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Free semigroup algebras are wot-closed algebras generated by n isome-
tries with pairwise orthogonal ranges. They were introduced in [27] as an
interesting class of operator algebras in their own right. The prototype al-
gebra, obtained from the left regular representation of the free semigroup on
n letters, was introduced by Popescu [45] in connection with multi-variable
non-commutative dilation theory. This algebra has a great deal of analytic
structure associated to the unit ball in Cn which justifies its name as the non-
commutative analytic Toeplitz algebra. The general free semigroup algebras
contain interesting computable information about the unitary invariants for
the n-tuple of generators. This has allowed the classification of large classes
of representations of the Cuntz algebra. Such classifications are important in
various applications of C*-algebras. In particular, the work of Bratteli and
Jorgensen [15] uses such representations to generate wavelets, and unitary
invariants for special classes of representations are central to their work. In
this article, we will survey results about free semigroup algebras themselves,
with passing reference to various applications.

1. Connections to C*-algebras

Let S1, . . . , Sn denote an n-tuple of isometries with pairwise orthogonal
ranges. The orthogonality relations are given algebraically by S∗i Sj = δijI
for 1 ≤ i, j ≤ n, or equivalently by

S∗i Si = I for 1 ≤ i ≤ n and
n∑
i=1

SiS
∗
i ≤ I.

The C*-algebra generated by such an n-tuple was introduced by Cuntz [21].
There are only two possibilities. When

∑n
i=1 SiS

∗
i = I, the C*-algebra is

∗-isomorphic to the Cuntz algebra On, which is simple and purely infinite.
When

∑n
i=1 SiS

∗
i < I, there is again only one ∗-isomorphism class of C*-

algebras, known as the Cuntz–Toeplitz algebra En. This algebra contains
an ideal K generated by I −

∑n
i=1 SiS

∗
i which is isomorphic to the compact

operators K. This is the only proper ideal, and En/K is isomorphic to On.
Perhaps because there are only two possibilities for this C*-algebra, it

is difficult to use the C*-algebraic structure to determine spatial invariants
(up to unitary equivalence). A famous theorem of Glimm [32] states that,
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at least considering the parameterization of (cyclic) representations via the
state space and the GNS construction, it is essentially impossible to deter-
mine complete unitary invariants. More precisely, Glimm’s theorem states
that for any non-type I C*-algebra, there is no countable family of Borel
functions on the state space which distinguish the corresponding represen-
tations up to unitary equivalence. As the only simple type I algebras are
the finite matrix algebras Mn and the compact operators K, it follows that
this classification is impossible for most C*-algebras.

Nevertheless, there are good reasons for wanting to do this. We men-
tion two. Bob Powers [50] introduced the study of wot-continuous ∗-
endomorphisms of B(H). Such a map is determined by what it does to
K, which has only one irreducible representation up to unitary equivalence,
the identity map. So the restriction of this endomorphism π to K is just a
multiple, say n, of the identity map. This extended integer n is known as
the Powers index. Note then that there are n isometries Si for 1 ≤ i ≤ n
so that π(A) =

∑n
i=1 SiAS

∗
i . These isometries are not unique, but they are

unique up to an action of the n × n unitary group Un, which amounts to
the choice of a basis for the range of π(E11), where E11 is a matrix unit of
K. From this one finds that the C*-algebra generated by these S1, . . . , Sn is
unique, and the choice of generators is determined up to a so-called gauge
automorphism. See [37, 18, 14] for further information.

The second application is work of Bratteli, Jorgensen and others [14, 15,
17, 34, 13] using representations of the Cuntz algebra to generate wavelets.
They introduced [14] a class of representations known as finitely correlated
representations in connection with the endomorphisms above. We shall
see can that they be completely classified by exploiting a connection with
dilation theory in our work. Their isometries act on L2(T), and have the
form Sif(z) = mi(z)f(zn) where mi are functions of modulus 1 satisfying
the orthogonality relations

n∑
k=1

mi(zωk)mj(zωk) = δijn

where ω = e2πi/n [16]. These are used to generate wavelet bases of L2(R)
with n − 1 mother wavelets under integer translation and n-fold dilation.
The interested reader is referred to the papers cited in the references.

We make an elementary observation about the representation theory of
En. Suppose that π is a ∗-representation of En. The restriction to K must
be equivalent to a multiple α of the identity representation because K is
isomorphic to the compact operators. Standard C*-algebra theory (c.f.[23])
shows that the restriction of π to π(K)H is also unitarily equivalent to id(α),
and the restriction to the complement factors through En/K ' On. Hence
π ' id(α)⊕σq where q is the quotient map onto On and σ is a representation
of On. Below we shall see that this decomposition is equivalent to the Wold
decomposition.
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2. Definitions and Some Examples

The free semigroup algebra generated by an n-tuple of isometries with
orthogonal ranges S = (S1, . . . , Sn) is the unital wot-closed algebra S =
Alg{S1, . . . , Sn}

wot

.
The fundamental example is the left regular representation of the free

semigroup F+
n consisting of all words in n non-commuting letters {1, 2, . . . , n}.

The empty word ∅ is the identity element for F+
n . The Hilbert space

Kn = `2(F+
n ) has the orthonormal basis {ξw : w ∈ F+

n }. Isometries Lv
are defined for every word v ∈ F+

n by Lvξw = ξvw. In particular, the gen-
erators determine the n-tuple of isometries L1, . . . , Ln. Notice that the Li
have orthogonal ranges spanned by all words beginning with the letter i
for 1 ≤ i ≤ n, and that the vector ξ∅ spans the complement of the sum∑n

i=1 LiKn. The free semigroup algebra generated by L = (L1, . . . , Ln) is
denoted by Ln and is called the non-commutative analytic Toeplitz algebra.

The semigroup F+
n is graded by the length function |w| of a word w,

since |vw| = |v| |w|. The space Kn is known as Fock space, and may be
decomposed into a direct sum of subspaces Kn =

∑⊕
k≥0Hk where Hk =

span{ξw : |w| = k}. Then dimHk = nk. Thus H0 = C, H1 ' `2n and
Hk ' H⊗k1 , the tensor product of k copies of n-dimensional space. The
isometries Li are known as creation operators in this context, and are written
by mathematical physicists as Liζ = ξi ⊗ ζ in this presentation of Kn.

Since P0 := I−
∑n

i=1 LiL
∗
i = ξ0ξ

∗
0 is non-zero, it follows that C∗(L) = En.

Note also that F+
n has a right regular representation given by Riξw = ξwi

for 1 ≤ i ≤ n. It is routine to verify that Rvξw = ξwṽ where ṽ is the
word v in reverse order. Clearly the free semigroup algebra Rn generated
by R = (R1, . . . , Rn) commutes with Ln. Moreover this algebra is unitarily
equivalent to Ln via the unitary Wξw = ξw̃.

When n = 1, this representation just yields the unilateral shift. In this
case, L1 is just the classical analytic Toeplitz algebra on H2 isomorphic to
H∞ of the unit disk. Also R1 = L1 = L′1. When n ≥ 2, there is much
analogous analytic structure associated to the unit ball in Cn which will be
examined in detail later. At this point, we content ourselves with a simple
observation. Each element A ∈ Ln is determined by Aξ∅ =

∑
v∈F+

n
avξv

because

Aξw = ARw̃ξ∅ = Rw̃Aξ∅ =
∑
v∈F+

n

avξvw.

At least when this is a finite sum, it follows that A =
∑

v∈F+
n
avLv. In

general, we think of this infinite sum as a Fourier series of analytic type.
In fact, if we define maps Φk(A) =

∑
|v|=k awLw, then Cesaro means may

be defined by Σk(A) =
∑k−1

j=0

(
1 − j

k

)
Φj(A). These are completely positive

unital maps of Ln into itself which converge to the identity map in the
pointwise strong operator topology [27, Lemma 1.1].
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Now suppose that S = (S1, . . . , Sn) is an arbitrary set of isometries with
orthogonal ranges. We shall write Sv for the monomial v(S) = Si1 . . . Sik
for any word v = i1 . . . ik ∈ F+

n . A wandering subspace is a subspaceW such
that the subspaces {SvW : v ∈ F+

n } are pairwise orthogonal. The span of
these subspaces is the S–invariant subspace S[W] generated byW. Clearly
the restriction of the isometries Si to S[W] is unitarily equivalent to a direct
sum of dimW copies of the left regular representation. We shall see that
such subspaces are omnipresent in all known examples.

Popescu [42] established the analogue of the Wold decomposition in this
context, and the proof is essentially the same as for a single isometry. Let
W =

(
I −

∑n
i=1 SiS

∗
i

)
H. It is readily verified that W is a wandering space

and that S[W] is a reducing subspace. The restriction to S[W] is a multiple
of the left regular representation, as noted above, and the restriction to the
complement yields a representation of the Cuntz algebra because the sum
of the ranges there is the whole space. The C*-algebraic view of this was
mentioned in the previous section.

A representation which is a multiple of the left regular representation is
called pure, and a representation which generates the Cuntz algebra is said
to be of Cuntz type. There are many representations of the latter type. We
provide a few to keep in mind.

Example 2.1. Let u = i1 . . . ik be a word in F+
n and let λ ∈ T be a scalar of

modulus one. Define a Hilbert space Ku ' Ck ⊕ Kk(n−1)
n with orthonormal

basis ζ1, . . . , ζk for Ck and index the copies of Kn by (s,j), where 1 ≤ s ≤ k,
1 ≤ j ≤ n and j 6= is, with basis {ξs,j,w : w ∈ F+

n }. Define a representation
σu,λ of F+

n and isometries Si = σu,λ(i) by

Siζs = ζs−1 if i = is, s > 1
Siζ1 = λζk if i = i1

Siζs = ξs,i,∅ if i 6= is

Siξs,j,w = ξs,j,iw for all i, s, j, w

Notice that each ξs,j,∅ is a wandering vector generating the (s,j)th copy of
Kn. The sum of the ranges of the Si’s is the whole space, so this is a Cuntz
representation. The copy of Ck is invariant for the S∗i ’s and each basis vector
ζs is a cyclic vector for S. Think of this as a ring of k basis vectors being
permuted around the ring by the appropriate Sis at each point. Off of each
node ζs there are n− 1 copies of Fock space, one for each i 6= is.

