Visiting Professorship for a one semester visit where part of this work
was accomplished.

1. Maps onto Ln

Let S be an arbitrary free semigroup algebra acting on a Hilbert
space H generated by isometries S1, . . . , Sn. Our first result shows
that in some sense, Ln has a universal property.

Theorem 1.1. Suppose ϕ : S → Ln is a homomorphism such that
ϕ(Si) = Li. If ϕ is wot-continuous, then ϕ is onto and S/ ker(ϕ)
is completely isometrically isomorphic to Ln. Moreover this map is a
weak∗–weak∗ homeomorphism.

Proof. Let An ⊆ Ln and T ⊆ S be the norm-closed unital algebras
generated by {L1, . . . , Ln} and {S1, . . . , Sn} respectively. The norm-
closed nonself-adjoint algebra generated by n isometries has a unique
operator space structure as noted in the introduction. Consequently,
ϕ|T is a complete isometry of T onto A.
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Let A =
∑

w∈F+
n
Aw ⊗ Lw ∈ Mk ⊗ Ln be given. Define an element

Xj in Mk ⊗ T by

Xj =
∑
|w|<j

Aw(1− |w|
j

)⊗ Sw.

Then ϕ(k)(Xj) = Σ
(k)
j (A). Thus

‖Xj‖ = ‖Σ(k)
j (A)‖ ≤ ‖A‖.

Hence the bounded sequence Xj has a wot-convergent subnet Xjα .
Let X = wot–limXjα . It follows that

ϕ(k)(X) = wot–limϕ(k)(Xjα) = wot–lim Σ
(k)
jα

(A) = A.

Therefore ϕ(k) is surjective for every k ≥ 1.
The equalities above show that

‖A‖ ≥ ‖X‖ ≥ ‖ϕ(k)(X)‖ = ‖A‖.
So the map ϕ̃ of S/ ker(ϕ) onto Ln induced by ϕ is a complete isometry.
This argument actually shows that ker(ϕ) is proximal in S.

Since S and ker(ϕ) are wot-closed, and thus weak-∗ closed, the
quotient S/ ker(ϕ) inherits a weak-∗ topology. Moreover the map ϕ
is wot–wot continuous and thus is weak∗–wot continuous. However
the wot and weak∗ topologies coincide on Ln by [10, Corollary 2.12].
Hence ϕ is weak∗–weak∗ continuous. Therefore the map ϕ̃ is weak∗–
weak∗ continuous.

By general functional analytic arguments, ϕ̃ is the dual of a map ψ
from the predual of Ln to the predual of S/ ker(ϕ). Moreover, since
ϕ̃ is an isometric isomorphism, so is ψ. It now follows that ϕ̃−1 is the
dual of ψ−1, and therefore is weak∗ continuous. Consequently, ϕ̃ is a
weak∗–weak∗ homeomorphism.

We shall call a free semigroup algebra on n generators type L if there
is an wot-continuous injective homomorphism of S into Ln taking
each generator Si to Li. Theorem 1.1 shows that type L algebras are
completely isometrically isomorphic and weak∗–weak∗ homeomorphic
to Ln.

The following corollary is immediate and is our motivating example
for the previous result. It demonstrates the central role of wandering
vectors in this discussion. The second corollary extends this to the case
in which S acts on a space which is spanned by its wandering vectors.

Corollary 1.2. Suppose ζ ∈ H is a wandering vector for S, and let
M = S[ζ] be the cyclic invariant subspace for S generated by ζ. Let
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U : M → Kn be the unitary which maps w(S)ζ to ξw for w ∈ F+
n .

For T ∈ S, define ϕ(T ) = U(T |M)U∗. Then ϕ : S → Ln is a wot-
continuous, completely contractive epimorphism. Moreover, if J is the
kernel of the restriction map from S onto S|M, then S/J is completely
isometrically isomorphic and weak∗–weak∗ homeomorphic to Ln.

Corollary 1.3. Suppose that ζj for j ∈ J are wandering vectors for S.
PutMj = S[ζj] and suppose that H =

∨
j∈JMj. Then S is completely

isometrically isomorphic and weak∗–weak∗ homeomorphic to Ln.

Proof. Suppose that T ∈ S and set Tj := T |Mj
. The unitary equiv-

alence between each algebra S|Mj
and Ln shows that Tj ' T1 for all

j ∈ J . Thus if T1 = 0, then Tj = 0 for every j. Since the span of the
subspaces Mi are dense in H, we then conclude that T = 0. Hence
the the restriction map ϕ : S → Ln obtained by restricting T to M1

is injective, and the result follows from the Corollary 1.2.

Next we wish to determine when there exist homomorphisms of S
onto Ln. The answer is contained in the wot-closed ideal

S0 = 〈S1, . . . , Sn〉 = wot−span{Sw : |w| ≥ 1}.

It is evident that either this ideal has codimension 1 or it equals S. We
conjecture that if S0 is a proper ideal in S, then S has a wandering
vector. While we cannot show this, we will come close.

Lemma 1.4. Suppose that S0 is a proper ideal in S. Then there is
an integer p such that S(p) has wandering vectors.

Proof. Let ρ1 be the wot-continuous linear functional on S which
annihilates S0 and ρ1(I) = 1. By extending ρ1 to a wot-continuous
functional on all of B(H), we may find vectors ζ1, . . . , ζp and η1, . . . , ηp

such that ρ1(T ) =
∑p

j=1〈Tζj, ηj〉. Let ζ =

(
ζ1
...
ζp

)
and η =

( η1

...
ηp

)
be

vectors in H(p). Then ρ1(T ) = (T (p)ζ, η) for all T ∈ B(H). Since
ρ1 annihilates S0, it follows that η is a non-zero vector orthogonal to

the cyclic subspace S
(p)
0 [ζ] but not orthogonal to S(p)[ζ]. So we may

choose a unit vector ξ in S(p)[ζ] 	 S
(p)
0 [ζ]. Then S

(p)
0 [ξ] is contained

in S
(p)
0 [ζ]. So ρ(T ) := (T (p)ξ, ξ) is a wot-continuous state on B(H)

which annihilates S0.
We claim that ξ is a wandering vector for S(p). Indeed, if v and

w are distinct words in F+
n with |v| ≥ |w|, there is a word u so that

v = uv′ and w = uw′ where either w′ = ∅ or v′ = iv′′ and w′ = jw′′ for
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i 6= j. In the first case,

(Svξ, Swξ) = (Sv′ξ, ξ) = ρ(Sv) = 0.

In the latter case, Sv′ξ ∈ SiH while Sw′ξ ∈ SjH. So

(Svξ, Swξ) = (Sv′ξ, Sw′ξ) = 0

Thus {Svξ} is orthonormal, and ξ is wandering.

This allows us to make a sharp dichotomy between the two possibil-
ities for S0. Recall that an operator algebra A is a complete quotient
of B if B has an ideal J such that B/J is completely isometrically
isomorphic to A.

Theorem 1.5. Let S be a free semigroup algebra. Then either

(1) S0 = S and S is a von Neumann algebra, or
(2) S0 is a proper ideal, and there is a canonical homomorphism

of S onto Ln, making Ln a complete quotient of S.

Proof. If S0 = S, then there is a net Aα of polynomials in S0 wot-
converging to the identity. Since S∗i Sj = δijI always belongs to S, it
follows that S∗iAα lies in S and converges weakly to S∗i . Hence S is
self-adjoint.

