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Abstract. An absolutely continuous free semigroup algebra is weak-∗ type L.

A free semigroup algebra is the wot-closed (nonself-adjoint, unital) algebra S generated
by n isometries S1, . . . , Sn with pairwise orthogonal ranges. See [4] for an introduction.
There is now a significant literature on these algebras [1, 2, 9, 10, 11, 7, 6, 8, 5, 16, 15,
18, 17, 20].

The prototype is the non-commutative Toeplitz algebra Ln, the algebra generated by the
left regular representation λ of the free semigroup on n letters, F+

n . A free semigroup algebra
is type L if it is isomorphic to Ln. Algebraic isomorphism implies the much stronger property
that they are completely isometrically isomorphic and weak-∗ homeomorphic.

An open problem of central importance is whether every type L representation has a
wandering vector; i.e. a vector ξ such that the set {Swξ : w ∈ F+

n } is orthonormal. Here we
write Sw = Sik . . . Si1 for a word w = ik . . . i1 in F+

n .
The C*-algebra generated by n isometries is ∗-isomorphic to either the Cuntz algebra On if∑n
i=1 SiS

∗
i = I or the Cuntz-Toeplitz algebra En if

∑n
i=1 SiS

∗
i < I. The norm closed nonself-

adjoint subalgebra generated by S1, . . . , Sn is denoted by An, the non-commutative analytic
disk algebra introduced by Popescu [16]. The quotient map of En onto On is completely
isometric on An. So it may also be considered as a subalgebra of On, which is its C*-envelope
(because On is simple). So An sits isometrically inside σ(En) for every ∗-representation σ.
Let the abstract generators of An and En be denoted by s1, . . . , sn.

We consider ∗-representations of En and On as a natural way of describing n-tuples of

isometries with orthogonal ranges. If σ is a representation of En, then let Sσ = σ(An)
wot

denote the corresponding free semigroup algebra. Note that σ splits as σ = λ(α) ⊕ τ , where
λ is the identity representation of En and τ factors through the quotient onto On. This is
the C*-algebra equivalent of the Wold decomposition.

In [6], a structure theorem was established which shows that there is a canonical projection
P in S which is coinvariant so that SP = WP , where W is the von Neumann algebra
generated by S, and S|P⊥H is type L. In [8], a notion of absolute continuity was introduced
in order to further refine the analysis of free semigroup algebras, and of weaker type L
representations in particular.

A linear functional ϕ on An is absolutely continuous if it extends to a weak-∗-continuous
functional on Ln. In this case, there are vectors ζ, η in the Fock space `2(F+

n ) so that
ϕ(A) = 〈λ(A)ζ, η〉. In particular, the wot topology and the weak-∗ topology coincide on
Ln [9]. A vector in Hσ is called absolutely continuous if the functional ϕ(A) = 〈σ(A)x, x〉 is
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absolutely continuous. The representation σ is called absolutely continuous if every vector
in Hσ is absolutely continuous.

We eventually hope to establish that absolutely continuous representations are type L,
meaning that Sσ is type L. In [8], representations were divided into several classes. Say that
σ is von Neumann type if Sσ is a von Neumann algebra. This is possible, as an example
of Read [20] shows (see also [5]). A representation was called dilation type if it had no
summand of type L or of von Neumann type. This was justified by the fact that in this case,
the range of the canonical projection was a cyclic subspace on which the compression of the
isometries is completely non-isometric in a certain sense, and the representation is uniquely
obtained by the minimal Frahzo–Bunce–Popescu dilation [12, 3, 14, 7, 8].

It is easy to establish that dilation type representations always have wandering vectors;
while von Neumann type representations do not. No type L representation is known to exist
without wandering vectors, and such an algebra would be an explicit example of a nonself-
adjoint wot-closed reductive algebra. Such an example would provide a counterexample to
an important variant of the invariant subspace problem. However there is always a finite
ampliation σ(p) of any type L representation which is spanned by its wandering vectors [6].

In [8], further refinements were introduced to try to identify ‘type L behaviour’ of a weaker
type. Say that σ is weak type L if σ ⊕ λ is type L. The addition of a copy of λ introduces
a wandering vector, and allows one to show that the wandering vectors must now span the
whole space. Also we say that σ is weak-∗ type L if the infinite ampliation σ(∞) is type
L. This ampliation is then spanned by its wandering vectors. The weak-∗ closed algebra

Tσ = σ(An)
w-∗

is isometrically isomorphic and weak-∗ homeomorphic to the free semigroup
algebra Sσ(∞) .

A weak-∗ type L representation which is not type L would have to be of von Neumann
type. So the weak-∗ closure of σ(A) would be isomorphic to Ln but the wot-closure would
be self-adjoint. Again no example of this strange phenonemon is known. However there are
other analytic operator algebras exhibiting this behaviour [13].

The hierarchy of weak type L representations is that type L implies weak-∗ type L implies
weak type L implies absolutely continuous. For any of these, the existence of a single
wandering vector implies that the representation is type L and is spanned by its wandering
vectors [8]. It was also shown that absolutely continuous representations are weak type L,
and indeed σ ⊕ τ is type L for any type L representation τ .

In this note, we show that absolutely continuous representations are weak-∗ type L.

