A NOTE ON ABSOLUTE CONTINUITY IN FREE SEMIGROUP ALGEBRAS

KENNETH R. DAVIDSON AND DILIAN YANG

ABSTRACT. An absolutely continuous free semigroup algebra is weak-* type L.

A free semigroup algebra is the WOT-closed (nonself-adjoint, unital) algebra \mathfrak{S} generated by n isometries S_1, \ldots, S_n with pairwise orthogonal ranges. See [4] for an introduction. There is now a significant literature on these algebras [1, 2, 9, 10, 11, 7, 6, 8, 5, 16, 15, 18, 17, 20].

The prototype is the non-commutative Toeplitz algebra \mathcal{L}_n , the algebra generated by the left regular representation λ of the free semigroup on n letters, \mathbb{F}_n^+ . A free semigroup algebra is $type\ L$ if it is isomorphic to \mathcal{L}_n . Algebraic isomorphism implies the much stronger property that they are completely isometrically isomorphic and weak-* homeomorphic.

An open problem of central importance is whether every type L representation has a wandering vector; i.e. a vector ξ such that the set $\{S_w\xi:w\in\mathbb{F}_n^+\}$ is orthonormal. Here we write $S_w=S_{i_k}\ldots S_{i_1}$ for a word $w=i_k\ldots i_1$ in \mathbb{F}_n^+ .

The C*-algebra generated by n isometries is *-isomorphic to either the Cuntz algebra \mathcal{O}_n if $\sum_{i=1}^n S_i S_i^* = I$ or the Cuntz-Toeplitz algebra \mathcal{E}_n if $\sum_{i=1}^n S_i S_i^* < I$. The norm closed nonself-adjoint subalgebra generated by S_1, \ldots, S_n is denoted by \mathfrak{A}_n , the non-commutative analytic disk algebra introduced by Popescu [16]. The quotient map of \mathcal{E}_n onto \mathcal{O}_n is completely isometric on \mathfrak{A}_n . So it may also be considered as a subalgebra of \mathcal{O}_n , which is its C*-envelope (because \mathcal{O}_n is simple). So \mathfrak{A}_n sits isometrically inside $\sigma(\mathcal{E}_n)$ for every *-representation σ . Let the abstract generators of \mathfrak{A}_n and \mathcal{E}_n be denoted by $\mathfrak{s}_1, \ldots, \mathfrak{s}_n$.

We consider *-representations of \mathcal{E}_n and \mathcal{O}_n as a natural way of describing n-tuples of isometries with orthogonal ranges. If σ is a representation of \mathcal{E}_n , then let $\mathfrak{S}_{\sigma} = \overline{\sigma(\mathfrak{A}_n)}^{\text{wot}}$ denote the corresponding free semigroup algebra. Note that σ splits as $\sigma = \lambda^{(\alpha)} \oplus \tau$, where λ is the identity representation of \mathcal{E}_n and τ factors through the quotient onto \mathcal{O}_n . This is the C*-algebra equivalent of the Wold decomposition.

In [6], a structure theorem was established which shows that there is a canonical projection P in \mathfrak{S} which is coinvariant so that $\mathfrak{S}P = \mathfrak{W}P$, where \mathfrak{W} is the von Neumann algebra generated by \mathfrak{S} , and $\mathfrak{S}|_{P^{\perp}\mathcal{H}}$ is type L. In [8], a notion of absolute continuity was introduced in order to further refine the analysis of free semigroup algebras, and of weaker type L representations in particular.

A linear functional φ on \mathfrak{A}_n is absolutely continuous if it extends to a weak-*-continuous functional on \mathfrak{L}_n . In this case, there are vectors ζ, η in the Fock space $\ell^2(\mathbb{F}_n^+)$ so that $\varphi(A) = \langle \lambda(A)\zeta, \eta \rangle$. In particular, the WOT topology and the weak-* topology coincide on \mathfrak{L}_n [9]. A vector in \mathcal{H}_{σ} is called absolutely continuous if the functional $\varphi(A) = \langle \sigma(A)x, x \rangle$ is

²⁰⁰⁰ Mathematics Subject Classification. 47L55,46L35.

Key words and phrases: free semigroup algebra, Cuntz algebra, wandering vector, absolute continuity. First author partially supported by an NSERC grant.

absolutely continuous. The representation σ is called absolutely continuous if every vector in \mathcal{H}_{σ} is absolutely continuous.