Conversely suppose that S0 is proper. Let ξ be the wandering vector
for S(p) constructed in Lemma 1.4. The restrictions of Si to the invari-
ant subspace P := S(p)[ξ] are simultaneously unitarily equivalent to
the generators Li of Ln. Let ϕ denote the homomorphism of S into Ln

obtained by first ampliating p-fold, restricting to P , and then making
the natural unitary identification with Ln. This is a wot-continuous
homomorphism which carries the generators Si onto the generators Li
of Ln. By Theorem 1.1, S/ kerϕ is completely isometrically isomorphic
and weak-∗ homeomorphic to Ln.

We now push the argument of Lemma 1.4 harder to show that in the
type L case, some ampliation of S is spanned by its wandering vectors.
See Corollary 1.9.

Theorem 1.6. Suppose that S = (S1, . . . , Sn) are isometries on Hs

which generate a type L free semigroup algebra, and let A be the free
semigroup algebra on Hs ⊕Kn generated by

S ⊕ L := (S1 ⊕ L1, . . . , Sn ⊕ Ln).

Let ξ ∈ Hs be any unit vector, and let ε > 0 be given. Then there
exists a vector ζ ∈ Kn with ‖ζ‖ < ε such that the restriction of A to
the cyclic subspace N := A[ξ ⊕ ζ] is unitarily equivalent to Ln.
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Proof. Let ϕ : S→ Ln be the canonical homomorphism sending each
Sj to Lj. Note then that A consists of all operators on Hs ⊕Kn of the
form A⊕ ϕ(A) for some A ∈ S.

Consider the vector state on S given by ψ(A) = 〈Aξ, ξ〉 for A ∈
S. Since S is type L, we may consider this as a state on Ln. By
applying [10, Theorem 2.10], one obtains vectors ζ and η in Kn such
that ψ(A) = 〈ϕ(A)ζ, η〉. As ψ(A) = 〈ϕ(A) tζ, t−1η〉 for any non-zero
scalar t, we may assume that ‖ζ‖ < ε. We then compute for all A ∈ S,

〈(A⊕ ϕ(A))(ξ ⊕ ζ), ξ ⊕−η〉 = 〈Aξ, ξ〉 − 〈ϕ(A)ζ, η〉 = 0.

So ξ ⊕−η is orthogonal to the cyclic subspace N := A[ξ ⊕ ζ].
By the Wold decomposition for A restricted to N , we obtain an

orthogonal decomposition N = L+M where L is the pure part

L :=
∨
k≥0

Ak
0[ξ ⊕ ζ]	 Ak+1

0 [ξ ⊕ ζ]

and M is the Cuntz part

M :=
⋂
k≥0

Ak
0[ξ ⊕ ζ].

Now Ak
0(Hs ⊕ Kn) ⊂ Hs ⊕ QkKn where Qk projects onto the span of

{ξw : |w| ≥ k}. These spaces have intersection Hs ⊕ 0. Thus M is
contained in Hs ⊕ 0.

Since ξ ⊕ ζ belongs to N = M + L, we may write ξ ⊕ ζ = µ + λ
where µ = α⊕ 0 ∈M and λ = (ξ − α)⊕ ζ lies in L. Moreover, µ and
λ are orthogonal, whence 0 = 〈α, ξ − α〉. We saw above that ξ ⊕−η is
orthogonal to N =M+ L, and, in particular, is orthogonal to α ⊕ 0.
Therefore we also have 〈ξ, α〉 = 0. As ξ = α + (ξ − α) is a sum of
orthogonal vectors, it follows that ‖ξ‖2 ≥ ‖ξ − α‖2 = ‖ξ‖2 + ‖α‖2,
whence α = 0.

Therefore, ξ ⊕ ζ is contained in L. But L is invariant for A, and
ξ⊕ ζ generates N , hence N = L andM = 0. Thus, since N is a cyclic
subspace for A, the dimension of AN 	A0N is one. Therefore, A|N is
unitarily equivalent to Ln.

We immediately obtain:

Corollary 1.7. Suppose that S = (S1, . . . , Sn) generates a type L al-
gebra. Then S⊕L = (S1⊕L1, . . . , Sn⊕Ln) generates a type L algebra
which is spanned by its wandering vectors.

Proof. Theorem 1.6 shows that the span of all wandering vectors con-
tains Hs⊕0. Clearly 0⊕Kn is also spanned by wandering vectors, and
the result follows.
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This can now be extended to a more general situation.

Theorem 1.8. Suppose that S = (S1, . . . , Sn) and T = (T1, . . . , Tn)
are isometries on Hs and Ht generating type L algebras S and T re-
spectively. Suppose that T has a wandering vector. Then Hs ⊕ 0 is
contained in the span of the wandering vectors of S ⊕ T .

Proof. Let ξ⊕0 be any vector inHs⊕0. Since T has a wandering vector
γ, we may restrict S ⊕ T to the invariant subspace M = Hs ⊕ T[γ].
Then (S ⊕ T )|M is unitarily equivalent to S ⊕ L acting on Hs ⊕ Kn.
Thus without loss of generality, we may assume T = L. Now the result
follows from Corollary 1.7.

The converse of the following corollary is trivially true. Thus we
obtain a spatial characterization of type L algebras as those which
have a finite ampliation spanned by wandering vectors.

Corollary 1.9. Suppose that S is type L. Then for p sufficiently large,
the space H(p) is spanned by wandering vectors of S(p).

Proof. Let p be chosen so that S(p−1) has wandering vectors, which
follows from Lemma 1.4. Then by Theorem 1.8, the span of the wan-
dering vectors contains H ⊕ 0(p−1). By symmetry considerations, it
follows that the wandering vectors span all of H(p).

2. The Structure Theorem

Our goal in this section is to obtain a structure theorem for a general
free semigroup algebra. This result does not say much in the case when
S equals its enveloping von Neumann algebra W. So by Theorem 1.5,
we may as well assume that S0 is a proper ideal. In this case, there is
a canonical homomorphism from S onto Ln. The first challenge is to
compute the kernel J of this map.

First we need some factorization results about ideals which parallel
the known results for Ln [11].

Lemma 2.1. Suppose that I is a wot-closed right ideal in S generated
by isometries T1, . . . , Tm with pairwise orthogonal ranges. Then every
element A ∈ I can be uniquely written as A =

∑m
i=1 TiAi, where Ai ∈

S.

Proof. There is a net Aα in the algebraic right ideal generated by
T wot-converging to A. Hence Aα =

∑m
i=1 TiAα,i. It follows that

T ∗i Aα = Aα,i. Thus

Ai := T ∗i A = wot–lim
α
T ∗i Aα = wot–lim

α
Aα,i
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belongs to S. Whence A =
∑m

i=1 TiT
∗
i A =

∑m
i=1 TiAi.

Corollary 2.2. The ideal Sk
0 consists of the elements

∑
|w|=k SwAw,

and each element of Sk
0 has a unique expression of this form.

Proof. We may assume that S0 is proper, as this result is trivial in
the von Neumann algebra W. Sk

0 is the wot-closure of the algebraic
span of all monomials Sw for |w| ≥ k. This algebraic ideal is easily seen
to be the right ideal generated by {Sw : |w| = k}. Thus the previous
lemma applies.

The next lemma requires that S0 be a proper ideal, for if S0 = S =
W, then one may express the identity operator in two distinct ways in
S by I =

∑n
i=1 SiS

∗
i .

Lemma 2.3. If S 6= S0, then every A ∈ S can be expressed uniquely
as A =

∑
|v|<k avSv +

∑
|w|=k SwAw for certain scalars av and elements

Aw ∈ S.

Proof. Since S0 is a proper ideal, there is a canonical wot-continuous
representation ϕ of S onto Ln taking Si to Li for 1 ≤ i ≤ n. It is clear
that ϕ−1(L0

n) = S0 since S0 is contained in this ideal and has co-
dimension 1. Let av be the unique scalars (Fourier coefficients) such
that ϕ(A)ξ∅ =

∑
v∈F+

n
avξv. Then in particular, a∅ is the unique scalar

such that A − a∅I belongs to S0. Hence by the previous corollary,
A− a∅I =

∑n
i=1 SiAi, and this decomposition is also unique.