1. Absolutely Continuous Representations

The canonical basis of `2(F+
n ) is {ξw : w ∈ F+

n }. The generators of Ln are denoted by
L1, . . . , Ln. Every element of Ln and, a fortiori An, has a Fourier series determined by

λ(A)ξ∅ =
∑

w∈F+
n

awξw.

We write A ∼
∑

w∈F+
n
awsw, and this makes sense using Cesaro summation [9]. The func-

tional which reads off the constant coefficient a∅ is denoted ϕ0(A) = 〈λ(A)ξ∅, ξ∅〉.
The starting point is a key observation in [6] that σ is von Neumann type if and only if

ϕ0 is not wot-continuous on Sσ. This is equivalent to the fact that the wot-closed ideal
Sσ0 generated by σ(s1), . . . , σ(sn) equals all of Sσ. In this case, the canonical projection
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is P = I. In general, the intersection J =
⋂

k≥0 Sk
σ0 is a right ideal of the enveloping von

Neumann algebra Wσ, and so has the form WσP .
Similarly, σ is weak-∗ type L if and only if ϕ0 is weak-∗ continuous on Sσ. If ϕ0 is weak-∗

continuous but not wot-continuous, then σ would be weak-∗ type L and von Neumann type.
In order to show that absolutely continuous representations are weak-∗ type L, it suffices to
show that ϕ0 is weak-∗ continuous.

Theorem 1.1. Every absolutely continuous free semigroup algebra is weak-∗ type L.

Proof. Let σ be an absolutely continuous representation of En. Let Mσ denote the predual of
Tσ. Equivalently, this is the space of weak-∗ continuous functionals on σ(An). By definition
of absolute continuity, this forms a closed subspace of Mλ, the predual of Ln.

As noted above, if ϕ0 belongs to Mσ, then σ is weak-∗ type L. If it is not, then by the
Hahn–Banach Theorem, there is an element L0 ∈ Ln so that ϕ0(L0) = 1 and ψ(L0) = 0 for
ψ ∈ Mσ. We will show that this is impossible.

By [8], σ ⊕ λ is type L. The basic idea is that each vector x in Hσ, being absolutely
continuous, is in the range of a continuous map V in B(`2(F+

n ),Hσ) which intertwines λ and

σ in the sense: σ(A)V = V λ(A) for A ∈ Ln. Thus
[
V ± I

]t
are intertwiners between σ ⊕ λ

and λ which are bounded below, and thus their ranges are unitarily equivalent to `2(F+
n ). In

particular, σ ⊕ λ has a spanning set of wandering vectors.
Therefore there is an isometric isomorphism of Ln onto Sσ⊕λ which is also a weak-∗

homeomorphism [6]. The wot and weak-∗ topologies coincide on Sσ⊕λ. Therefore it is also
completely isometrically isomorphic and weak-∗ homeomorphic to Sσ(∞)⊕λ.

Follow the isomorphism of Ln onto Sσ(∞)⊕λ with the projection onto the first summand.
This is a weak-∗ continuous contractive algebra homomorphism into Sσ(∞) , which is com-
pletely isometrically isomorphic and weak-∗ homeomorphic to Tσ. Denote the composition
mapping Ln into Tσ by τ .

The key point is that τ is injective. First observe that since σ ⊕ λ has a spanning set of
wandering vectors, the isomorphism from Ln to Sσ(∞)⊕λ takes isometries to isometries. The

restriction to the invariant subspace H(∞)
σ clearly preserves this, as does the restriction down

to Hσ. Thus τ preserves isometries.
Since τ is weak-∗ continuous, the kernel is a weak-∗ closed ideal J in Ln. By [10, The-

orem 2.1], J consists of all elements of Ln with range contained in J`2(F+
n ) and this is a

subspace which is invariant for both Ln and its commutant Rn, the right regular represen-
tation algebra. By the Beurling Theorem for Rn [1, 9], this subspace is the sum of ranges
of isometries in Ln. In particular, if J is non-zero, then it contains an isometry. By the
previous paragraph, this does not occur. Hence τ is injective.

On the other hand, for any weak-∗ continuous functional ψ ∈ Mσ, ψ(τ(L0)) = 0 by
hypothesis. Hence τ(L0) = 0. This contradiction shows that Mσ contains ϕ0, and so is
weak-∗ type L, and Mσ = Mλ.

Corollary 1.2. If σ is an absolutely continuous representation of En, then Tσ is completely
isometrically isomorphic and weak-∗ homeomorphic to Ln.

Example 1.3. The example of Read [20] and the similar examples in [5] are representations
of von Neumann type. Moreover, the proof shows that the weak-∗ closure of σ(An) is all
of B(H). So these algebras are not weak-∗ type L, and thus are not absolutely continuous.
This answers Question 5.12 in [8].
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Corollary 1.4. For a representation σ of En, the following are equivalent:

(1) σ is absolutely continuous.
(2) σ is weak type L.
(3) σ is weak-∗ type L.

This allows us to make the following definition:

Definition 1.5. If σ is an absolutely continuous representation of En, there is a least cardinal
κ ∈ {1, 2, . . . ,ℵ0} so that σ(κ) has wandering vectors (and hence is spanned by wandering
vectors). We say that such a representation is type Lκ.

The big open question about wandering vectors can now be rephrased as asking whether
every absolutely continuous representation is type L1?
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