We eventually hope to establish that absolutely continuous representations are type L, meaning that \mathfrak{S}_{σ} is type L. In [8], representations were divided into several classes. Say that σ is von Neumann type if \mathfrak{S}_{σ} is a von Neumann algebra. This is possible, as an example of Read [20] shows (see also [5]). A representation was called dilation type if it had no summand of type L or of von Neumann type. This was justified by the fact that in this case, the range of the canonical projection was a cyclic subspace on which the compression of the isometries is completely non-isometric in a certain sense, and the representation is uniquely obtained by the minimal Frahzo–Bunce–Popescu dilation [12, 3, 14, 7, 8].

It is easy to establish that dilation type representations always have wandering vectors; while von Neumann type representations do not. No type L representation is known to exist without wandering vectors, and such an algebra would be an explicit example of a nonself-adjoint WOT-closed reductive algebra. Such an example would provide a counterexample to an important variant of the invariant subspace problem. However there is always a finite ampliation $\sigma^{(p)}$ of any type L representation which is spanned by its wandering vectors [6].

In [8], further refinements were introduced to try to identify 'type L behaviour' of a weaker type. Say that σ is weak type L if $\sigma \oplus \lambda$ is type L. The addition of a copy of λ introduces a wandering vector, and allows one to show that the wandering vectors must now span the whole space. Also we say that σ is weak-* type L if the infinite ampliation $\sigma^{(\infty)}$ is type L. This ampliation is then spanned by its wandering vectors. The weak-* closed algebra $\mathfrak{T}_{\sigma} = \overline{\sigma(\mathfrak{A}_n)}^{w-*}$ is isometrically isomorphic and weak-* homeomorphic to the free semigroup algebra $\mathfrak{S}_{\sigma^{(\infty)}}$.

A weak-* type L representation which is not type L would have to be of von Neumann type. So the weak-* closure of $\sigma(\mathfrak{A})$ would be isomorphic to \mathfrak{L}_n but the WOT-closure would be self-adjoint. Again no example of this strange phenonemon is known. However there are other analytic operator algebras exhibiting this behaviour [13].

The hierarchy of weak type L representations is that type L implies weak-* type L implies weak type L implies absolutely continuous. For any of these, the existence of a single wandering vector implies that the representation is type L and is spanned by its wandering vectors [8]. It was also shown that absolutely continuous representations are weak type L, and indeed $\sigma \oplus \tau$ is type L for any type L representation τ .

In this note, we show that absolutely continuous representations are weak-* type L.

1. Absolutely Continuous Representations

The canonical basis of $\ell^2(\mathbb{F}_n^+)$ is $\{\xi_w : w \in \mathbb{F}_n^+\}$. The generators of \mathfrak{L}_n are denoted by L_1, \ldots, L_n . Every element of \mathfrak{L}_n and, a fortiori \mathfrak{A}_n , has a Fourier series determined by

$$\lambda(A)\xi_{\varnothing} = \sum_{w \in \mathbb{F}_n^+} a_w \xi_w.$$

We write $A \sim \sum_{w \in \mathbb{F}_n^+} a_w \mathfrak{s}_w$, and this makes sense using Cesaro summation [9]. The functional which reads off the constant coefficient a_{\varnothing} is denoted $\varphi_0(A) = \langle \lambda(A) \xi_{\varnothing}, \xi_{\varnothing} \rangle$.

The starting point is a key observation in [6] that σ is von Neumann type if and only if φ_0 is not WOT-continuous on \mathfrak{S}_{σ} . This is equivalent to the fact that the WOT-closed ideal $\mathfrak{S}_{\sigma 0}$ generated by $\sigma(\mathfrak{s}_1), \ldots, \sigma(\mathfrak{s}_n)$ equals all of \mathfrak{S}_{σ} . In this case, the canonical projection

is P = I. In general, the intersection $\mathfrak{J} = \bigcap_{k \geq 0} \mathfrak{S}_{\sigma 0}^k$ is a right ideal of the enveloping von Neumann algebra \mathfrak{W}_{σ} , and so has the form $\mathfrak{W}_{\sigma}P$.