This same decomposition may be applied to each Ai. Proceeding by
induction, we obtain the desired decomposition

A =
∑
|v|<k

bvSv +
∑
|w|=k

SwAw

for certain scalars bv and elements Aw ∈ S. Applying ϕ to this decom-
position, it follows that bv = av are uniquely determined. Applying the
previous corollary to A −

∑
|v|<k avSv shows that the operator coeffi-

cients Aw are also uniquely determined.

Corollary 2.4. Suppose that S0 6= S and ϕ is the canonical map of
S onto Ln taking Si to Li for 1 ≤ i ≤ n. Then ϕ−1(L0,k

n ) = Sk
0.

Proof. From the previous corollary, each A ∈ S may be written as A =∑
|v|<k avSv +

∑
|w|=k SwAw. So ϕ(A) ∈

∑
|v|<k avLv + L0,k

n . Therefore

ϕ(A) belongs to L0,k
n precisely when av = 0 for all |v| < k. Thus

ϕ−1(L0,k
n ) =

∑
|w|=k SwS = Sk

0 by Corollary 2.2.
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Now we are able to compute the kernel J of the canonical map ϕ of
S onto Ln.

Theorem 2.5. Suppose that S0 is a proper ideal. Let ϕ be the wot-
continuous homomorphism of S onto Ln taking Si to Li for 1 ≤ i ≤ n.
Then J := kerϕ =

⋂
k≥1

Sk
0. There is a projection P ∈ S such that

J = WP . The range of P⊥ is invariant for S.

Proof. By the previous corollary, ϕ−1(L0,k
n ) = Sk

0. Thus

kerϕ =
⋂
k≥1

ϕ−1(L0,k
n ) =

⋂
k≥1

Sk
0.

Let A ∈ J be factored as A =
∑n

i=1 SiAi. Then

0 = L∗jϕ(A) = L∗j

n∑
i=1

Liϕ(Ai) = ϕ(Aj).

Thus Aj = S∗jA also belongs to J. Since J is wot-closed, it follows
that J is a left ideal in the von Neumann algebra W. Therefore there
is a unique projection P in W such that J = WP .

Since PH = J∗H, it follows that

S∗i PH = S∗i J
∗H = (JSi)

∗H ⊂ J∗H = PH.
So PH is invariant for S∗, whence P⊥H lies in Lat S.

Now that the ideal J is understood, we obtain a canonical decompo-
sition of the algebra S into a lower triangular form. The description
of P only in terms of S implies that P is an invariant of the algebra,
and is not dependent on a choice of generators.

Structure Theorem 2.6. Let S be a free semigroup algebra, and let
W be the enveloping von Neumann algebra. Then there is a largest
projection P in S such that PSP is self-adjoint. It has the following
properties:

(i) WP =
⋂
k≥1

Sk
0,

(ii) P⊥H is invariant for S,
(iii) if P 6= I, then SP⊥ is completely isometrically isomorphic

and weak-∗ homeomorphic to Ln by a canonical wot-continuous
homomorphism ϕ with ϕ(Si) = Li for 1 ≤ i ≤ n, and

(iv) S = WP + P⊥SP⊥.

Proof. If S0 = S, then S = W and P = I, and the various properties
are clearly true. So we may assume that S0 6= S.
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By Theorem 1.5, there is a canonical wot-continuous homomor-
phism ϕ onto Ln such that ϕ(Si) = Li for 1 ≤ i ≤ n and S/ kerϕ is
completely isometrically isomorphic and weak-∗ homeomorphic to Ln.
By Theorem 2.5, the kernel of this map is J =

⋂
k≥1

Sk
0 = WP for a

certain projection P ∈ S. Moreover P⊥H is invariant for S.
Consider the wot-continuous homomorphism ψ of restriction of S

to the invariant subspace P⊥H. Since P belongs to S, it is evident
that kerψ = SP . It follows that ψ(S) may be identified with S/J
completely isometrically. Hence the map ϕ onto Ln factors through
ψ(S), and the connecting map ϕψ−1 is injective. By Theorem 1.1,
ψ(S) is completely isometrically isomorphic and weak-∗ homeomorphic
to Ln.

Now S = SP + SP⊥ = WP + P⊥SP⊥ yields the desired structure
for the algebra S. In particular, PSP = PWP is self-adjoint.

Suppose that Q is any projection in S such that QSQ is self-adjoint.
Then decomposing H = PH ⊕ P⊥H, we obtain Q =

[
Q11 0
Q21 Q22

]
. Then

Q21 = 0 and Q22 is a projection in SP⊥, which is isomorphic to Ln.
But the only idempotents in Ln are 0 and I by [10, Corollary 1.8]. If
Q22 = I, then QSQ|P⊥H is type L, and thus is not self-adjoint. So
Q22 = 0 and Q ≤ P . Hence P is the largest projection with this
property.

One immediate consequence is the following:

Corollary 2.7. If S0 6= S, then there is an invariant projection Q such
that S|QH is type L. If P is given by Theorem 2.6, then the largest such
projection is P⊥.

Proof. If S0 6= S, then by Theorem 1.5, S is not self-adjoint. Thus
the projection P of Theorem 2.6 satisfies P < I. It follows from The-
orem 2.6(iii) that P⊥ has the desired property.

Suppose that Q is an invariant projection for S. Then Q is invariant
for PSP , and in particular PQ = QP . If PQ 6= 0, then PQSPQ
is self-adjoint and thus the restriction to QH is not type L. Hence
Q ≤ P⊥.

Our next corollary allows us to weaken the definition of a type L alge-
bra to be merely (algebraically) isomorphic to Ln or even a subalgebra
of Ln.

Corollary 2.8. Suppose that S is a free semigroup algebra on n gen-
erators which is algebraically isomorphic to a subalgebra of Ln. Then
S is type L.
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Proof. Since Ln contains no non-scalar idempotents, it follows that S
contains no non-scalar idempotents either. Thus the projection P in
the structure theorem must be 0. (It cannot be I, for then S = W
contains many projections.) Consequently S is type L, and there is
a canonical isomorphism of S onto Ln taking the standard generators
to standard generators which is completely isometric and a weak-∗
homeomorphism.

As an immediate corollary, we can characterize the radical.

Corollary 2.9. With n ≥ 2 and notation as above, the radical of S is
P⊥SP . Thus the following are equivalent:

(i) S is semisimple and is not self-adjoint
(ii) S is type L

(iii) S has no non-scalar idempotents
(iv) S has no non-zero quasinilpotent elements.

Proof. It is evident that P⊥SP is a nil ideal, and hence is contained
in the radical. The quotient by this ideal is (completely isometrically)
isomorphic to PWP⊕P⊥SP⊥ which the the direct sum of two semisim-
ple algebras, a von Neumann algebra and an isomorph of Ln. See [10,
Corollary 1.9]. Hence P⊥SP is the radical.

Consequently, if S is semisimple and is not a von Neumann algebra,
it follows that P = 0 and S is type L. Conversely, type L algebras
are non-self-adjoint and semisimple. Type L in turn implies that there
are no non-trivial idempotents or quasinilpotent elements [10, Corol-
lary 1.8]. Conversely, if P 6= 0, then P is a non-scalar idempotent and
P⊥SP is non-zero and nilpotent.

We conclude this section with an easy result which identifies W as
a commutant when S is of Cuntz type, meaning that

∑n
i=1 SiS

∗
i = I.

This result is not true for Ln, as the commutant is the right regular
representation algebra Rn which is not self-adjoint.

