SEMICROSSED PRODUCTS OF THE DISK ALGEBRA

KENNETH R. DAVIDSON AND ELIAS G. KATSOULIS

ABSTRACT. If α is the endomorphism of the disk algebra, $A(\mathbb{D})$, induced by composition with a finite Blaschke product b, then the semicrossed product $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ imbeds canonically, completely isometrically into $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$. Hence in the case of a non-constant Blaschke product b, the C*-envelope has the form $C(\mathcal{S}_b) \times_s \mathbb{Z}$, where (\mathcal{S}_b, s) is the solenoid system for (\mathbb{T}, b) . In the case where b is a constant, then the C*-envelope of $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is strongly Morita equivalent to a crossed product of the form $C_0(\mathcal{S}_e) \times_s \mathbb{Z}$, where $e \colon \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}$ is a suitable map and (\mathcal{S}_e, s) is the solenoid system for $(\mathbb{T} \times \mathbb{N}, e)$.

1. Introduction

If \mathcal{A} is a unital operator algebra and α is a completely contractive endomorphism, the semicrossed product is an operator algebra $\mathcal{A} \times_{\alpha} \mathbb{Z}_{+}$ which encodes the covariant representations of (\mathcal{A}, α) : namely completely contractive unital representations $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ and contractions T satisfying

$$\rho(a)T = T\rho(\alpha(a))$$
 for all $a \in \mathcal{A}$.

Such algebras were defined by Peters [9] when \mathcal{A} is a C*-algebra.

One can readily extend Peter's definition [9] of the semicrossed product of a C*-algebra by a *-endomorphism to unital operator algebras and unital completely contractive endomorphisms. One forms the polynomial algebra $\mathcal{P}(\mathcal{A},\mathfrak{t})$ of formal polynomials of the form $p = \sum_{i=0}^{n} \mathfrak{t}^{i} a_{i}$, where $a_{i} \in \mathcal{A}$, with multiplication determined by the covariance relation $a\mathfrak{t} = \mathfrak{t}\alpha(a)$ and the norm

$$||p|| = \sup_{(\rho,T) \text{ covariant}} \left\| \sum_{i=0}^{n} T^{i} \rho(a_{i}) \right\|.$$

 $^{2000\} Mathematics\ Subject\ Classification.\ 47L55.$

Key words and phrases. semicrossed product, crossed product, disk algebra, C*-envelope.

First author partially supported by an NSERC grant.

Second author was partially supported by a grant from ECU.

This supremum is clearly dominated by $\sum_{i=0}^{n} ||a_i||$; so this norm is well defined. The completion is the semicrossed product $\mathcal{A} \times_{\alpha} \mathbb{Z}_{+}$. Since this is the supremum of operator algebra norms, it is also an operator algebra norm. By construction, for each covariant representation (ρ, T) , there is a unique completely contractive representation $\rho \times T$ of $\mathcal{A} \times_{\alpha} \mathbb{Z}_{+}$ into $\mathcal{B}(\mathcal{H})$ given by

$$\rho \times T(p) = \sum_{i=0}^{n} T^{i} \rho(a_{i}).$$

This is the defining property of the semicrossed product.

In this note, we examine semicrossed products of the disk algebra by an endomorphism which extends to a *-endomorphism of $C(\mathbb{T})$. In the case where the endomorphism is injective, these have the form $\alpha(f) = f \circ b$ where b is a non-constant Blaschke product. We show that every covariant representation of $(A(\mathbb{D}), \alpha)$ dilates to a covariant representation of $(C(\mathbb{T}), \alpha)$. This is readily dilated to a covariant representation (σ, V) , where σ is a *-representation of $C(\mathbb{T})$ (so $\sigma(z)$ is unitary) and V is an isometry. To go further, we use the recent work of Kakariadis and Katsoulis [6] to show that $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$ imbeds completely isometrically into a C*-crossed product $C(S_b) \times_{\alpha} \mathbb{Z}$. In fact,

$$C_e^*(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+) = C(\mathcal{S}_b) \times_{\alpha} \mathbb{Z},$$

and as a consequence, we obtain that (ρ, T) dilates to a covariant representation (τ, W) , where τ is a *-representation of $C(\mathbb{T})$ (so $\sigma(z)$ is unitary) and W is a unitary.