Similarly, σ is weak-* type L if and only if φ_0 is weak-* continuous on \mathfrak{S}_{σ} . If φ_0 is weak-* continuous but not WOT-continuous, then σ would be weak-* type L and von Neumann type. In order to show that absolutely continuous representations are weak-* type L, it suffices to show that φ_0 is weak-* continuous.

Theorem 1.1. Every absolutely continuous free semigroup algebra is weak-* type L.

Proof. Let σ be an absolutely continuous representation of \mathcal{E}_n . Let \mathfrak{M}_{σ} denote the predual of \mathfrak{T}_{σ} . Equivalently, this is the space of weak-* continuous functionals on $\sigma(\mathfrak{A}_n)$. By definition of absolute continuity, this forms a closed subspace of \mathfrak{M}_{λ} , the predual of \mathfrak{L}_n .

As noted above, if φ_0 belongs to \mathfrak{M}_{σ} , then σ is weak-* type L. If it is not, then by the Hahn-Banach Theorem, there is an element $L_0 \in \mathfrak{L}_n$ so that $\varphi_0(L_0) = 1$ and $\psi(L_0) = 0$ for $\psi \in \mathfrak{M}_{\sigma}$. We will show that this is impossible.

By [8], $\sigma \oplus \lambda$ is type L. The basic idea is that each vector x in \mathcal{H}_{σ} , being absolutely continuous, is in the range of a continuous map V in $\mathcal{B}(\ell^2(\mathbb{F}_n^+), \mathcal{H}_{\sigma})$ which intertwines λ and σ in the sense: $\sigma(A)V = V\lambda(A)$ for $A \in \mathfrak{L}_n$. Thus $[V \pm I]^t$ are intertwiners between $\sigma \oplus \lambda$ and λ which are bounded below, and thus their ranges are unitarily equivalent to $\ell^2(\mathbb{F}_n^+)$. In particular, $\sigma \oplus \lambda$ has a spanning set of wandering vectors.

Therefore there is an isometric isomorphism of \mathfrak{L}_n onto $\mathfrak{S}_{\sigma \oplus \lambda}$ which is also a weak-* homeomorphism [6]. The WOT and weak-* topologies coincide on $\mathfrak{S}_{\sigma \oplus \lambda}$. Therefore it is also completely isometrically isomorphic and weak-* homeomorphic to $\mathfrak{S}_{\sigma^{(\infty)} \oplus \lambda}$.

Follow the isomorphism of \mathfrak{L}_n onto $\mathfrak{S}_{\sigma^{(\infty)} \oplus \lambda}$ with the projection onto the first summand. This is a weak-* continuous contractive algebra homomorphism into $\mathfrak{S}_{\sigma^{(\infty)}}$, which is completely isometrically isomorphic and weak-* homeomorphic to \mathfrak{T}_{σ} . Denote the composition mapping \mathfrak{L}_n into \mathfrak{T}_{σ} by τ .

The key point is that τ is injective. First observe that since $\sigma \oplus \lambda$ has a spanning set of wandering vectors, the isomorphism from \mathfrak{L}_n to $\mathfrak{S}_{\sigma^{(\infty)}\oplus\lambda}$ takes isometries to isometries. The restriction to the invariant subspace $\mathcal{H}_{\sigma}^{(\infty)}$ clearly preserves this, as does the restriction down to \mathcal{H}_{σ} . Thus τ preserves isometries.

Since τ is weak-* continuous, the kernel is a weak-* closed ideal \mathfrak{J} in \mathfrak{L}_n . By [10, Theorem 2.1], \mathfrak{J} consists of all elements of \mathfrak{L}_n with range contained in $\overline{\mathfrak{J}\ell^2(\mathbb{F}_n^+)}$ and this is a subspace which is invariant for both \mathfrak{L}_n and its commutant \mathfrak{R}_n , the right regular representation algebra. By the Beurling Theorem for \mathfrak{R}_n [1, 9], this subspace is the sum of ranges of isometries in \mathfrak{L}_n . In particular, if \mathfrak{J} is non-zero, then it contains an isometry. By the previous paragraph, this does not occur. Hence τ is injective.