Proposition 2.10. Suppose that S is of Cuntz type. If T belongs to
the commutant S′ of S, then T ∗ ∈ S′. Hence W = S′′. In particular,
if S is irreducible, then S′ = CI.

Proof. We have T =
∑

i TSiS
∗
i =

∑
i SiTS

∗
i . Hence S∗jT = TS∗j ,

as desired. Thus S′ is a von Neumann algebra, and so by the Double
Commutant Theorem, S′′ must be the von Neumann algebra generated
by S.
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3. Examples

In this section, we examine various examples to demonstrate the
previous results.

Example 3.1. Consider the case n = 1. We are given an isometry
S, which decomposes using the Wold decomposition and the spectral
theory of unitary operators as

S ' U
(α)
+ ⊕ Ua ⊕ Us

where U+ is the unilateral shift, Ua is a unitary with spectral measure
absolutely continuous with respect to Lebesgue measure m, and Us is a
singular unitary. Let ma and ms denote scalar measures equivalent to
the spectral measures of Ua and Us respectively. If α > 0 or if ma = m,
then by [24]

S = W (S) ' H∞(U
(α)
+ ⊕ Ua)⊕ L∞(ms)(Us).

The von Neumann algebra it generates is

W = W ∗(S) = B(H)(α) ⊕ L∞(Ua)⊕ L∞(ms)(Us).

The projection P of the Structure Theorem is just the projection onto
the singular part. In this case, it is always a direct summand.

If α = 0 and the essential support of Ua is a proper measurable
subset of the circle, then S = W is self-adjoint. Note that this may
occur even though the spectrum of S is the whole circle.

The n = 1 case exhibits two phenomena which we cannot seem to
replicate in the non-commutative case, and remain important open
questions.

The first is the situation just noted that S can be self-adjoint. The
second is that there are isometries S1 and S2 such that W (S1 ⊕ S2) '
H∞, the type L case, yet neither W (Si) are type L, and in fact are von
Neumann algebras. One simply takes Si to be multiplication by z on
the upper and lower half circles respectively.

Example 3.2. This example relates the Structure Theorem 2.6 to the
finitely correlated representations studied in [9]. Start with a con-
tractive n-tuple A acting on a finite dimensional space V . By the
Frahzo–Bunce–Popescu dilation theorem, there is a unique minimal
isometric dilation S. Let S be the free semigroup algebra generated by
S. Denote by F the set of all subspacesM of V which are invariant for
{A∗i : 1 ≤ i ≤ n} and which are minimal with respect to the property
n∑
i=1

AiA
∗
i |M = IM, and let Ṽ be the span of the subspaces in F.
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The results of [9] show that the projection P onto Ṽ belongs to S,
that PS is a finite dimensional C*-algebra, and that S|P⊥H is unitarily
equivalent to an ampliation of Ln and thus of type L. So this projection
P is the same projection identified in the structure theorem. It was not
explicitly shown in [9] that SP = WP , thus this fact is new (although
it can be deduced without difficulty from the results of [9]).

Decomposing the finite dimensional C*-algebra PS into its direct
summands enables one to decompose the representation determined by
S into a direct sum of irreducible summands. One can then read off
complete unitary invariants from the finite rank n-tuple A.

Next we examine some of the atomic representations classified in
[10].

Example 3.3. To construct a wandering vector in S, one needs to
find an invariant subspace M of S such that M	

∑
SiM 6= 0. The

following example shows that it is entirely possible for a free semigroup
algebra S with generators of Cuntz type (C∗(S) = On) to be type L.

Let x = i1i2 . . . be an infinite word in the alphabet {1, . . . , n}. We
construct a representation as in [10, §3]. Let xm = i1i2 . . . im for m ≥ 0.
Define F+

nx
−1 denote the collection of words in the free group on n

generators of the form v = ux−1
m for u in F+

n and m ≥ 0. Identify words
which are the same after cancellation, namely ux−1

m = (uim+1)x−1
m+1.

Let Hx be the Hilbert space with orthonormal basis {ξv : v ∈ F+
nx
−1}.

A representation πx of the free semigroup F+
n is defined on Hx by

πx(i)ξv = ξiv for v ∈ F+
nx
−1.

Let Sx be the free semigroup algebra with generators Si = πx(i).
The subspace Hm = `2(F+

nx
−1
m ) is generated as a Sx invariant sub-

space by the wandering vector ξx−1
m

. Thus the compression of Sx to
Hj is unitarily equivalent to Ln. The subspaces Hm form a nested se-
quence with union dense in Hx. Hence πx is an inductive limit of rep-
resentations equivalent to λ, yet is evidently of Cuntz type. Moreover
the restriction of S to any Hm is a completely isometric isomorphism.
Therefore Sx is type L.

Motivated by this example, we identify type L representations of
inductive type as those which act on a Hilbert space which is the in-
creasing union of subspaces on which S is unitarily equivalent to a
multiple of Ln. We will discuss this notion again in other examples.

Example 3.4. This is an example to show that certain Cuntz rep-
resentations may be expressed in terms of the span of two invariant
subspaces, each of which is determined by a wandering vector.
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Let x denote the infinite periodic word 1∞, and consider the repre-
sentation πx associated to this infinite tail. Let ω denote a unimodular
function in L2 such that H2 ∩ωH2 = {0} and H2 ∨ωH2 = L2. This is
the generic situation. A straightforward example is ω(z) = sgn(Im(z)).
Denote the Fourier expansion of ω(z) by

∑
n anz

n.
Let ξn = ξ1n for n ∈ Z denote the vectors along the ‘spine’ of the

representation space of πx; and let K = span{ξn : n ∈ Z}. Set ξ = ξ0

and η =
∑

n anξn. Evidently ξ is wandering. This is also the case for
η. Indeed, if u is a word which is not a power of 1, then (Suη, η) = 0
is clear. While (Sk1η, η) = (zkω, ω)L2 = 0 because |ω| = 1 a.e. Let
M = S[ξ] and N = S[η].

Let U denote the set of words u in F+
n which do not terminate with a

1, including the identity e. For u ∈ U , the subspaces SuK are pairwise
orthogonal and span H. Let us identify H2 and ωH2 with the corre-
sponding subspaces K0 and Kω of K. Now one may readily verify that
M =

∨
u∈U SuK0 and N =

∨
u∈U SuKω. From this, it is immediate that

M∩N = {0} and M∨N = H.
This argument may be modified to work for any infinite periodic

word.

Example 3.5. Now consider the general atomic representation classi-
fied in [10]. Such representations are characterized by the existence of
an orthonormal basis which is permuted up to scalars by each isometry
Si. In addition to the left regular representation λ and the ‘infinite
tail’ representations of Example 3.3, there is another class of ‘ring’ rep-
resentations σu,λ where u is a primitive word (not a power of a smaller
word) and |λ| = 1.

The details of this representation may be seen in the reference. We
wish to point out that these particular representations are a special
case of Example 3.2. Let ek for 1 ≤ k ≤ m be an orthonormal basis for
C
m. If u = j1 . . . jm, then define partial isometries Ai on Cm by

Aiek =


ek+1 if i = jk and 1 ≤ k < m

λe1 if i = jm and k = m

0 otherwise

The representation σu,λ is obtained from the minimal isometric dilation
of this n-tuple.