The reader can quickly verify that every wandering vector is orthogonal
to span{ζ1, . . . , ζk}. Thus the span of all wandering vectors is precisely
span{ζ1, . . . , ζk}⊥. We shall be able to detect this in S because it turns
out that the projection P onto span{ζ1, . . . , ζk} belongs to S, and is the
largest projection in S such that PSP is self-adjoint. This will allow us
to completely describe the algebra S, and to decompose the corresponding
representation of On into a direct sum of irreducible representations. In
particular, notice that the restriction of S to P⊥H is unitarily equivalent
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to the direct sum of k(n − 1) copies of Ln. Since P ∈ S, we need only
understand SP to have a complete picture of the algebra S. This turns out
to be WP where W is the von Neumann algebra generated by S. Moreover
because PWP is the finite dimensional C*-algebra on PH generated by the
restrictions of the S∗i ’s, it will be straightforward to completely analyze this
example.

Example 2.2. Let x = i1i2i3 . . . be an infinite word in {1, . . . , n}. Define
a sequence xm = i1i2 . . . im for m ≥ 0. Let F+

n x
−1 denote the collection of

words in the free group on n generators of the form v = ux−1
m for u in F+

n and
some m ≥ 0. Identify words which are the same after cancellation, namely
ux−1

m = (uim+1)x−1
m+1. Let Hx be the Hilbert space with orthonormal basis

{ξv : v ∈ F+
n x
−1}. Define a representation πx of F+

n and isometries Si = πx(i)
on Hx by πx(w)ξv = ξwv for v ∈ F+

n x
−1 and w ∈ F+

n .
This is also a Cuntz representation because it is readily apparent that

each basis vector is the image of some other basis vector, whence the sum of
the ranges of the Si’s is the whole space. Indeed, notice that each ξx−1

m
is a

wandering vector which generates `2(F+
n x
−1
m ). Consequently Hx is expressed

as the increasing union of a nested sequence of invariant subspaces on which
S acts like the left regular representation. Such Cuntz representations are
in a natural sense inductive limits of (possibly multiples of) the left regular
representation, and hence are said to be of inductive type. In particular, it
is easy to convince yourself that the algebra S is canonically isometrically
isomorphic to Ln.

3. Dilation Theory

The Sz.Nagy dilation theorem [56] shows that an arbitrary contraction
on a Hilbert space H dilates to an isometry on a larger space. Frahzo [31]
and Bunce [19] observed that there is a natural analogue for a contractive
n-tuple A = (A1, . . . , An). There is no commutativity required, only the
norm condition ‖A‖ =

∥∥∑AiA
∗
i

∥∥1/2 ≤ 1. Perhaps the simplest proof uses
the Schaeffer construction. Namely consider DA = (In−A∗A)1/2 which acts
on the direct sum H(n) of n copies of H (where In is the identity operator

on H(n)). Then
[
A
DA

]
is an isometry from H(n) into H ⊕ H(n). Thus the

n columns
[
Ai
Xi

]
of this isometry, for 1 ≤ i ≤ n, are isometries from H

into H⊕H(n) with pairwise orthogonal ranges. Consider the Hilbert space
K = H⊕

(
H(n) ⊗Kn

)
, and define isometries

Si =
[
Ai 0
Xi In ⊗ Li

]
There is a slight abuse of notation where we identify Xi with its composition
with the natural inclusion ofH(n) ontoH(n)⊗Cξ∅ as a subspace ofH(n)⊗Kn.
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Popescu [42] showed that there is a unique minimal dilation, and ex-
tends this argument to a countable row contraction. The minimal di-
lation is obtained from the construction above by restricting each Si to
span{SvH : v ∈ F+

n }, which is evidently the minimal invariant subspace for
the Si’s containing H in this dilation.

Popescu pursues the analogy with the one-variable case and finds many
parallels with the Sz.Nagy–Foiaş theory. In particular, he establishes the
analogue of the commutant lifting theorem [44]: if X is a contraction com-
muting with A1, . . . , An, then X dilates to a contraction Y on the larger
space which commutes with the dilation S1, . . . , Sn.

There is a natural analogue [45] of the von Neumann inequality. The
point is the same as Sz.Nagy’s proof in one variable, namely if p is a non-
commuting polynomial in n-variables, then the 1, 1 entry of p(S1, . . . , Sn) is
just p(A1, . . . , An). Hence

‖p(A1, . . . , An)‖ ≤ ‖p(S1, . . . , Sn)‖.

Moreover the right hand side does not depend on the particular dilation!
Indeed, this norm may be computed in C∗(S), and so there are only two
possibilities, namely En and On. Since On is a quotient of En, the norm is
apparently at least as large in En. Thus

‖p(A1, . . . , An)‖ ≤ ‖p(L1, . . . , Ln)‖.

However on the norm closed unital algebra An generated by L1, . . . , Ln, the
quotient map is completely isometric. Popescu calls this algebra An the
non-commutative disk algebra.

Evidently von Neumann’s inequality allows the immediate construction of
a functional calculus onAn for every row contraction A. Following Arveson’s
approach to non-commutative dilation theory [6, 7], it follows that there is
a unique unital completely positive map from On onto C∗(A1, . . . , An) which
sends Si onto Ai for 1 ≤ i ≤ n. In [49], Popescu develops an analogue of
the Poisson kernel to provide an explicit formula for this map. Since On is
simple, it is the smallest C*-algebra which contains An completely isomet-
rically. By Hamana’s Theorem [33], there is a unique minimal C*algebra
containing any unital operator algebra completely isometrically, which Arve-
son named the C*-envelope. Hence On is the C*-envelope of An. This shows
in particular that the algebras An are not isomorphic for different values of
n [48].

In the one variable case, it is desirable when possible to extend the disk al-
gebra functional calculus to H∞(D). This requires the contraction to dilate
to an absolutely continuous isometry (meaning that the unitary part of the
Wold decomposition has a spectral measure which is absolutely continuous
with respect to Lebesgue measure on the circle). Popescu [45, 46] identi-
fies the corresponding class of row contractions and extends the functional
calculus to Ln, which Popescu calls F∞n . A special case which is especially
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tractable occurs when ‖A‖ = r < 1. In this instance, Bunce [19] basi-
cally showed that there is a unique way to extend the functional calculus
which sends Li to Ai to all of Ln by setting Φ(X) =

∑
w∈F+

n
xww(A) for

X =
∑

w∈F+
n
xwLw in Ln. The strict contraction condition may be used to

show that ‖
∑
|w|=k xww(A)‖ ≤ rk‖X‖, and thus Φ(X) is a norm convergent

series.
We also mention [41, 43] as related papers of Popescu developing Sz.Nagy–

Foiaş models.

4. The Spatial Structure of Ln

In this section, we develop the spatial structure theory of the non-commut-
ative analytic Toeplitz algebra Ln. The results of this section are due to
Popescu [43, 47], myself and Pitts [27] and Arias and Popescu [4]. Our
goal is to stress the analogue with the analytic Toeplitz algebra T (H∞)
generated by the unilateral shift.

Suppose that A is an operator commuting with the right regular algebra
Rn. Then Aξ∅ =

∑
v∈F+

n
avξv. The Cesaro means defined in section 2

suggest that we consider the sequence
∑
|v|<k

(
1− |v|k

)
avLv. These converge

strongly to A, which shows that the commutant of Rn is just Ln. Conversely
L′n = Rn as these algebras are unitarily equivalent.

This leads to several immediate consequences, such as the fact that Ln is
inverse closed, i.e. if A ∈ Ln is invertible in B(Kn), then the inverse lies in Ln.
Also since Rn contains isometries with orthogonal ranges, it is immediate
that ‖A‖e = ‖A‖ for all A ∈ Ln. In particular this establishes the fact that
the quotient from En to On is (completely) isometric on An.

With a bit more work, we see that Ln contains no normal elements which
are not scalar. To see this, notice that ξ∅ is in the kernel of each L∗i , and
thus is an eigenvector for every A∗ with A ∈ Ln. Indeed, A∗ξ∅ = a∅ξ∅.
Suppose that A were normal. Then ξ∅ would also be an eigenvector for A
and so Aξ∅ = a∅ξ∅. From the Fourier series, it follows that A = a∅I.

A more careful study shows [27, Theorem 1.7] that every non-zero el-
ement of Ln is injective and has non-zero connected essential spectrum
σe(A) = σ(A). In particular, Ln contains no proper projections or non-
zero quasinilpotents. Hence Ln is a semisimple algebra.

The first deep connection to function theory is an analogue of the Beurling
Theorem for Ln [43] (c.f. [27]). The Beurling Theorem [10] says that every
invariant subspace of the unilateral shift represented on H2 as the Toeplitz
operator Tz has the form wH2 where w is an inner function (w ∈ H∞(D)
and |w(eiθ)| = 1 a.e.). These subspaces are always cyclic (w is the cyclic
vector) and they are the range of the isometry Tw. Now the only isometries
in the Toeplitz algebra T (H∞) are of the form Tw for w inner, and T (H∞)
is maximal abelian. So Beurling’s theorem may be restated as saying that
the invariant subspaces of the unilateral shift are the ranges of isometries in
the commutant. This is the form which generalizes.
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Theorem 4.1. Every invariant subspace of Ln is the direct sum of cyclic
subspaces. The cyclic invariant subspaces of Ln are precisely the ranges of
isometries in Rn; and the choice of isometry is unique up to a scalar.

The proof starts with an invariant subspace M and forms the wandering
space W =M	

(∑
i LiM

)
. The grading on Fock space makes it straight-

forward to see that there can be no Cuntz part, and thus M splits into a
direct sum of cyclic subspaces obtained by choosing an orthonormal basis
for W. For each such vector ζ, one constructs an isometry Rζ in Rn by
setting Rζξw = Lwζ and extending by linearity. This is the desired isometry
onto the cyclic subspace Ln[ζ].

This naturally leads to an inner–outer factorization as follows. Take any
A ∈ Ln. The subspace Ran(A) is invariant for Rn with cyclic vector Aξ∅.
Thus it is the range of an isometry L ∈ Ln. Therefore A factors as A = LB
where B = L∗A. One verifies that B commutes with each Ri, and thus lies
in Ln. Moreover B evidently has dense range, and by analogy is called an
outer operator.