On the other hand, for any weak-* continuous functional $\psi \in \mathfrak{M}_{\sigma}$, $\psi(\tau(L_0)) = 0$ by hypothesis. Hence $\tau(L_0) = 0$. This contradiction shows that \mathfrak{M}_{σ} contains φ_0 , and so is weak-* type L, and $\mathfrak{M}_{\sigma} = \mathfrak{M}_{\lambda}$.

Corollary 1.2. If σ is an absolutely continuous representation of \mathcal{E}_n , then \mathfrak{T}_{σ} is completely isometrically isomorphic and weak-* homeomorphic to \mathfrak{L}_n .

Example 1.3. The example of Read [20] and the similar examples in [5] are representations of von Neumann type. Moreover, the proof shows that the weak-* closure of $\sigma(\mathfrak{A}_n)$ is all of $\mathcal{B}(\mathcal{H})$. So these algebras are not weak-* type L, and thus are not absolutely continuous. This answers Question 5.12 in [8].

Corollary 1.4. For a representation σ of \mathcal{E}_n , the following are equivalent:

- (1) σ is absolutely continuous.
- (2) σ is weak type L.
- (3) σ is weak-* type L.

This allows us to make the following definition:

Definition 1.5. If σ is an absolutely continuous representation of \mathcal{E}_n , there is a least cardinal $\kappa \in \{1, 2, ..., \aleph_0\}$ so that $\sigma^{(\kappa)}$ has wandering vectors (and hence is spanned by wandering vectors). We say that such a representation is $type \ L_{\kappa}$.

The big open question about wandering vectors can now be rephrased as asking whether every absolutely continuous representation is type L_1 ?

REFERENCES

- [1] A. Arias and G. Popescu, Factorization and reflexivity on Fock spaces, Integral Equations Operator Theory 23 (1995), 268–286.
- [2] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115 (2000), 205–234.
- [3] J. Bunce, Models for n-tuples of non-commuting operators, J. Funct. Anal. 57 (1984), 21–30.
- [4] K.R. Davidson, Free semigroup algebras, a survey, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000), 209–240, Oper. Theory Adv. Appl., 129, Birkhduser, Basel, 2001.
- [5] K.R. Davidson, $\mathcal{B}(\mathcal{H})$ is a free semigroup algebra, Proc. Amer. Math. Soc. 134 (2006), 1753–1757.
- [6] K.R. Davidson, E. Katsoulis and D.R. Pitts, The structure of free semigroup algebras, J. Reine Angew. Math. (Crelle) 533 (2001), 99–125.
- [7] K.R. Davidson, D.W. Kribs and M.E. Shpigel, Isometric dilations of non-commuting finite rank n-tuples, Canad. J. Math. 53 (2001), 506–545.
- [8] K.R. Davidson, J.K. Li and D.R. Pitts, Absolutely continuous representations and a Kaplansky density theorem for free semigroup algebras, J. Funct. Anal. **224** (2005), 160–191.
- [9] K.R. Davidson and D.R. Pitts, Invariant subspaces and hyper-reflexivity for free semi-group algebras, Proc. London Math. Soc. **78** (1999), 401–430.
- [10] K.R. Davidson and D.R. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), 275–303.
- [11] K.R. Davidson and D.R. Pitts, Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998), 321–337.
- [12] A. Frahzo, Models for non-commuting operators, J. Funct. Anal. 48 (1982), 1–11.
- [13] R.I. Loebl and P.S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214–252.
- [14] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. **316** (1989), 523–536.
- [15] G. Popescu, Multi-analytic operators and some factorization theorems, Indiana Univ. Math. J. 38 (1989), 693-710.
- [16] G. Popescu, Von Neumann inequality for $(\mathcal{B}(\mathcal{H}^n)_1, \text{Math. Scand. 68 (1991), 292-304.})$
- [17] G. Popescu, Functional calculus for noncommuting operators, Mich. J. Math. 42 (1995), 345–356.
- [18] G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995), 31–46.
- [19] G. Popescu, Poisson transforms on some C*-algebras generated by isometries, J. Funct. Anal. 161 (1999), 27–61.
- [20] C.J. Read, A large weak operator closure for the algebra generated by two isometries, J. Operator Theory 54 (2005), 305–316.

Pure Math. Dept., U. Waterloo, Waterloo, ON N2L-3G1, CANADA

E-mail address: krdavids@uwaterloo.ca E-mail address: dyang@uwaterloo.ca