Since u is primitive, this representation is irreducible and the algebra

S = B(H)Pu + (0m ⊕ L
((n−1)m)
n ) acting on Cm ⊕ K((n−1)m)

n , where Pu
projects onto Cm. In this example, the projection P of the structure
theorem is just the projection Pu and W = B(H).
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The most general atomic representation is the direct sum of copies
of these three types of atomic representations. The tail representations
are inductive, and thus of type L, as is the left regular representation.
However the ring representations are not. It follows from [10] that the
projection P of the structure theorem is just the direct sum of the pro-
jections obtained in the previous paragraph. Indeed, there are explicit
polynomials constructed in [10] which converge weakly to Pu in S.
The projection onto the smallest invariant subspace of S containing
the range of Pu picks out the multiple of σu,λ in the representation and
vanishes on all other summands. The fact that there is such an ex-
plicit formula allows a very detailed decomposition theory with precise
invariants.

Proposition 3.6. Suppose that S is type L and M is an invariant
subspace of S containing a wandering vector. Then S|M is type L.

Proof. Let T denote the wot-closure of S|M; and let N be the in-
variant subspace of M generated by a wandering vector. Note that
A := T|N = S|N is unitarily equivalent to Ln. Let ϕ be the restriction
map of S into T and ψ the restriction map of T onto A. Both maps
are completely contractive and wot-continuous, and the composition
σ is a complete isometry and wot-homeomorphism. Thus ϕ is also
completely isometric.

Define Ψ = ϕσ−1ψ. This is a completely contractive wot-continuous
map of T into itself. Moreover, it is easily shown to be idempotent,
and thus is an expectation onto a subalgebra completely isometrically
isomorphic to Ln. We will show that Ψ is the identity map. Since the
range of Ψ is precisely S|M, it suffices to show that this is wot-closed.
Let Tα be a net of operators in S|M wot-converging to an element
T ∈ T. Then

T = wot–lim
α
Tα = wot–lim

α
Ψ(Tα) = Ψ(T ).

So T belongs to S|M. Thus T is type L.

Example 3.7. Consider the representation π1∞ . This is an atomic
representation of inductive type, and hence is of type L. By [10], it is
also the direct integral π1∞ '

∫
T
σ1,λ dλ. Indeed, let K = C⊕Kn; and

the representation σ1,λ is determined by generators

Sλ1 =

[
λ 0
0 L1

]
and Sλ2 =

[
0 0
ξ∅ L2

]
.
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Thus the representation π1∞ may be represented on HT := L2(T)⊗K
by

S1 =

[
U 0
0 I ⊗ L1

]
and S2 =

[
0 0

I ⊗ ξ∅ I ⊗ L2

]
where U is multiplication by z on L2(T).

Let E be a measurable subset of T with positive measure. Let V
denote U |L2(E) and J = IL2(E). Now consider the representation ρE on
HE = L2(E)⊗K by

[
V 0
0 J ⊗ Li

]
and

[
0 0

J ⊗ ξ∅ J ⊗ L2

]
.

It is evident that any vector of the form 0 ⊕ (f ⊗ ξ∅) is a wandering
vector. Hence HE is naturally identified with a subspace of HT . By
the previous proposition, it follows that this representation is of type
L.

Split E into two disjoint sets E1 and E2 of positive measure. Then
HE = HE1 ⊕ HE2 yields an orthogonal decomposition into reducing
subspaces. The restriction to each subspace is type L and contains
wandering vectors by the previous paragraph. By Theorem 1.8, it
follows that the wandering vectors inHE span bothHE1⊕0 and 0⊕HE2 .
Thus HE is spanned by wandering vectors.

Consider the representation π1∞ ⊕ ρE on HT ⊕HE. This is again of
type L. It is easy to see that the restriction to the subspaces HT ⊕ 0
and HEc ⊕HE are both unitarily equivalent to π1∞ . Thus HT ⊕HE is
the span of two inductive type reducing subspaces.

Questions: Is HE of inductive type? Is H(∞)
E of inductive type? Is

HT ⊕HE of inductive type?

Example 3.8. This example is to show that there is a large natural
class of representations of On which are inductive limits of (multiples
of) the left regular representation.

Let Un denote the canonical copy of the n∞ UHF algebra contained
in On spanned by the words {sαs∗β : |α| = |β|, α, β ∈ F+

n } (we use s∗β
as a shorthand for (sβ)∗). Let E denote the expectation of On onto
Un. If ϕ0 is any state on Un, let ϕ = ϕ0E. This is a state on On. Let
(πϕ,Hϕ, ξϕ) denote the GNS representation associated to ϕ.

We claim that πϕ is always an inductive limit of multiples of λ.
Indeed, let xα,β = [sαs

∗
β] be the image of sαs

∗
β in Hϕ. This is a spanning
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set. It is easy to calculate that

〈xα,β, xγ,δ〉 =


ϕ0(sδs

∗
βε) if γ = αε, |δ| = |β|+ |ε|

ϕ0(sδεs
∗
β) if α = γε, |β| = |δ|+ |ε|

0 otherwise

In particular, each vector xα,β is wandering (or zero). Thus for each
k ≥ 0, Wk = span{x∅,β : |β| = k} is a wandering space generating the
subspace Mk = span{xα,β : |β| = k, α ∈ F+

n }.
Now we show that Wk is contained in Mk+1. From this it follows

that Mk ⊂ Mk+1 for k ≥ 0; whence Hϕ is spanned by the union of
the Mks. To this end, compute

〈x∅,β, xi,βi〉 = ϕ0(sβis
∗
βi) = ‖xi,βi‖2.

Hence 〈
x∅,β,

n∑
i=1

xi,βi
〉

=
n∑
i=1

ϕ0(sβis
∗
βi) =

n∑
i=1

‖xi,βi‖2

= ϕ0

( n∑
i=1

sβsis
∗
i s
∗
β

)
= ϕ0(sβs

∗
β) = ‖x∅,β‖2.

Hence it follows that∥∥x∅,β − n∑
i=1

xi,βi
∥∥2

= ‖x∅,β‖2 +
∥∥ n∑
i=1

xi,βi
∥∥2 − 2 Re

〈
x∅,β,

n∑
i=1

xi,βi
〉

= 0.

This establishes the claim.
The restriction of S to each Mk is a multiple of the left regular

representation. Since the Mk are nested and span H, it follows that
πϕ is inductive.

Example 3.9. We conclude with one final example which yields a large
class of inductive type L representations. Let S = (S1, . . . , Sn) be any
n-tuple of isometries with orthogonal ranges acting on H. Let U be
the unitary of multiplication by z on L2(T). Define a new n-tuple of
isometries on H⊗ L2(T) by S ⊗ U = (S1 ⊗ U, . . . , Sn ⊗ U). Evidently

n∑
i=1

(Si ⊗ U)(Si ⊗ U)∗ =
n∑
i=1

SiS
∗
i ⊗ I.

So these isometries have orthogonal ranges. In addition, if S is of Cuntz
type, then so is the tensored n-tuple.

However, this new representation has a spanning set of wandering
vectors of the form ξ ⊗ zk for any ξ ∈ H and k ∈ Z, as a simple
calculation shows. By Corollary 1.3, this representation has type L.
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4. The Geometry of the Ball

The ultimate goal of this section is a Russo–Dye type theorem show-
ing that the convex hull of the isometries in any free semigroup algebra
contains the whole unit ball. A number of structural results of inde-
pendent interest are needed along the way.

The first step is to show that in an algebra S of type L, every isom-
etry in Ln is sent to an isometry in S. The argument is easy given
what we already know, but we give it the status of a theorem because
it is not at all clear just from a completely isometric isomorphism.

Theorem 4.1. Let S be a free semigroup algebra of type L, and let ϕ
be the canonical isomorphism of Ln onto S. Then for each isometry
V ∈Mk(Ln), the element A = ϕ(k)(V ) is an isometry in Mk(S).