Like T (H∞), the algebra Ln has a rich collection of invariant subspaces
of co-dimension one. These correspond to eigenvectors for the adjoint al-
gebra L∗n. When n = 1, each point λ ∈ D determines a kernel function
kλ = (1 − |λ|2)1/2(1 − λz)−1 which are the eigenvectors for the backward
shift T ∗z kλ = λkλ. This vector yields a weak-∗ continuous point evaluation
h(λ) = 〈Thkλ, kλ〉 for h ∈ H∞. Exactly the same thing occurs for n ≥ 2
corresponding to each point λ in the unit ball Bn of Cn [27, Theorem 2.6].

Theorem 4.2. The eigenvectors for L∗n are the vectors

νλ = (1− ‖λ‖2)1/2
∑
w∈F+

n

w(λ)ξw = (1− ‖λ‖2)1/2
(
I −

n∑
i=1

λiLi
)−1

ξ∅

for λ in the unit ball Bn. They satisfy L∗i νλ = λiνλ for 1 ≤ i ≤ n.
Moreover 〈p(L)νλ, νλ〉 = p(λ) for every polynomial p =

∑
w aww in the

semigroup algebra CF+
n . This extends to a wot–continuous multiplicative

linear functional on Ln given by ϕλ(A) = 〈Aνλ, νλ〉.
The vector νλ is cyclic for Ln. The subspace {νλ}⊥ is Ln–invariant, and

its wandering subspace is n-dimensional.

The general issue of the structure of weak-∗ continuous functionals on
operator algebras and the connection to reflexivity has its roots in the Scott
Brown technique c.f.[11]. The fact that L′n = Rn contains isometries with
orthogonal ranges makes the following result straightforward [29]. A some-
what more delicate analysis [12] shows that Ln has the related property
X0,1 which we will not define.

Theorem 4.3. Let ϕ be a weak-∗ continuous linear functional on the spatial
tensor product B(H)⊗ Ln with ‖ϕ‖ < 1. Then there are unit vectors η and
ζ so that ϕ(A) = 〈Aη, ζ〉 for all A ∈ B(H)⊗ Ln.
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In particular, every weak-∗ continuous functional on Ln is given by a
vector functional. So one obtains the important consequence that the weak-
∗ and wot topologies coincide on Ln.

We now have in hand ample information to study reflexivity. An operator
algebra A is reflexive if the algebra can be recovered from its invariant
subspace lattice L = Lat(A) as the set Alg(L) of all operators leaving each
subspace invariant. The lattice L determines a seminorm on B(H) by

βL(T ) := sup
L∈L
‖L⊥TL‖.

Clearly, βL(T ) = 0 precisely when T belongs to Alg(L). Moreover, it is
elementary to show that

βL(T ) ≤ dist(T,Alg(L)) for all T ∈ B(H).

The algebra is said to be hyper-reflexive if these norms are comparable. In
this case, the hyper-reflexivity constant is the smallest number C such that

dist(T,Alg(L)) ≤ CβL(T ) for all T ∈ B(H).

When an operator A is the commutant of another algebra, there is another
natural measure of the distance to A. Define the derivation δT by δT (X) =
XT − TX. Notice that the restriction of δT to A′ is zero if and only if T
belongs to A′′ = A. Suppose that dist(T,A) = d and choose A ∈ A such
that ‖T −A‖ = d. This is possible because A is wot-closed. Then

‖δT |A′‖ = ‖δT−A|A′‖ ≤ 2‖T −A‖ = 2d.

On the other hand, it is not automatic that the distance to A is bounded
by a constant times ‖δT |A′‖.

The list of algebras known to be hyper-reflexive is rather short. It includes
nest algebras which have constant 1 due to the Arveson Distance Formula
[8]. Christensen [20] showed that injective von Neumann algebras have
constant at most 4. Von Neumann algebras with abelian commutant have
constant at most 2, as do abelian von Neumann algebras [52]. Von Neumann
algebras are also commutants. Since von Neumann algebras are spanned by
their projections, it is easy to relate the quantities βLat A(T ) and ‖δT |A′‖
in this situation. Lastly, the case most closely related to our study is the
analytic Toeplitz algebra T (H∞), which has distance constant at most 19
[22].

The non-commutative analytic Toeplitz algebras Ln are reflexive [4]. In-
deed they are hyper-reflexive [27]. The constant we found was 51. However
Bercovici [12] obtained a beautiful general result that yields distance con-
stant 3 for any algebra with property X0,1. We have:

Theorem 4.4. The algebras Ln are hyper-reflexive. Moreover, for all T in
B(Kn),

1
3

dist(T,Ln) ≤ sup
L∈Lat(Ln)

‖L⊥TL‖ ≤ ‖δT |Rn‖ ≤ 2 dist(T,Ln).
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5. The Algebraic Structure of Ln

This section deals with [28] which develops the algebraic structure of Ln,
culminating in a description of the automorphism group, and ties the algebra
even more strongly to analytic function theory on the complex n-ball.

5.1. Ideals. First consider wot-closed ideals. Let Idr(Ln), Idl(Ln) and
Id(Ln) denote the sets of all wot-closed right, left and two-sided ideals
respectively. Suppose that J belongs to Idr(Ln). Observe that the subspace
Jξ∅ belongs to Lat Rn. To see this, note that

RnJξ∅ = JRnξ∅ = JKn = JLnξ∅ = Jξ∅.

Thus Jξ∅ = JKn is the range of J and is Rn invariant. Similarly when J

belongs to Id`(Ln), we have LnJξ∅ = Jξ∅; so Jξ∅ is Ln invariant. Hence
when J is a two-sided ideal, Jξ∅ belongs to Lat(Ln) ∩ Lat(Rn). We define
the map µ(J) = Jξ∅.

For the moment, we consider right ideals. Left ideals are not handled in
the same way. Suppose that M is an invariant subspace for Rn. Define
ι(M) = {J ∈ Ln : Jξ∅ ∈ M}. Clearly this is a wot-closed subspace of Ln.
For any J ∈ ι(M) and A ∈ Ln,

JAξ∅ ∈ JKn = JRnξ∅ = RnJξ∅ ⊂M.

Whence ι(M) is a right ideal. Likewise, if M ∈ Lat(Ln), then ι(M) is a
wot-closed left ideal.

It is easy to see that µ respects sums: µ(J1+J2) = µ(J1)∨µ(J2). However
it also respects intersections, which relies on the fact that µ turns out to be
a bijection. This fact relies on the Beurling Theorem 4.1 and Theorem 4.3
on weak-∗ continuous functionals.

Theorem 5.1. Let µ : Idr(Ln) → Lat(Rn) be given by µ(J) = Jξ∅. Then
µ a complete lattice isomorphism. The restriction of µ to the set Id(Ln) is
a complete lattice isomorphism onto Lat Ln ∩Lat Rn. The inverse map is ι.

It turns out that there are significant differences between right and left
ideals. The tight correspondence between right ideals and invariant sub-
spaces, which also works well for two sided ideals, has no good correspond-
ing result for left ideals. The reason is that there are good factorization
results for elements of Ln with isometries on the left, but not on the right.
Indeed, notice that if L is an isometry, then ‖LA‖ = ‖A‖, but ‖AL‖ may
be much smaller. Kribs [35] found significant pathology in the structure of
left ideals which arose because of strange factorization results. For example,
the isometry L1 cannot be properly factored as L1 = AB if ‖A‖ = ‖B‖ = 1.
However it can be properly factored in Ln if the norm condition is dropped.
Results of this kind are used to show that the map µ is neither one-to-one
nor surjective from Idl(Ln) to Lat(Ln).

A weak-∗ continuous character on Ln has a kernel which is a weak-∗ closed
two-sided ideal of co-dimension one. As the weak-∗ and wot topologies co-
incide, it is wot-closed. Its range is an invariant subspace of co-dimension
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one, and thus it determines an eigenvector for L∗n. This leads to the conclu-
sion that the only weak-∗ continuous characters are the maps ϕλ for λ ∈ Bn
which we found in the previous section.

One important ideal which plays a central role is the wot-closed com-
mutator ideal C. Let Ksn denote symmetric Fock space, which consists of
all vectors of the form ζ =

∑
w∈F+

n
awξw such that aw = av if w(z) = v(z),

where evaluation is taken at a commuting n-tuple z = (z1, . . . , zn) of inde-
terminates. In other words, if |w| = k and σ ∈ Sk is a permutation of k
symbols and if σ(w) denotes the permutation of the k letters in w via σ,
then aσ(w) = aw. In particular, the eigenvectors νλ are evidently symmetric,
and in fact they span Ksn. The main result about C is that

C =
⋂
λ∈Bn

kerϕλ and µ(C) = Ks⊥n .

Another set of important ideals are denoted L
0,k
n . The ideal L0

n = kerϕ0

consists of those elements whose leading Fourier coefficient vanishes. The
ideals L

0,k
n are the kth powers of this ideal, and consist of elements whose

Fourier coefficients vanish up to order k − 1. It is clear that the range
µ(L0,k

n ) = span{ξw : |w| ≥ k}. This subspace has wandering dimension nk.
The ideal structure can be used to show that every element of L

0,k
n factors

as a sum A =
∑
|w|=k LwAw = LB where L is the row isometry with nk

entries Lw for |w| = k, and B, the column operator with the nk entries Aw,
has norm ‖A‖. This norm control is crucial in later developments.

5.2. Representations. In the category of unital operator algebras, we take
the viewpoint that the natural representations are completely contractive
and unital. Given an operator algebra A, for each 1 ≤ k < ∞, we let
Repk(A) denote the set of completely contractive representations of A into
B(Hk), whereHk is a fixed Hilbert space of dimension k. Put the topology of
pointwise convergence on this space. Even though Ln has a natural weak-∗
topology, there are good reasons to consider norm continuous representations
which are not weak-∗ continuous at this juncture. This space is a reasonable
topological object because k is finite, and we can obtain a lot of information
from these finite dimensional representations.

There are many irreducible representations of Ln (even wot-continuous
ones) on spaces of every dimension. Indeed, take any n-tupleA = (A1, . . . , An)
of k × k matrices such that ‖A‖ = r < 1 and so that the Ai’s generate the
full matrix algebra Mk. Then the functional calculus of Bunce and Popescu
which comes out of the dilation theory yields a wot-continuous completely
contractive representation sending Li to Ai.

Conversely, suppose that Φ is a completely contractive representation of
Ln on B(H) with dimH = k <∞. Then

Φ(L) =
[
Φ(L1) . . . Φ(Ln)

]
=:
[
A1 . . . An

]
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must be a contraction. This determines a natural continuous projection πn,k
of Repk(Ln) into the set Bn,k of all contractive n-tuples of k × k matrices.

Both Repk(Ln) and Bn,k are compact Hausdorff spaces and πn,k is contin-
uous. Moreover we observed above that the open ball Bn,k is in the range of
πn,k. Hence this map is surjective. The Bunce argument may be modified
to show uniqueness of the functional calculus when ‖A‖ = r < 1, and it
follows that the restriction of π−1

n,k to Bn,k is a homeomorphism. However,
over the boundary points, the projection is generally not injective, and the
fibre π−1

n,k(A) may be very large.
When n = 1, π1,1 is the natural projection from the maximal ideal space

of H∞ onto the closed D. Over each point λ in the open disk D, there is the
unique functional of point evaluation at λ. However over each point on the
boundary circle, there is a huge fibre.

When n > 1 and k = 1, the points λ ∈ Bn correspond to the point evalua-
tions ϕλ; so the set of weak-∗ continuous characters on Ln is homeomorphic
to Bn. Thus each element A ∈ Ln determines a function Â(λ) = ϕλ(A) on
Bn via the Gelfand transform. Moreover it is clear that L̂i = zi is the ith
coordinate function. Moreover wot-convergent sequences in Ln are sent to
sequences of functions which converge uniformly on compact subsets of the
ball. Hence it follows that Â is analytic, and that the map from A to Â is
a contractive map of Ln into H∞(Bn). This map is not surjective, and the
exact description of the range will be dealt with in section 8.

In the k = 1 case, all the boundary points are essentially the same, so
the fibre π−1

n,1(1, 0, . . . , 0) is typical. There is a natural wot-continuous map
of Ln onto H∞(D) with kernel generated by {Li : i ≥ 2}. Composing this
map with any multiplicative linear function of H∞ sending z to 1 yields an
element of the fibre π−1

n,1(1, 0, . . . , 0). In particular, this fibre is huge! It is an
open question whether there are any other multiplicative linear functionals
in the fibre which do not factor in this manner.

When n ≥ 2 and k ≥ 2, a boundary point of Bn,k may have a unique
pre-image or it may be huge, depending on the point.

5.3. Automorphisms. It turns out that the automorphism group of Ln
exhibits significant analytic structure.

A natural first question is about continuity. Every automorphism Θ of Ln
is automatically norm and wot-continuous. Norm continuity is easy, and
follows from a gliding hump argument. That is, under the assumption that
the map is unbounded, one constructs a single element A which encodes an
appropriate sequence on which the norm blows up, allowing one to show
that ‖Θ(A)‖ is infinite, reaching a contradiction.

The wot-continuity is more subtle, and relies in part on the equivalence of
the wot and weak-∗ topologies. Indeed, for a dual topology, one can apply
the Krein–Smulian Theorem which says that a subspace is weak-∗ closed if
its intersection with the unit ball is weak-∗ closed. This is used to show that
Θ(L0

n) is weak-∗ closed. This leads to the conclusion that ϕ = ϕ0Θ−1 is a
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weak-∗ continuous character, and thus equals some ϕλ. Similarly, for each
λ ∈ Bn, there is a µ ∈ Bn so that ϕλΘ−1 = ϕµ. This determines a map from
the ball into itself given by τΘ(λ) = µ. A computation shows that

τΘ(λ) = ϕλΘ−1(L) :=
(
ϕλΘ−1(L1), . . . , ϕλΘ−1(Ln)

)
= T̂ (λ)

where T = Θ−1(L) =
[
Θ−1(L1) . . . Θ−1(Ln)

]
is a 1 × n row operator.

Thus this map is analytic. Another computation shows that τΘ1τΘ2 = τΘ1Θ2 .
In particular, τΘ−1 = τ−1

Θ . So each τΘ is a biholomorphic homeomorphism
of Bn. Thus we have constructed a homomorphism τ from Aut(Ln) into
Aut(Bn), the group of conformal automorphisms of the ball.

The object now is to compute the kernel of this map, and to show that τ
is surjective. The kernel is straightforward because of the weak-∗ continuity
of Θ. Clearly τΘ = id precisely when Θ(Li) − Li belongs to

⋂
ker(ϕλ),

which we saw earlier is the commutator ideal C. However this easily implies
that Θ(A) − A ∈ C for every polynomial in the generators. The weak-∗
continuity allows us to extend this to all of Ln. Hence Θ is trivial modulo
the commutator ideal. Such automorphisms are called quasi-inner, and the
subgroup of quasi-inner automorphisms is denoted q-Inn(Ln).

Now consider the question of surjectivity. The conformal maps of Bn
which fix the origin are just the unitary maps on Cn. A class of automor-
phisms known as gauge automorphisms of the Cuntz–Toeplitz algebra are
well-known from quantum mechanics. For any unitary U in Un, construct a
unitary on Fock space by Ũ = 1 ⊕

∑
k≥1⊕U⊗k where 1 acts on C, U acts

on the n-dimensional Hilbert space H ' Cn, and U⊗k = U ⊗· · ·⊗U acts on
H⊗k = H⊗ · · · ⊗ H. It is an easy calculation to show that the left creation
operator Lζ which tensors on the left by a vector ζ ∈ H is conjugated by Ũ
as ŨLζŨ∗ = LUζ . Thus Ad Ũ satisfies Ad Ũ(Li) = Lζi where ζ1, . . . , ζn is
an orthonormal basis for H. Thus it follows that span{L1, . . . , Ln} is fixed
by Ad Ũ . Hence Ad Ũ implements an automorphism ΘU of Ln.

An easy calculation shows that ΘUΘV = ΘUV ; so this is a homomorphism
of the unitary group Un into the automorphism group Aut(Ln). However a
bit of a complication appears since τΘU = U , the coordinate-wise conjugate
of U , rather than U itself.

Now it is easy to see that any transitive subgroup of Aut(Bn) containing
Un is the whole group [53]. So it suffices to construct automorphisms with
τΘ(0) = λ for every λ ∈ Bn. One way to accomplish this by a unitarily imple-
mented automorphism is to use the fact that {νλ}⊥ has an n-dimensional
wandering space Wλ. An orthonormal basis ζ1, . . . , ζn for this subspace
yields a set of isometries Lζi which generate Ln. The automorphism sending
Li to Lζi does the job, although the argument is a bit long. We describe an-
other approach used by Voiculescu [57] to construct unitarily implemented
automorphisms of the Cuntz–Toeplitz algebra.
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Consider the Lie group U(1, n) consisting of those (n+1)×(n+1) matrices
X such that X∗JX = J , where J =

[−1 0
0 In

]
. These matrices have the form

X =
[
x0 η∗1
η2 X1

]
where the coefficients satisfy the relations:

(i) ‖η1‖2 = ‖η2‖2 = |x0|2 − 1
(ii) X1η1 = x0η2 and X∗1η2 = x0η1

(iii) X∗1X1 = In + η1η
∗
1 and X1X

∗
1 = In + η2η

∗
2.

The group Aut(Bn) is a quotient of U(1, n), which is obtained by repre-
senting the conformal maps as fractional linear transformations. Indeed the
map X → θX given by

θX(λ) =
X1λ+ η2

x0 + 〈λ, η1〉
for λ ∈ Bn.

is the desired homomorphism, and the kernel is the subgroup T of scalars of
modulus one.

Voiculescu observed that there is a related automorphism of En deter-
mined by its action on generators:

ΘX(Lζ) = (x0I − Lη2)−1(LX1ζ − 〈ζ, η1〉I).

Moreover he constructs a unitary operator UX by

UX(Aξ∅) = ΘX(A)(x0I − Lη2)−1ξ∅ for all A ∈ An

so that ΘX(A) = UXAU
∗
X for all A in An. Unitarily implemented automor-

phisms are wot-continuous, and thus this maps Ln into itself. The beauty
of this approach is that once one finds this lovely formula, it is routine to
verify that the map is a homomorphism, and hence each ΘX is invertible
and so is an automorphism.

Again the computation of τ has a twist. It turns out that τ(ΘX) = θX
where X is the pointwise conjugate of X. This is evidently enough to show
that τ is surjective. As a bonus, we have constructed a section from Aut(Bn)
into the subgroup Autu(Ln) of all unitarily implemented automorphisms of
Ln. In fact, this is the full subgroup. To see this, note that if Θ is just
isometric and τΘ = id, then 1 = Θ(Li) = Li + Ci where Ci ∈ C. However

1 ≥ ‖(Li + Ci)ξ∅‖2 = ‖ξi + Ciξ∅‖2 = 1 + ‖Ciξ∅‖2.

It follows that Ciξ∅ = 0 and so Ci = 0. Hence Θ = Id.
The complete result is

Theorem 5.2. There is a natural short exact sequence

0 −→ q-Inn(Ln) −→ Aut(Ln)
τ
−→ Aut(Bn) −→ 0.

The map τ takes Θ to τΘ(λ) = ϕλΘ−1(L) for λ ∈ Bn. Moreover, τ has
a continuous section which carries Aut(Bn) onto the subgroup Autu(Ln) of
unitarily implemented automorphisms. So Aut(Ln) is a semidirect product.
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6. Classification of Special Free Semigroup Algebras

We now turn to the analysis of more general free semigroup algebras. In
this section, we will be concerned with the classification of certain special
classes of algebras. The atomic representations are classified in [27] and the
finitely correlated representations are classified in [25]. In the next section,
we shall see how much of this apparently special structure actually extends
to all free semigroup algebras.

6.1. Atomic Representations. Say that an n-tuple of isometries S =
(S1, . . . , Sn) with orthogonal ranges is atomic if there is an orthonormal
basis {ξk} for H which is permuted up to scalars by each Si. This requires
that there be endomorphisms πi : N→ N for 1 ≤ i ≤ n and scalars λi,k ∈ T
such that Siξk = λi,kξπi(k). Equivalently, this says that there is an atomic
masa containing all the range projections Pw = w(S)w(S)∗ for w ∈ F+

n . We
call the corresponding representation of En and the free semigroup algebra
S atomic as well.

There is a connection between these representations and the permuta-
tion representations of On recently introduced and studied by Bratteli and
Jorgensen in [15]. Permutation representations are the subclass of atomic
representations for which all scalars λi,k = 1 and

∑n
i=1 SiS

∗
i = I. Bratteli

and Jorgensen were interested in decomposing permutation representations
into direct sums of irreducible representations. However, the condition that
λi,k = 1 forced them to make certain restrictive assumptions. In general,
to obtain a decomposition into irreducible representations, arbitrary scalars
are needed as we shall see.