Proof. It suffices to establish this for some ampliation, as A is an isom-
etry if and only if A(p) is isometric. We choose p using Corollary 1.9.
Thus we may suppose that p = 1 and that H is spanned by wandering
vectors. If ξ is any wandering vector in H, the restriction of Mk(S) to
direct sum of k copies of S[ξ] is unitarily equivalent to Mk(Ln). Hence
A is isometric on this subspace. As ϕ is completely isometric, we know
that ‖A‖ = 1. A contraction which is isometric on a spanning set is
an isometry because of the elementary fact that the set of vectors on
which any operator achieves its norm is a closed subspace.

In order to construct sufficiently many isometries in S, we need a
factorization result for I − A∗A when A is a strict contraction. Let
us say that S satisfies the factorization property if whenever A is an
element of S with ‖A‖ < 1, then there is some B ∈ S such that
A∗A+B∗B = I. It is a special case of Popescu [20, Theorem 4.1] that
Ln has this property. Moreover, B may be chosen to be invertible. We
shall use the previous theorem to extend this to all type L algebras.
Then by combining our structure theorem with Cholesky’s algorithm,
we shall extend this to all free semigroup algebras.

For the reader’s convenience, we provide a proof of Popescu’s Lemma
for Ln. Let Ri generate the right regular representation on Fock space
by Riξw = ξwi for 1 ≤ i ≤ n and w ∈ F+

n . Recall that the wot-closed
algebra Rn generated by the Ris is unitarily equivalent to Ln, and that
R′n = Ln.

Lemma 4.2 (Popescu). Suppose that A ∈ Ln and ‖A‖ < 1. Then
there is an invertible element B ∈ Ln such that A∗A+B∗B = I.



22 K.R.DAVIDSON, E.KATSOULIS, AND D.R.PITTS

Proof. Let T = I − A∗A, which is positive and invertible. Define
Si = T 1/2RiT

−1/2. An easy computation shows that for 1 ≤ i, j ≤ n,

S∗jSi = T−1/2R∗jTRiT
−1/2

= T−1/2(R∗jRi − A∗R∗jRiA)T−1/2 = δijI

Thus the Si are isometries with orthogonal ranges.
We claim that the Si are simultaneously unitarily equivalent to the

Ri. To see this, notice that∑
|w|=k

RanSw = T 1/2
∑
|w|=k

RanRw = T 1/2 span{ξv : |v| ≥ k}.

Hence these ranges intersect to {0}, so there is no Cuntz part in the
Wold decomposition. Moreover

∑n
i=1 RanSi has codimension 1, so

that the multiplicity of the pure part is 1. Therefore there is a unitary
operator W such that Si = W ∗RiW for 1 ≤ i ≤ n.

Define B = WT 1/2. Clearly B∗B = T = I−A∗A and B is invertible.
Finally, for 1 ≤ i ≤ n,

RiB = RiWT 1/2 = WSiT
1/2 = WT 1/2Ri = BRi

Thus B belongs to R′n = Ln.

Theorem 4.3. Every free semigroup algebra S satisfies the factoriza-
tion property.

Proof. First suppose that S is of type L, and let A be a strict contrac-
tion in S. Let ϕ be the canonical isomorphism of S onto Ln. We apply
Popescu’s Lemma to the element ϕ(A) to obtain an invertible element
which we may call ϕ(B) so that ϕ(A)∗ϕ(A) + ϕ(B)∗ϕ(B) = I. This is
equivalent to the statement that L1ϕ(A) + L2ϕ(B) is an isometry in
Ln. So by Theorem 4.1, S1A + S2B is an isometry in S. Again this
is equivalent to A∗A + B∗B = I. Therefore S has the factorization
property, and moreover B is invertible in S.

Now consider a general free semigroup algebra S. By Theorem 2.6,
S decomposes via a projection P in S as S = WP + P⊥SP⊥, where
W is the von Neumann algebra generated by S and P⊥S|P⊥H is of
type L.

Let A ∈ S with ‖A‖ < 1. Decompose A into a matrix with respect
to the decomposition PH⊕P⊥H as A = [X 0

Y Z ]. Note that since P ∈ S,
each entry ‘belongs’ to S in the sense that X := PAP , Y := P⊥AP
and Z := P⊥AP⊥ belong to S. Now ‖Z‖ < 1 and Z belongs to an
algebra of type L. Hence by the first paragraph, there is an invertible
element T in P⊥S|P⊥H such that T ∗T = P⊥ − Z∗Z.
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By Cholesky’s algorithm in W, there is an lower triangular operator
of the form B =

[
Q 0
R T

]
such that B∗B = I − A∗A. Indeed, since

I − A∗A =

[
I −X∗X − Y ∗Y −Y ∗Z

−Z∗Y I − Z∗Z

]
,

we may define R = −T ∗−1Z∗Y . The operator P⊥RP belongs to WP ,
and thus is in S. The Cholesky argument shows that[

R∗

T ∗

] [
R T

]
=

[
R∗R −Y ∗Z
−Z∗Y I − Z∗Z

]
is the smallest positive operator with these coefficients in the 12, 21 and
22 entries. That is, R∗R ≤ I −X∗X − Y ∗Y . Let

Q = (I −X∗X − Y ∗Y −R∗R)1/2.

So PQP lies in PWP and hence in S. It is now easy to see that B
lies in S and B∗B = I − A∗A.

We now turn to the convex hull of the set Isom(S) of all isometries
in S. An integral argument yields the norm-closed convex hull. Then a
finite approximation yields the algebraic result. We note that the nec-
essary facts are factorization and the existence of two isometries with
orthogonal ranges. So this argument works for some other operator
algebras as well.

Theorem 4.4. The closed convex hull of Isom(S) of the set of isome-
tries in any free semigroup algebra S is the whole closed unit ball.

Proof. For |a| < 1, let ωa(z) =
a(a− z)

|a|(1− az)
be the Möbius map which

sends a to 0 and 0 to |a|. Notice that for all z ∈ D,

1

2π

∫ 2π

0

ωreiθ(z) dθ =
1

2π

∫ 2π

0

(r − ze−iθ)(1− rze−iθ)−1 dθ

=
1

2π

∫ 2π

0

(r − ze−iθ)
∑
k≥0

(rze−iθ)k dθ

=
1

2π

∫ 2π

0

r − (1− r2)
∑
k≥1

rk−1zke−ikθ dθ = r

Let A ∈ S with ‖A‖ = s < 1. Then choose s < r < 1, and let
Aθ = ωreiθ(S1)r−1A. By the previous integral calculation, we observe
that

A =
1

2π

∫ 2π

0

Aθ dθ.
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So it suffices to show that each Aθ belongs to conv(Isom(S)).
Let Tθ be an isometry in S whose range is orthogonal to the range

of ωreiθ(S1). One such isometry is

Tθ =
√

1− r2(I − re−iθS1)−1S2.

This may be seen by direct computation. (However it was really found
by using an isometric automorphism ΘX of S [23, 11] associated to

the matrix X =
[
x0 η∗

η X1

]
where x0 = 1/(1 − r2), η = re−iθ√

1−r2 e1 and

X1 = (1− r2)−1E11 +E⊥11. After noting that ωreiθ(S1) = ΘX(−S1), set
Tθ = ΘX(S2), which is the formula given above.)

By Theorem 4.3, the invertible operator I−A∗θAθ factors as D∗θDθ for
some Dθ ∈ S. Then a simple calculation shows that S±θ = Aθ ± TθDθ

are isometries in J with average Aθ.

If we work harder, we can show that all elements of the open ball
are in fact a finite convex combination of isometries.

Theorem 4.5. The convex hull of Isom(S) contains the open unit ball
of S. Moreover, if ‖A‖ < 1 − 1

k
for k > 0 an even integer, then A is

the average of 6k isometries.