The basic idea of this analysis is easy. Start with any basis vector ξ, and
see where it is sent by the action of the semigroup F+

n . Either it is a wander-
ing vector, or there is some word which maps ξ back to a scalar multiple of
itself. When it returns, one shows that one obtains a reducing subspace on
which the representation looks like Example 2.1. When ξ is wandering, one
checks to see if it is in the range of one of the Si’s. One begins pulling back
until one reaches a basis vector orthogonal to the range of all of the Si’s, one
enters a recurring loop as above, or the chain continues indefinitely. In the
first case, this produces a wandering vector which generates a reducing sub-
space on which the algebra is unitarily equivalent to Ln. And the latter case
produces a summand of inductive type unitarily equivalent to Example 2.2.

This shows that every atomic representation decomposes into a direct sum
of the basic building blocks which we have already identified. The discussion
now turns to deciding when these representations are irreducible, what the
free semigroup looks like, and how this decomposition may be accomplished.

Consider Example 2.1 first. An easy observation is that when u = vp for
p ≥ 2 is a power of a smaller word v, the ring structure has p-fold symmetry.
This allows the representation σu,λ to be split into p summands σv,µj where
µj are the p pth roots of λ. So even if λ = 1, other roots of unity are needed
in this decomposition.
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On the other hand, one needs to establish that σu,λ is irreducible when
u is primitive, meaning that it is not a power of a smaller word. It is here
that the free semigroup algebra Su,λ that it generates is useful. Consider
the polynomial (λu(S))k. This is an isometry in Su,λ which maps the vector
ζk onto itself. Consider what it does to the other vectors in this basis. If it
is another basis vector in the ring, it cannot be mapped back to itself, for
that would imply symmetry. So eventually it is mapped out of the ring onto
a wandering vector, and then it is mapped off into the far reaches of one of
the wandering spaces. The same happens to each basis vector which is not
in the ring. Hence (λu(S))k converges in the wot topology to the rank one
projection P = ζkζ

∗
k onto Cζk. So P belongs to Su,λ.

Suppose that this representation splits into a sum M⊕M⊥ of reducing
subspaces. Either M or M⊥ is not orthogonal to ζk, say M. Since M is
invariant for P , it must contain ζk, which is a cyclic vector. HenceM = H,
and therefore this representation is irreducible.

Consider what the free semigroup algebra looks like in this case. Since it
contains P , it also contains v1(S)Pv2(S). If v1 and v2 are chosen properly,
we can build the set of matrix units ζiζ∗j for 1 ≤ i, j ≤ k. Let Q =

∑k
i=1 ζiζ

∗
i .

Then QSu,λQ is isomorphic to Mk, the algebra of k × k matrices. Because
each ζi is cyclic, every non-zero vector in the range ofQ is cyclic. So Su,λQ =
B(H)Q. Finally, Q⊥H is the direct sum of k(n− 1) copies of Fock space on
which Su,λ looks like k(n− 1) copies of Ln. Hence Su,λ has the form

Bn,k =
[

Mk 0
Q⊥B(H)Q L

(k(n−1))
n

]
with respect to the decomposition of H = QH ⊕ Q⊥H. Notice that the
algebra (rather than the specific representation) depends only on n and
|u| = k.

Now consider how to identify a summand of type (u, λ) in an arbitrary
atomic representation. Again study the action of the polynomial (λu(S))k

on a basis vector. If it lives in the kth position of a ring corresponding to
the word primitive u, then it is mapped back to a multiple of itself. In a
representation σv,µ where v is not a cyclic permutation of u, every standard
basis vector is mapped off to infinity by these polynomials. Likewise in any
pure or inductive type representation, it is equally evident that each basis
vector is sent off to infinity. However in a representation σu,µ for µ 6= λ,
ζk is sent to (λµ)kζk. On any other basis vector ζ, the sequence (λu(S))kζ
heads off to infinity as before. One deals with this added complication by
setting pm(x) = 1

m!

∑m!
j=1 x

m!+j , and considering pm(λu(S)). This sequence
converges in the strong operator topology to the projection Pu,λ onto the
span of the vectors corresponding to ζk in each summand of type σu,λ.

Thus the multiplicity of σu,λ is computed as the rank of Pu,λ. In particular
we now see that σu,λ and σv,µ are unitarily equivalent only if v is a cyclical
permutation of u and µ = λ.
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Summing Pu,λ over all pairs (u, λ) yields a projection Q in the free semi-
group algebra S corresponding to the projection onto all of the rings. Ob-
serve that QSQ is a (type I) von Neumann algebra. Every standard basis
vector in Q⊥H is a wandering vector. Indeed, Q⊥SQ⊥ is the direct sum
of copies of Ln and of inductive algebras, which were observed in Exam-
ple 2.2 to be (completely) isometrically isomorphic to Ln. Thus it follows
that Q⊥SQ⊥ is completely isometrically isomorphic to Ln. As Q⊥H is in-
variant for S, the algebra has a lower triangular form. The 2, 1 entry is
specified by the structure of the pieces coming from each ring algebra. In
fact, SQ = WQ where W is the von Neumann algebra generated by S, as
we see in the next section.

Lastly consider the representations of inductive type. It is clear that if one
can delete a finite number of terms from the beginning of two words in order
to make them equal, then the two representations are unitarily equivalent.
In this case, the two sequences are called shift tail equivalent. Otherwise they
are inequivalent. They are irreducible except when the word is equivalent to
a periodic word. The representation πx where x = uuuuu . . . is equivalent to
a direct integral of the representation σu,λ over the unit circle with respect
to Lebesgue measure.

To complete the picture, one may compute the multiplicity of the pure
part as rank(I −

∑n
i=1 SiS

∗
i ) and of each inductive representation πx. Re-

call from Example 2.2 the sequence xm. Then note that xm(S)sm(S)∗ is
a projection onto the range of xm(S) spanned by a subset of the standard
basis. As m increases, one obtains precisely those basis vectors which can
be pulled back indefinitely along this sequence. When it is not periodic,
there is one vector in each summand of πx and none in any other. Whence
the multiplicity is the rank of sot–limxm(S)sm(S)∗. In the periodic case,
one obtains instead a subspace on which u(S) is a bilateral shift, and one
computes its multiplicity.

6.2. Finitely Correlated Representations. Our approach here ties dila-
tion theory strongly to the classification of an important class of representa-
tions of En. Bratteli and Jorgensen [14] introduced this class to study endo-
morphism of B(H) and then showed them to be of central importance in gen-
erating wavelets [16, 17]. Their class of representations is obtained by the
GNS construction from a state ψ which has the property that the cyclic vec-
tor ξψ generates a finite dimensional subspace V = span{w(S)∗ξψ : w ∈ F+

n }
for the adjoints S∗i of the generating isometries. Our slightly weaker defini-
tion does not insist that the representation have a cyclic vector, only that
V be cyclic for S. That is, a free semigroup S is finitely correlated if there
is a finite dimensional subspace V which is invariant for S∗ and is cyclic for
S. In particular this class contains all of the atomic ring representations
mentioned above.

Our viewpoint about where such representations arise comes from dilation
theory. Let Ai = (S∗i |V)∗ be the compressions of each Si to V. A simple
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calculation shows that

n∑
i=1

AiA
∗
i = PV

n∑
i=1

SiS
∗
i

∣∣
V ≤ IV

Thus A = (A1, . . . , An) is a row contraction; and it is a row isometry if (and
only if) S is a Cuntz representation. Notice that S is an isometric dilation
of the row contraction A. Moreover since V is cyclic, this is a minimal
dilation. By the uniqueness of the minimal isometric dilation, we see that S
is completely determined by A. Our goal is to start with A and find complete
unitary invariants for the set of isometries S. In particular, we will be able
to decide if A and B determine unitarily equivalent representations.

For convenience we will consider only the Cuntz case AA∗ = I. For the
general case, we mention only that the multiplicity of the pure part may be
computed directly from A as rank(I − AA∗). The additional complication
in decomposing the representation can be found in [25].

It is easy to see that V⊥ is of pure type, so that the restriction of S to this
subspace is a multiple L

(α)
n of Ln. However V⊥ is not normally a maximal

subspace of this type. It does place S inside the algebra B(H)PV+P⊥V SP⊥V ,
which is unitarily equivalent to Bn,d where d = dimV. In particular, we see
immediately that the weak-∗ and wot topologies coincide.

We search for a (finite rank) projection in S. We focus on the algebra
A = Alg{A1, . . . , An} of matrices generated by A. The key technical result is
that for every non-zero vector x ∈ H, the subspace S∗[x] always intersects V.
In the special case in which A = B(V), one can now show that PV belongs to
S. From this we deduce, as in the atomic ring case, that the representation
is irreducible. The free semigroup algebra in this case is exactly the algebra
Bn,d above.

More generally, one finds that whenever M is a minimal invariant sub-
space for A∗, that S[M] is a reducing subspace. The restriction of S to this
subspace is irreducible, and it contains the projection PM. The restriction
of A∗ to M is an algebra of matrices with no proper invariant subspace.
So by Burnside’s Theorem, A∗|M = B(M). We deduce that SS[M] ' Bn,d

where d = dimM.
We then form a maximal family {Mi} of pairwise orthogonal minimal

A∗–invariant subspaces. This yields an orthogonal decomposition of the free
semigroup algebra into a direct sum of irreducible algebras on S[Mi]. This
procedure does not depend on how this maximal family is obtained. In
particular the span of the Mi’s is the subspace Ṽ spanned by all minimal
A∗–invariant subspaces.

At this stage, you might suspect that because of the structure A∗|Mi =
B(Mi) that A∗|Ṽ is a C*-algebra. Remarkably this is true, and once this is
established, one can use the Wedderburn Theorem to decompose it into a
sum of full matrix algebras. This yields a corresponding orthogonal decom-
position of S.
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Thus the decomposition problem now turns on deciding when two such
irreducible representations are unitarily equivalent. This suggests studying
intertwining maps between two such representations. The tool that makes
this possible is the completely positive map Φ on B(V) given by

Φ(X) =
n∑
i=1

AiXA
∗
i .

Suppose that there is an invertible map T between two minimal A∗–
invariant subspaces V1 and V2 which commutes with A. WriteBi := PV1Ai|V1

and Ci := PV2Ai|V2 . Since TBiT−1 = Ci and
n∑
i=1

BiB
∗
i = IV1 and

n∑
i=1

CiC
∗
i = IV2 ,

we compute that

IV2 =
n∑
i=1

(TBiT−1)(TBiT−1)∗ = TΦ(T−1T ∗−1)T ∗.

Therefore

Φ(T−1T ∗−1) = T−1T ∗−1.

This leads to the discovery of two interesting facts about completely pos-
itive maps on Mk. The first is that a non-scalar operator X such that
Φ(X) = X implies that A∗ = Alg{A∗1, . . . , A∗n} has two pairwise orthogonal
minimal invariant subspaces. This had gone unnoticed because no-one had
ever started with a completely positive map Φ on Mk, found a Stinespring
decomposition which leads to the form as above and then looked at the al-
gebra generated by the A∗i ’s. It is not at all obvious that the uniqueness in
the Stinespring condition would make this an interesting object; but it is!

The second consequence is even more surprising. When V is the orthog-
onal direct sum of minimal A∗–invariant subspaces, then A is a C*-algebra
and the fixed point set of Φ coincides with the commutant of A. The fol-
lowing example puts this result in perspective.

Example 6.1. Let

A1 =

 1/
√

2 0 0
1/2
√

2 1/2 1/2
√

2
0 0 1/

√
2

 and A2 =

 1/
√

2 0 0
−1/2

√
2 1/2 −1/2

√
2

0 0 1/
√

2

 .
Note that A1A

∗
1 + A2A

∗
2 = I. A calculation shows that the fixed point set

of Φ is the set of matrices X = [xij ] such that x12 = x21 = x23 = x32 = 0
and x11 + x13 + x31 + x33 = 2x22. In particular, this is not an algebra.
The algebra A∗ has two minimal invariant subspaces, Ce1 and Ce3. Note
that the compression of A to span{e1, e3} consists of scalar matrices, and
the fixed point set of the restricted completely positive map is the full 2× 2
matrix algebra.



20 K.R.DAVIDSON

Putting all of this information together yields the complete picture:

Theorem 6.2. Let A1, . . . , An be operators on a finite dimensional space V
such that

n∑
i=1

AiA
∗
i = I, and let S1, . . . , Sn be their joint isometric dilation.

Let Ṽ be the subspace of V spanned by all minimal A∗–invariant subspaces.
Then the compression Ã of A to Ṽ is a C*-algebra. Let Ã be decomposed as∑⊕

g∈G Mdg⊗Cmg with respect to a decomposition Ṽ =
∑⊕

g∈G V
(mg)
g , where Vg

has dimension dg and multiplicity mg. Then the dilation acts on the space

H =
∑

g∈G
⊕
H(mg)
g where Hg = Vg ⊕K

(dg(n−1))
n . The algebra S decomposes

as S '
∑⊕

g∈G B
(mg)
n,dg

.

In particular, the algebra S contains the projection P
Ṽ

, and P
Ṽ

SP
Ṽ

is
the C*-algebra Ã. This is what makes the decomposition possible. This
description looks a bit complicated, but it yields some useful and easily
implemented consequences.

Corollary 6.3. Let S be the algebra determined by the joint isometric di-
lation of a contractive n-tuple A on a finite dimensional space V such that
AA∗ = I. Then S is irreducible if and only if the fixed point set of Φ(X) =∑n

i=1AiXA
∗
i is trivial, i.e. {X : Φ(X) = X} = CI.

And the general question of unitarily equivalent representations of this
type reduces to a (possibly difficult) finite dimensional problem.

Theorem 6.4. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be contrac-
tive n-tuples on finite dimensional spaces VA and VB respectively such that
AA∗ = IVA and BB∗ = IVB . Let S = (S1, . . . , Sn) and T = (T1, . . . , Tn) be
their joint minimal isometric dilations on Hilbert spaces HA and HB; and
let σA and σB be the induced representations of On. Let ṼA be the subspace
spanned by all minimal A∗–invariant subspaces; and similarly define ṼB.
Then σA and σB are unitarily equivalent if and only if A∗|ṼA is unitarily
equivalent to B∗|ṼB .

A result of Kribs [36] that shows that one can detect the A∗–invariant
subspaces from the completely positive map Φ without computing the Ai’s
explicitly. He shows that M is A∗–invariant if and only if Φ(PM) ≤ PM.

The structure of these algebras is so tight that one can explicitly describe
many of their invariant subspaces. In particular, the column SPV is a ‘slice’
of a type I von Neumann algebra, and thus is hyper-reflexive with distance
constant 4 by Christensen’s result [20]. The restriction to Ṽ⊥ is a multiple of
Ln, and thus has hyper-reflexivity constant 3 by Bercovici [12]. Combining
these estimates yields:

Corollary 6.5. The algebra S determined by the joint isometric dilation
of a contractive n-tuple on a finite dimensional space is hyper-reflexive with
distance constant at most 5.
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7. Structure Theory

Our attention earlier has been on special classes which have some useful
extra property. However it is now possible to extend some of the structural
picture to all free semigroup algebras. The focus in on several features which
have emerged as important in these special classes. The first feature is the
central role played by wandering vectors, because the restriction of S to
a subspace generated by a wandering vector is unitarily equivalent to the
left regular representation L. Secondly there is the role of projections which
occur in the algebra S. Since Ln has no proper projections itself, projections
in S have made it possible to decompose the algebra into pieces.

We shall say that an algebra S is type L if it is canonically isomorphic
to Ln, meaning that the map sending Si to Li may be extended to an al-
gebra isomorphism. In addition to multiples of Ln, we have also seen that
atomic representations of inductive type are type L. More generally any
inductive representation (meaning that H is the increasing union of invari-
ant subspaces on which S is pure) must be type L. In fact these algebras
are completely isometrically isomorphic and weak-∗ homeomorphic by the
canonical wot-continuous map connecting them. This turns out to be true
for all type L algebras.

An important tool in this general analysis is the ideal S0 of S generated
by {S1, . . . , Sn}. This ideal is either co-dimension 1 if it does not contain I or
it is all of S. If S has a wandering vector ξ, then ϕ(A) = 〈Aξ, ξ〉 is a unital
wot-continuous functional with kernel S0. Whence S0 6= S. Conversely,
if S0 6= S, then there is a wot-continuous functional ϕ with kerϕ = S0.
This functional may be represented as ϕ(A) =

∑p
i=1〈Aζi, ηi〉. Hence on the

p-fold ampliation S(p) acting on H(p), one has ϕ(A) = 〈A(p)ζ, η〉 where ζ
has coefficients ζi and η has coefficients ηi. Consequently ζ is orthogonal

to S
(p)
0 ζ. The projection of ζ onto the orthogonal complement will be a

wandering vector for the subspace S(p)[ζ].
On the other hand, if S0 = S, then I is the wot-limit of a net Aα in S0.

It follows easily that S∗i A is a net in S which converges wot to S∗i . Thus
S contains each S∗i , and so is the von Neumann algebra W generated by S.

There are two important open questions related to this circle of ideas:

Question 7.1. Can S be a von Neumann algebra?

Question 7.2. Does every (type L) representation have a wandering vec-
tor?

We have some partial information which pushes the ampliation argument
significantly further, and adds some information to the second question.

Theorem 7.3. Suppose that S is type L. Then for p sufficiently large, the
space H(p) is spanned by wandering vectors of S(p).
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It follows from our argument above that whenever S0 6= S, there is a
wot-continuous map from S into Ln sending each generator Si to Li, just
by sending A to A(p)|S(p)[ζ]. This map is always surjective. Indeed,

Theorem 7.4. Suppose that Φ : S → Ln is a wot-continuous homomor-
phism such that Φ(Si) = Li for 1 ≤ i ≤ n. Then Φ is surjective, and
S/ ker(Φ) is completely isometrically isomorphic and weak-∗ homeomorphic
to Ln.

Clearly the map Φ is unique when it exists. We need to identify its
kernel. It is not difficult to convince yourself that ker Φ = ∩k≥1S

k
0 =: J.

The important observation is that J is invariant under left multiplication by
S∗i as well as by Si, and thus it is a wot-closed left ideal in W. Consequently
J contains a self-adjoint projection P so that J = WP . This is a crucial
step in the main structure theorem that we are seeking.

Theorem 7.5. Let S be a free semigroup algebra, and let W be its envelop-
ing von Neumann algebra. Then there is a largest projection P in S such
that PSP is self-adjoint. It has the following properties:

(i) WP =
⋂
k≥1

Sk
0,

(ii) P⊥H is invariant for S,
(iii) if P 6= I, then SP⊥ is completely isometrically isomorphic and weak-

∗ homeomorphic to Ln via the canonical wot-continuous homomor-
phism Φ with Φ(Si) = Li for 1 ≤ i ≤ n, and

(iv) S = WP + P⊥SP⊥.

Note that the description of P is given only in terms of S, and hence P is
an invariant of the algebra and is not dependent on a choice of generators.
The theorem yields a canonical decomposition of S into a lower triangular
form where the first column is a slice of a von Neumann algebra and the
(2, 2) entry is type L.

Since type L algebras contain no proper projections, we may conclude
that any free semigroup algebra which is merely algebraically isomorphic
to a subalgebra of Ln is automatically type L, and thus is completely iso-
metrically isomorphic and weak-∗ homeomorphic to Ln via the canonical
map.

As an immediate corollary, we can characterize the radical.

Corollary 7.6. With n ≥ 2 and notation as above, the radical of S is
P⊥SP . Thus the following are equivalent:

(i) S is semisimple and is not self-adjoint
(ii) S is type L
(iii) S has no non-scalar idempotents
(iv) S has no non-zero quasinilpotent elements.

One interesting and non-trivial consequence of the structure theorem is
information about the geometry of the unit ball. The Russo–Dye Theorem
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[54] states that in any C*-algebra, the convex hull of all unitary elements
is the whole unit ball. Also the algebra H∞ is the convex hull of the inner
functions [38]. In a free semigroup algebra which may contain no non-scalar
unitaries at all (when it is type L), we instead consider the rich collection
of isometries. One useful consequence of the information about wandering
vectors in ampliations is that whenever V is an isometry in Ln and Φ is
the canonical map of a type L algebra S onto Ln, then Φ−1(V ) is also an
isometry. So there are many isometries in any free semigroup algebra. We
obtain an analogue of the Russo–Dye Theorem in our context.