Proof. The simple observation is that the integral of the previous
theorem may be replaced with a finite sum. Indeed, fix 0 < r < 1 and
an integer p ≥ 2. Let α = e2πi/p. Then

fr,p(z) :=
1

p

p−1∑
j=0

r − zαj

1− rzαj
=

1

p

p−1∑
j=0

(
r − (1− r2)

∑
k≥1

rk−1zkαkj
)

= r − (1− r2)
∑
k≥1

rk−1zk
1

p

p−1∑
j=0

αkj

= r − (1− r2)
∑
k≥1

rkp−1zkp

= r − (1− r2)rp−1zp

1− rpzp

Thus if we set r = 1− 1
3k

, p = 6k and fk = fr,p for k ≥ 1, then observing

that (1− 1
3k

)3k < 1
e
, we obtain

‖r − fk‖∞ =
(1− r2)rp

r(1− rp)
<

(
2

3k − 1

)
e−2

1− e−2
<

1

3(3k − 1)
<

1

6k
.

In particular, ‖f−1
k ‖∞ < (1− 1

2k
)−1.
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Now if A ∈ S satisfies ‖A‖ < 1 − 1
2k

, then ‖f−1
k (S1)A‖ < 1. Thus

the same is true for Aj = ωrαj(S1)f−1
k (S1)A. Now it follows from the

calculation above that

1

6k

6k−1∑
j=0

Aj = fk(S1)f−1
k (S1)A = A.

As in the previous theorem, each Aj is the average of two isometries in
S. Thus A is the average of 12k isometries.

When n = 1, it is known that the convex hull of the inner functions
contains the whole open ball of H∞ [17]. An easier result shows that
the convex hull of the continuous inner functions contains the open
ball of the disk algebra [13]. We wonder if the same holds for the
non-commutative disk algebra An.

5. Invariant Subspaces

In this section, we consider the question of reflexivity and hyper-
reflexivity. First we make an elementary observation which highlights
yet again the importance of deciding the question of wandering vectors.

Remark 5.1. Suppose that there were a type L algebra S without
wandering vectors. Such an algebra is reductive by [9, Lemma 3.3].
Hence Alg Lat S = W is the von Neumann algebra it generates. As S is
isomorphic to Ln, it is not self-adjoint, and thus is a proper subalgebra
of W. Consequently it would not be reflexive.

The existence of such an algebra would provide a concrete counter-
example to the reductive algebra problem, which is essentially equiva-
lent to the transitive algebra problem. The transitive algebra problem
is in turn closely related to the invariant subspace problem. Thus, it
seems unlikely that such examples exist.

The structure theorem reduces the question of reflexivity for arbi-
trary free semigroup algebras to those of type L, as we now show.

Lemma 5.2. Let S be a free semigroup algebra, and let P be the
projection in Theorem 2.6. Then Lat S consists of all subspaces of the
form M = M1 ∨M2 where M1 belongs to Lat W and M2 = 0 ⊕ N
for N in Lat S|P⊥H.

Proof. It is evident that subspaces of the given form are invariant for
S. So we show that an arbitrary invariant subspace M has this form.
Since P ∈ S, we have PM and M2 = P⊥M are contained in M.
MoreoverM2 is invariant for S and thus has the formM2 = 0⊕N for
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N in Lat S|P⊥H. Hence M contains M1 = SPM = WPM, which
lies in Lat W and contains PM. So M = PM⊕M2 =M1 ∨M2.

Proposition 5.3. Let S be a free semigroup algebra, and let P be the
projection in Theorem 2.6. Then S is reflexive if and only if the type
L algebra S|P⊥H is reflexive.

Proof. Every von Neumann algebra is reflexive. So it is clear that
Alg Lat S is contained in WP + (0 ⊕ Alg Lat S|P⊥H). However, ev-
ery such operator lies in W and leaves the subspaces 0 ⊕ N for N in
Lat S|P⊥H invariant. Thus such an operator belongs to Alg Lat S. It
follows that S is reflexive if and only if S|P⊥H is.

Recall that an operator algebra A is hyper-reflexive if there is a
constant C so that

dist(T,A) ≤ C sup
P∈Lat A

‖P⊥TP‖ for all T ∈ B(H).

Many free semigroup algebras have been shown to have this property,
namely the atomic representations [10] and the finitely correlated ones
[9], both with distance constant at most 5.

It is plausible that all free semigroup algebras are hyper-reflexive but
we are not close to resolving that at this time. It is certainly helpful
in proving such an estimate if the enveloping von Neumann algebra is
hyper-reflexive. Christensen [8] showed that a von Neumann algebra W
is hyper-reflexive if and only if the cohomology group H1(W′,B(H)) =
0. He verified this in the case that W′ is either infinite or injective
or cyclic or of type II1 isomorphic to the spatial tensor product of
itself with the hyperfinite II1 factor. Thus the hyper-reflexivity of von
Neumann algebras is unresolved only when the commutant is type II1

without various special properties.
A wot-closed algebra A has property X0,1 if for every weak-∗ con-

tinuous functional f on A, there is a sequence of vectors ζk and ηk in
H such that

(i) f = [ζkη
∗
k], where the square brackets denote restriction to A,

(ii) lim ‖ζk‖ ‖ηk‖ = ‖f‖, and
(iii) lim ‖[ξη∗k]‖ = lim ‖[ζkξ∗]‖ = 0 for all ξ ∈ H.

In [3], Bercovici showed that any algebra A commuting with two isome-
tries with orthogonal ranges has property X0,1. This includes Ln and all
type III von Neumann algebras. Moreover, he shows that any algebra
with property X0,1 is hyper-reflexive with constant at most 3.
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Lemma 5.4. If S is an algebra of type L generated by S, then the
algebra A generated by S⊕L has property X0,1, and therefore is hyper-
reflexive with constant 3.

Proof. We only need to observe that if f is a functional on A, then it
determines a functional of the same norm on Ln. Since Ln is a direct
summand, it is evident that choosing the sequence of vectors in this
summand demonstrates property X0,1.

Theorem 5.5. Let S and T be two free semigroup algebras of type L,
generated by S and T respectively, which have wandering vectors. Then
the algebra A generated by A = S ⊕ T is hyper-reflexive with constant
at most 7.

Proof. Let H1 and H2 be the spaces on which S and T act, let ξ1 and
ξ2 be the wandering vectors which are given, let ϕi be the canonical
identification of Ln onto S and T respectively, and set ϕ = ϕ1 ⊕ ϕ2.
Notice that the restriction A1 of A to K1 := H1 ⊕ T[ξ2] is unitarily
equivalent to the algebra generated by S ⊕ L. Likewise we define K2

and A2.
For any operator T ∈ B(H) where H = H1 ⊕H2, let

β = sup
M∈Lat A

‖P⊥MTPM‖.

Consider the compression T ′1 of T to K1. It is evident that Lat A1 may
be identified with a sublattice of Lat A, and that βA1(T ′1) ≤ β. Hence
there is an element A1 ∈ A so that

‖T ′1 − A1|K1‖ ≤ 3β.

Consequently if T1 is the compression of T to H1, we obtain

‖T1 − A1|H1‖ ≤ 3β.

Likewise, there is an element A2 ∈ A such that

‖T2 − A2|H2‖ ≤ 3β.

Moreover, we have

‖A1 − A2‖ = ‖(A1 − A2)|A[ξ1⊕0]‖
≤ ‖A1|H1 − T1‖+ ‖T ′2 − A2|K2‖ ≤ 6β.

Set A = (A1 + A2)/2, and note that ‖A− Ai‖ ≤ 3β for i = 1, 2.
Since H1 and H2 lie in Lat A, it is easy to show that

‖T − T1 ⊕ T2‖ ≤ β.
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Hence

‖T − A‖ ≤ β + max{‖T1 − A|H1‖, ‖T2 − A|H2‖}
≤ β + 3β + max{‖A1 − A‖, ‖A2 − A‖}
≤ 4β + 3β = 7β.