Theorem 7.7. The convex hull of Isom(S) contains the open unit ball of
S. Moreover, if ‖A‖ < 1 − 1

k for k > 0 an even integer, then A is the
average of 6k isometries.

Examples 7.8. We conclude this section by considering a few examples.
Consider the finitely correlated representations studied in the previous

section. The projection P is the projection onto Ṽ and PSP = Ã is a
C*-algebra. The type L portion is in fact pure.

Now consider the atomic representations. The projection P has range
equal to the direct sum of all of the rings. The type L portion consists
of the span of all wandering vectors, which includes all of the inductive
representations.

Here is an example which yields a large class of inductive type L rep-
resentations. Let S = (S1, . . . , Sn) be any n-tuple of isometries with or-
thogonal ranges acting on H. Let U be the unitary of multiplication by z
on L2(T). Define a new n-tuple of isometries on H ⊗ L2(T) by S ⊗ U =
(S1 ⊗ U, . . . , Sn ⊗ U). Evidently

n∑
i=1

(Si ⊗ U)(Si ⊗ U)∗ =
n∑
i=1

SiS
∗
i ⊗ I.

So these isometries have orthogonal ranges. In addition, if S is of Cuntz
type, then so is the tensored n-tuple.

However, this new representation has a spanning set of wandering vec-
tors of the form ξ ⊗ zk for any ξ ∈ H and k ∈ Z, as a simple calculation
shows. Thus this representation has type L. In fact it is inductive, since the
restriction to H⊗ zkH2(T) is pure with wandering space H⊗ Czk.

Consider the representation π1∞ . This is an atomic representation of
inductive type, and hence is of type L. Because 1∞ is periodic, it is also a
direct integral π1∞ '

∫
T
σ1,λ dλ. Indeed, let K = C⊕Kn. The representation

σ1,λ is determined by generators

Sλ1 =
[
λ 0
0 L1

]
and Sλ2 =

[
0 0
ξ∅ L2

]
.
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Thus the representation π1∞ may be represented on HT := L2(T)⊗K by

S1 =
[
U 0
0 I ⊗ L1

]
and S2 =

[
0 0

I ⊗ ξ∅ I ⊗ L2

]
where U is multiplication by z on L2(T).

Let E be a measurable subset of T with positive measure. Let V denote
U |L2(E) and J = IL2(E). Now consider the representation ρE on HE =
L2(E)⊗K by

T1 =
[
V 0
0 J ⊗ Li

]
and T2 =

[
0 0

J ⊗ ξ∅ J ⊗ L2

]
.

It is evident that any vector of the form 0⊕ (f ⊗ ξ∅) is a wandering vector.
It can be shown that the restriction of a type L representation to an invari-
ant subspace containing a wandering vector remains type L. In fact in this
example, HE is spanned by wandering vectors.

There are a number of open questions raised by this example about sub-
inductive representations. Is HE of inductive type? Is H(∞)

E of inductive
type? Is HT ⊕HE of inductive type? Also more generally if the restriction
of any type L representation to an invariant subspace still type L?

Consider the case n = 1. We are given an isometry S, which decomposes
using the Wold decomposition and the spectral theory of unitary operators
as S ' U (α)

+ ⊕Ua⊕Us where U+ is the unilateral shift, Ua is a unitary with
spectral measure absolutely continuous with respect to Lebesgue measure
m, and Us is a singular unitary. Let ma and ms denote scalar measures
equivalent to the spectral measures of Ua and Us respectively. If α > 0 or if
ma = m, then by [58]

S = W (S) ' H∞(U (α)
+ ⊕ Ua)⊕ L∞(ms)(Us).

The von Neumann algebra it generates is

W = W ∗(S) = B(H)(α) ⊕ L∞(Ua)⊕ L∞(ms)(Us).

The projection P of the Structure Theorem is just the projection onto the
singular part. In this case, it is always a direct summand.

If α = 0 and the essential support of Ua is a proper measurable subset
of the circle, then S = W is self-adjoint. Note that this may occur even
though the spectrum of S is the whole circle.

The n = 1 case exhibits two phenomena which we cannot seem to replicate
in the non-commutative case, and remain important open questions.

The first is the situation just noted that S can be self-adjoint. The second
is that there are isometries S1 and S2 such that W (S1⊕S2) ' H∞, the type
L case, yet neither W (Si) are type L, and in fact are von Neumann algebras.
One simply takes Si to be multiplication by z on the upper and lower half
circles respectively.
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8. Interpolation and the Commutative Theory

In this section, we will examine some natural interpolation questions [29,
5] about the algebra Ln including describing the image of the Gelfand map
from Ln into H∞(Bn). The complete picture requires making a connection
to the theory of commuting row contractions. We will connect the dilation
theory for this class to that of the non-commuting class, and will use it to
describe the image algebra precisely. Finally we will show that we obtain
a reproducing kernel Hilbert space, and obtain yet another view of this
interpolation.

8.1. Interpolation. Consider the Gelfand map which takes A ∈ Ln to the
function Â(λ) = ϕλ(A) = 〈Aνλ, νλ〉 on the unit ball Bn. Fix finite subsets
{α1, . . . , αk} and {c1, . . . , cn} of Bn. Consider the Nevanlinna–Pick question
of whether there is an element A in the unit ball of Ln such that Â(αj) = cj
for 1 ≤ j ≤ k. If the norm condition is dropped, it is elementary to verify
that there are solutions in Ln for any choice of constants. Following Sarason
[55], we can formulate interpolation questions for Ln as operator theoretic
questions. The set of all solutions is a coset of J =

⋂
1≤j≤k ϕαj , which is

a wot-closed ideal of Ln. Thus the smallest possible norm of a solution is
dist(A, J) where A is any particular solution. Moreover compactness in the
wot-topology shows that this norm is attained. The issue then is to decide
if this quotient has norm at most 1.

We consider the general problem of computing the distance to a wot-
closed right ideal J. Recall that the range M = Jξ∅ = JKn is invariant for
Rn. Clearly for any J ∈ J,

‖A+ J‖ ≥ ‖P⊥M(A+ J)‖ = ‖P⊥MA‖.

The converse is also completely correct [29].

Theorem 8.1. Let J be a wot-closed right ideal in Ln; and let M denote
its range. Then Ln/J is completely isometric to P⊥MLn. That is, for every
matrix A =

[
Aij
]

in Mp(Ln), p ≥ 1,

dist(A,Mp(J)) = ‖(P⊥M ⊗ Ip)A‖.

The basic idea is to use the Hahn–Banach Theorem and the fact that
weak-∗ continuous functionals on Ln ⊗ B(H) are given by rank-one vector
functionals. These vectors corresponding to functionals which annihilate J
are generally not supported onM⊥. However, using the Beurling Theorem,
one is able to construct a new representation of this functional which is no
longer rank one, but is supported on M⊥.

The desired conclusion for two-sided ideals is immediate because in this
case M is also invariant for Ln. So P⊥MA = P⊥MAP

⊥
M, and the compression

to M⊥ is a (completely contractive, unital, wot-continuous) homomor-
phism.
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Corollary 8.2. Let J be a wot-closed (two-sided) ideal in Ln; and let
M = µ(J) = Jξ∅ denote its range. Then Ln/J is completely isometri-
cally isomorphic and weak-∗ homeomorphic to the compression P⊥MLn|P⊥M
of Ln to M⊥.

Now apply this to the Nevanlinna–Pick problem. The range of the ideal
J =

⋂
1≤j≤k ϕαj has complement M⊥ = span{ναj : 1 ≤ j ≤ k}. Thus

there is a contractive solution to Â(αj) = cj if and only of ‖P⊥MAP⊥M‖ ≤ 1
for any solution A. This is equivalent to the condition P⊥M(I−AA∗)P⊥M ≥ 0.
Since we have a basis for M⊥, it is a standard result that this is equivalent
to the positivity of the k × k matrix with entries 〈(I − AA∗)ναi , ναj 〉. A
routine calculation factoring out a few things yields the classic Pick matrix
condition [

1− cicj
1− 〈αi, αj〉

]
≥ 0.

Taking a limit, one obtains a characterization of the image in H∞(Bn):
an analytic function h on Bn is in the image of the unit ball of Ln if and
only if [

1− h(αi)h(αj)
1− 〈αi, αj〉

]
≥ 0

for all finite subsets of Bn. In this case, the ideal is
⋂
α∈Bn ϕα, which is

the commutator ideal C. The quotient Ln/C is abelian, but it is not all of
H∞(Bn). Indeed one may take Ak =

∑
{w∈F2:w(z1,z2)=zk1 z

k
2}
Lw and explicitly

compute ‖Âk‖∞/‖A+ C‖. This tends to 0, and thus the injective map from
Ln/C into H∞(Bn) is not surjective.

One obtains Carathéodory type conditions as well. For example, suppose
that coefficients aw are specified for |w| ≤ k. Is there an element A in
the unit ball of Ln whose initial Fourier coefficients are aw? This amounts
to computing dist(

∑
|w|≤k awLw,L

k+1
0 ). The distance estimate reduces this

to a single norm condition ‖Pk
∑
|w|≤k awLw‖ ≤ 1 where Pk projects onto

span{ξw : |w| ≤ k}.
Sarason’s original approach was somewhat different, in that he established

his estimates using (a prototype of) the commutant lifting theorem. Arias
and Popescu [5] independently established these interpolation results, and
give a proof based on Popescu’s commutant lifting theorem [44].

8.2. Commuting Dilations. To better understand the abelian algebra
Ln/C, we turn to commutative dilation theory. The appropriate models live
on symmetric Fock space Ksn. Consider all n-tuples k = (k1, . . . , kn) ∈ Nn0 ,
and write zk for zk1

1 . . . zknn where zi are commuting variables. Let Pk :=
{w ∈ F+

n : w(z) = zk}. Consider an orthogonal but unnormalized basis for
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Ksn given by

ζk =
1
|Pk|

∑
w∈Pk

ξw.

Indeed |Pk| =
( |k|!
k1! k2!···kn!

)
and ‖ζk‖ = |Pk|−1/2.

Consider the operators Miζ
k = ζk+δi , where δi has a 1 in the ith entry

and 0’s elsewhere. If one normalizes the basis ζk, one sees that the Mi’s are
certain weighted shifts.

We observe that Mi is just the compression of the left creation operator
Li to symmetric Fock space. Indeed,

〈Liζk, ζ l〉 = 〈ζk, L∗i ζ l〉 =
1

|Pk| |Pl|
〈 ∑
w∈Pk

ξw, L
∗
i

∑
v∈Pl

ξv
〉

=
1

|Pk| |Pl|
〈 ∑
w∈Pk

ξw,
∑

u∈Pl−δi

ξu
〉

=

{
0 if l 6= k + δi

1
|Pk| |Pl| |Pk| = 〈ζ

l, ζ l〉 if l = k + δi

= 〈ζk+δi , ζ l〉

Thus Mi = PsLi|Ksn where Ps is the projection onto Ksn. It follows immedi-
ately that

MM∗ =
n∑
i=1

MiM
∗
i = Ps

n∑
i=1

LiL
∗
i

∣∣
Ksn

= I − ξ∅ξ∗∅ ≤ I.

The main dilation result in this context is due to Drury [30]. It says that
every strict commuting contraction dilates to a multiple ofM = [M1, . . . ,Mn].

Theorem 8.3. Let A = [A1, . . . , An] be a commuting n-tuple of operators
on a Hilbert space H with ‖A‖ < 1. Then there is an isometry V of H into
Ksn ⊗H such that AiV ∗ = V ∗Mi for 1 ≤ i ≤ n.

We sketch a proof based on the Frahzo–Bunce–Popescu dilation, which
yields an isometry V into Kn⊗H such that AiV ∗ = V ∗(Li⊗I) for 1 ≤ i ≤ n.
It suffices to show that the range of V is contained in Ksn⊗H. However the
intertwining relation implies that the range V = VH is invariant for each
L∗i ⊗ I, and the commutativity of the Ai’s implies that L∗uL

∗
vξ = L∗vL

∗
uξ for

all u, v ∈ F+
n and all ξ ∈ V. So if we write ξ =

∑
w∈F+

n
ξw⊗xw where xw ∈ H,

then we obtain xuvw = xvuw for all u, v, w ∈ F+
n . At bit of thought shows

that this forces xu = xv if u(z) = v(z), and thus ξ is symmetric as claimed.
Now Arveson’s dilation theory yields a canonical completely positive map

ϕ from C∗(M) into C∗(A) such that ϕ(Mi) = Ai. In fact, ϕ(MuM
∗
v ) = AuA

∗
v

for all u, v ∈ F+
n . This readily extends to all commuting contractions by

considering rA = (rA1, . . . , rAn) for r < 1 and letting r increase to 1. In
particular, one obtains Drury’s von Neumann inequality:
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Corollary 8.4. Let A = [A1, . . . , An] be a commuting n-tuple of operators
on a Hilbert space H with ‖A‖ ≤ 1. Then ‖p(A)‖ ≤ ‖p(M)‖ for all polyno-
mials p in n commuting variables.

Arveson [9] goes a step further and shows that C∗(M) is the C*-envelope
of M . Indeed, an easy calculation shows that C∗(M) is irreducible and
contains the compact operators. The commutators of Mi and M∗j are easily
computed, and are compact. Thus the quotient C∗(M)/K is an abelian C*-
algebra and the images Zi = Mi + K satisfy ZZ∗ =

∑n
i=1 |Zi|2 = I. Thus

the maximal ideal space is contained in the unit sphere ∂Bn. One can show
that the spectrum is invariant under the action of the unitary group Un.
Indeed, each U ∈ Un determines the unitary operator Ũ on Fock space, and
this preserves Ksn. The restriction Ũ |Ksn implements an automorphism of
C∗(M). Thus C∗(M)/K ' C(∂Bn).

8.3. Reproducing kernel Hilbert spaces. To make the connection to
interpolation, we observe that Ksn is a reproducing kernel Hilbert space.
The eigenvectors νλ for λ ∈ Bn span all of Ksn, and

νλ = (1− ‖λ‖2)1/2
∑
w∈F+

n

w(λ)ξw = (1− ‖λ‖2)1/2
∑
k∈Nn0

λ
k|Pk|ζk.

We renormalize for convenience and set

uλ = (1− ‖λ‖2)−1/2νλ =
∑
k∈Nn0

λ
k|Pk|ζk.

Each vector ζ ∈ Ksn determines an analytic function

ζ̂(λ) = 〈ζ, uλ〉 =
∑
k∈Nn0

ckλ
k.

Moreover

|ζ̂(λ)| ≤ ‖ζ‖ ‖uλ‖ = ‖ζ‖ (1− ‖λ‖2)−1/2.

Thus K̂sn becomes a Hilbert space of analytic functions in which the point
evaluations are continuous. To emphasize that this is an L2 norm on these
functions, we will write ‖f‖2 for the norm of an element f in K̂sn.

Let M denote the wot-closed algebra generated by the Mi. This is the
wot-closed algebra generated by the compressions of the Li’s to Ksn which
is the orthogonal complement of CKn. Hence by Corollary 8.2, this is com-
pletely isometrically isomorphic to Ln/C. So we have a concrete represen-
tation of the quotient, and moreover every element of the unit ball of M is
in the image of the unit ball of Ln.

The important fact is that operators in M have a nice analytic form
in this functional representation. Indeed, if A is any operator in Ln and
M = PsA|Ksn is the compression to Ksn, then because A∗νλ = Â(λ)νλ we
obtain

M̂ζ(λ) = 〈Aζ, uλ〉 = 〈ζ, A∗uλ〉 = Â(λ)〈ζ, uλ〉 = Â(λ)ζ̂(λ).
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In particular, the operators Mi become multiplication operators by the co-
ordinate functions zi. The operators in M are analytic multipliers on K̂sn,
and we may write M = Mh where M = A+C and h = Â. Thus the operator
norm equals the multiplier norm:

‖M‖ = ‖Mh‖ = sup{‖hf‖2 : ‖f‖2 ≤ 1}.
Conversely, suppose that h is a bounded multiplier; so that Mh is a

bounded operator. Then the Cesaro means hn = Cn(f) are polynomials
and Mhn converges to Mh in the strong operator topology. Since each Mhn

is a polynomial in the Mi’s, it follows that Mh belongs to M. Thus M is
precisely the algebra of multipliers. So the image of the Gelfand map is real-
ized as the algebra of multipliers for this special reproducing kernel Hilbert
space.

More generally, a reproducing kernel Hilbert space (see [1]) on a set X is
determined by a positive definite function k(x, y) on X ×X, meaning that[
k(xi, xj)

]
is a positive definite matrix for every finite subset {x1, . . . , xk}

of X. The functions kx(y) = k(x, y) span a space of functions on X on
which we define an inner product

〈∑
aikxi ,

∑
bjkyj

〉
=
∑
aibjk(xi, yj). The

completion Hk is called a reproducing kernel Hilbert space, and each vector
ξ determines a function ξ̂(x) = 〈ξ, kx〉.

A multiplier is a (bounded) function h on X such that the map M̂hξ(x) =
h(x)ξ̂(x) is continuous. This is equivalent to the boundedness of the adjoint
map which has the nicer formulation M∗hkx = h(x)kx. The norm on h is
just the operator norm ‖Mh‖. One defines matrix multipliers as matrices
with multipliers as coefficients. This kernel is said to have the complete
Nevanlinna–Pick property if for every finite subset x1, . . . , xs of X and finite
set C1, . . . , Ck of p × p matrices, there is a matrix multiplier h of norm at
most 1 with ĥ(xi) = Ci for 1 ≤ i ≤ s exactly when the Pick condition holds:[

(Ip − CiC∗j )〈kxj , kxi〉
]
s×s ≥ 0.

In our case, one has 〈νλ, νµ〉 =
1

1− 〈λ, µ〉
which leads to the precise con-

dition obtained above. In other words, symmetric Fock space is a complete
Nevanlinna–Pick kernel.

Agler [2] reformulated the Nevanlinna–Pick problem in this way. Exactly
which reproducing kernels have this property was solved by Quiggin [51]
and McCullough [39]. An easy argument reduces to the irreducible case in
which k(x, y) 6= 0 for all x, y ∈ X.

Theorem 8.5. A necessary and sufficient for an irreducible positive definite
kernel k(x, y) on X ×X to have the complete Nevanlinna–Pick property is
that for every finite subset x1, . . . , xs of X, the s× s matrix[

1
k(xi, xj)

]
has exactly one positive eigenvalue counting multiplicity.
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In our case, this is the matrix[
1− 〈λi, λj〉

]
= 1 · 1∗ − Λ∗Λ

where 1 is the column vector consisting of s 1’s, and Λ = (λ1, . . . , λs) is
an n × s matrix with columns equal to λi. Now Λ∗Λ is positive and norm
less than s; while 1 · 1∗ is rank one and norm exactly s. It follows that
1 · 1∗ − Λ∗Λ has exactly one positive eigenvalue. So this is a complete NP
kernel, which leads to a rather different proof than ours.

Agler and McCarthy [3] use this to show that (irreducible) complete
Nevanlinna–Pick kernels have the rather specific form

k(x, y) =
d(x)d(y)

1− f(x, y)
where d is a non-vanishing function on X and f is a positive semidefinite
function on X×X taking values in the open unit disk. If n is the rank of the
Hermitian form f , they then show that k is just the restriction of the kernel
for symmetric Fock space Ksn to some subset of the ball Bn. In other words,
the spaces Ksn are in a certain sense the universal complete Nevanlinna–Pick
kernels.

References

[1] G. Adams, P. McGuire and V. Paulsen, Analytic reproducing kernels and multiplica-
tion operators, Illinois J. Math. 36 (1992), 404–419.

[2] J. Agler, Nevanlinna–Pick interpolation on Sobolev space, Proc. Amer. Math. Soc.
108 (1990), 341–351.

[3] J. Agler and J.E. McCarthy, Complete Nevanlinna–Pick kernels, preprint, 2000.
[4] A. Arias and G. Popescu, Factorization and reflexivity on Fock spaces, Integral Eqtns.

& Operator Theory 23 (1995), 268–286.
[5] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms,

Israel J. Math. 115 (2000), 205–234.
[6] W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141–224.
[7] W.B. Arveson, Subalgebras of C*-algebras II, Acta Math. 128 (1972), 271–308.
[8] W.B. Arveson, Interpolation problems in nest algebras, J. Func. Anal. 20 (1975),

208–233.
[9] W.B. Arveson, Subalgebras of C*-algebras III: multivariable operator theory, Acta

Math. 181 (1998), 159–228.
[10] A. Beurling, On two problems concerning linear transformations in Hilbert space,

Acta Math. 81 (1949), 239–255.
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