Corollary 5.6. If A is of type L, then there is a finite ampliation A(p)

which is hyper-reflexive. If A has a wandering vector, then p = 2 will
suffice.

For some representations of the Cuntz algebra obtained from states
by the GNS construction, one can determine the type of the von Neu-
mann algebra generated. Thus the following corollary is of interest
because it applies in particular to all type III representations, since the
commutant is then also type III and so is purely infinite.

Corollary 5.7. Suppose that S is a free semigroup algebra with en-
veloping von Neumann algebra W with purely infinite commutant W′.
Let P be the projection provided by the Structure Theorem 2.6. Then

(i) the subspace P⊥H is spanned by its wandering vectors, and
(ii) S and W have property X0,1 and thus are hyper-reflexive with

distance constant at most 3.

Proof. When W′ is purely infinite, S is unitarily equivalent to S(∞).
Therefore Theorem 1.8 applies to show that the wandering vectors span
the whole type L subspace.

It is also easy to construct two isometries in W′ with orthogonal
ranges. By [3], it follows that W and S have property X0,1, and hence
are hyper-reflexive with constant 3.

6. Open Questions

There remain a number of compelling questions about these algebras.
The first two appear to be difficult, and clearly are of central interest.

Question 6.1. Can S be a von Neumann algebra?

Question 6.2. Does every type L representation have wandering vec-
tors?

These two problems are somewhat related. The existence of wander-
ing vectors in arbitrary free semigroup algebras would imply that all are
nonself-adjoint. However the n = 1 case includes any unitary operator
U whose spectral measure does not dominate Lebesgue measure on the
whole circle. Even if the spectrum of U is the whole circle, the algebra
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W (U) is self-adjoint by Wermer’s Theorem [24] as in Example 3.1. So
there is a very real possibility of a self-adjoint free semigroup algebra.
If so, then B(H) is generated by n isometries with orthogonal ranges
as a wot-closed algebra.

The example of a unitary with a singular measure opens up the
question of whether there is something to replace the spectral measure
for n ≥ 2. So far, we have nothing to replace the notions of singularity
and absolute continuity in this context.

On the other hand, a type L algebra without wandering vectors is
very unlikely indeed. Such an algebra would be a wot-closed reduc-
tive algebra which is nonself-adjoint, providing a counterexample to a
famous open problem closely related to the invariant subspace prob-
lem. Even if such examples exist, it is unlikely that they arise in such
a concrete and rigid form.

As we saw in the last section, an answer to these questions is close
to providing an answer to the question of (hyper)-reflexivity.

Question 6.3. Is every free semigroup algebra reflexive, or even hyper-
reflexive?

The structure theorem focuses attention on representations of type
L. We would like to understand these algebras in greater detail.

Question 6.4. Is every type L representation a direct summand of an
inductive one?

Question 6.5. Is the restriction of a type L algebra to an invariant
subspace also type L?

Clearly type L algebras of inductive type are inherently more easily
understood than the others. If they play a central role in the theory,
that would simplify various analyses. We don’t even have an exam-
ple which we can prove is not inductive, although Example 3.7 is a
candidate.

Question 6.5 probably has a positive answer. Proposition 3.6 pro-
vides a positive answer if the subspace contains a wandering vector.
It seems unlikely that there is an isometry S such that S ⊕ L is type
L, but S generates a von Neumann algebra. This could be ruled out
if there were a Kaplansky type density theorem for these algebras.
Note that type L algebras do have the property that the unit ball of
the norm-closed algebra generated by S is wot-dense in the ball of S.
This follows because in Ln, the Cesaro means of an element A converge
even sot-∗ to A. The isometric weak-∗ homeomorphism between Ln

and S transfers this convergence at least in the wot topology.



30 K.R.DAVIDSON, E.KATSOULIS, AND D.R.PITTS

References

[1] A. Arias and G. Popescu, Factorization and reflexivity on Fock spaces, Integral
Eqtns. & Operator Thy. 23 (1995), 268–286.

[2] A. Arias and G. Popescu, Noncommutative interpolation and Poisson trans-
forms, Israel J. Math. 115 (2000), 205–234.

[3] H. Bercovici, Hyper-reflexivity and the factorization of linear functionals, J.
Func. Anal. 158 (1998), 242–252.

[4] O. Bratteli and P. Jorgensen, Endomorphisms of B(H) II, J. Func. Anal. 145
(1997), 323–373.

[5] O. Bratteli and P. Jorgensen, Iterated function systems and permutation rep-
resentations of the Cuntz algebra, Mem. Amer. Math. Soc. 139 (1999), no.
663.

[6] O. Bratteli and P. Jorgensen, Wavelet filters and infinite dimensional unitary
groups, preprint, 2000.

[7] J. Bunce, Models for n-tuples of non-commuting operators, J. Func. Anal. 57
(1984), 21–30.

[8] E. Christensen, Extensions of derivations II, Math. Scand. 50 (1982), 111–112.
[9] K.R. Davidson, D.W. Kribs and M.E. Shpigel, Isometric Dilations of non-

commuting finite rank n-tuples, Can. J. Math., to appear.
[10] K.R. Davidson and D.R. Pitts, Invariant subspaces and hyper-reflexivity for

free semi-group algebras, Proc. London Math. Soc. 78 (1999), 401–430.
[11] K.R. Davidson and D.R. Pitts, The algebraic structure of non-commutative

analytic Toeplitz algebras, Math. Ann. 311 (1998), 275–303.
[12] K.R. Davidson and D.R. Pitts, Nevanlinna–Pick Interpolation for non-

commutative analytic Toeplitz algebras, Integral Eqtns. & Operator Thy. 31
(1998), 321–337.

[13] S.D. Fisher, The convex hull of the finite Blaschke products, Bull. Amer. Math.
Soc. 74 (1960), 1128–1129.

[14] A. Frahzo, Models for non-commuting operators, J. Func. Anal. 48 (1982),
1–11.

[15] A. Frahzo, Complements to models for non-commuting operators, J. Func.
Anal. 59 (1984), 445–461.

[16] D.W. Kribs, Factoring in non-commutative analytic Toeplitz algebras, J. Op-
erator Theory, to appear.

[17] D.E. Marshall, Blaschke products generate H∞, Bull. Amer. Math. Soc. 82
(1976), 494–496.

[18] G. Popescu, Isometric dilations for infinite sequences of noncommuting oper-
ators, Trans. Amer. Math. Soc. 316 (1989), 523–536.

[19] G. Popescu, Characteristic functions for infinite sequences of noncommuting
operators, J. Operator Theory 22 (1989), 51–71.

[20] G. Popescu, Multi-analytic operators and some factorization theorems, Indiana
Univ. Math. J. 38 (1989), 693-710.

[21] G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995),
31–46.

[22] R. Powers, An index theory for semigroups of ∗-endomorphisms of B(H) and
type II factors, Can. J. Math. 40 (1988), 86–114.

[23] Voiculescu, D., Symmetries of some reduced free product C*-algebras, Lect.
Notes Math. 1132, 556–588, Springer Verlag, New York, 1985.



FREE SEMIGROUP ALGEBRAS 31

[24] J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math.
Soc. 3 (1952), 270–277.

Pure Math. Dept., U. Waterloo, Waterloo, ON N2L–3G1, CANADA

E-mail address: krdavidson@math.uwaterloo.ca

Math. Dept., East Carolina University, Greenville, NC 27858, USA

E-mail address: KatsoulisE@mail.ecu.edu

Math. Dept., University of Nebraska, Lincoln, NE 68588, USA

E-mail address: dpitts@math.unl.edu