In contrast, if α is induced by a constant Blashcke product, we can no longer identify $C_e^*(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+)$ up to isomorphism. In that case, α is evaluation at a boundary point. Even though every covariant representation of $(A(\mathbb{D}), \alpha)$ dilates to a covariant representation of $(C(\mathbb{T}), \alpha)$, the theory of [6] is not directly applicable since α is not injective. Instead, we use the process of "adding tails to C*-correspondences" [8], as modified in [3, 7] and we identify $C_e^*(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+)$ up to strong Morita equivalence as a crossed product. In Theorem 2.6 we show that $C_e^*(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+)$ is strongly Morita equivalent to a C*-algebra of the form $C_0(\mathcal{S}_e) \times_s \mathbb{Z}$, where

$$e \colon \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}$$

is a suitable map and (S_e, s) is the solenoid system for $(\mathbb{T} \times \mathbb{N}, e)$.

Semi-crossed products of the the disc algebra were introduced and first studied by Buske and Peters in [1], following relevant work of Hoover, Peters and Wogen [5]. The algebras $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$, where α is

an arbitrary endomorphism, where classified up to algebraic endomorphism in [2]. Results associated with their C*-envelope can be found in [1, Proposition III.13] and [10, Theorem 2]. The results of the present paper subsume and extend these earlier results.

2. The Disk Algebra

The C*-envelope of the disk algebra $A(\mathbb{D})$ is $C(\mathbb{T})$, the space of continuous functions on the unit circle. Suppose that α is an endomorphism of $C(\mathbb{T})$ which leaves $A(\mathbb{D})$ invariant. We refer to the restriction of α to $A(\mathbb{D})$ as α as well. Then $b = \alpha(z) \in A(\mathbb{D})$; and has spectrum

$$\sigma_{\mathcal{A}(\mathbb{D})}(b) \subset \sigma_{\mathcal{A}(\mathbb{D})}(z) = \overline{\mathbb{D}}$$

and

$$\sigma_{\mathcal{C}(\mathbb{T})}(b) \subset \sigma_{\mathcal{C}(\mathbb{T})}(z) = \mathbb{T}.$$

Thus ||b|| = 1 and $b(\mathbb{T}) \subset \mathbb{T}$. It follows that b is a finite Blaschke product. Therefore $\alpha(f) = f \circ b$ for all $f \in C(\mathbb{T})$. When b is not constant, α is completely isometric.

A (completely) contractive representation ρ of A(D) is determined by $\rho(z) = A$, which must be a contraction. The converse follows from the matrix von Neumann inequality; and shows that $\rho(f) = f(A)$ is a complete contraction. A covariant representation of (A(D), α) is thus determined by a pair of contractions (A, T) such that

$$AT = Tb(A)$$
.

The representation of $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is given by

$$\rho \times T\left(\sum_{i=0}^{n} \mathfrak{t}^{i} f_{i}\right) = \sum_{i=0}^{n} T^{i} f_{i}(A),$$

which extends to a completely contractive representation of the semicrossed product by the universal property.

A contractive representation σ of $C(\mathbb{T})$ is a *-representation, and is likewise determined by $U = \sigma(z)$, which must be unitary; and all unitary operators yield such a representation by the functional calculus. A covariant representation of $(C(\mathbb{T}), \alpha)$ is given by a pair (U, T) where U is unitary and T is a contraction satisfying UT = Tb(U). To see this, multiply on the left by U^* and on the right by $b(U)^*$ to obtain the identity

$$U^*T = Tb(U)^* = T\bar{b}(U) = T\alpha(\bar{z})(U).$$

The set of functions $\{f \in \mathcal{C}(\mathbb{T}) : f(U)T = T\alpha(f)(U)\}$ is easily seen to be a norm closed algebra. Since it contains z and \bar{z} , it is all of $\mathcal{C}(\mathbb{T})$. So the covariance relation holds.

Theorem 2.1. Let b be a finite Blaschke product, and let $\alpha(f) = f \circ b$. Then $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is (canonically completely isometrically isomorphic to) a subalgebra of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$.

Proof. To establish that $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is completely isometric to a subalgebra of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$, it suffices to show that each (A, T) with AT = Tb(A) has a dilation to a pair (U, S) with U unitary and S a contraction such that

$$US = Sb(U)$$
 and $P_{\mathcal{H}}S^nU^m|_{\mathcal{H}} = T^nA^m$ for all $m, n \ge 0$.

This latter condition is equivalent to \mathcal{H} being semi-invariant for the algebra generated by U and S.

The covariance relation can be restated as

$$\begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix} \begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix}$$

Dilate A to a unitary U which leaves \mathcal{H} semi-invariant. Then $\begin{bmatrix} A & 0 \\ 0 & b(A) \end{bmatrix}$ dilates to $\begin{bmatrix} U & 0 \\ 0 & b(U) \end{bmatrix}$. By the Sz.Nagy-Foiaş Commutant Lifting Theorem, we may dilate $\begin{bmatrix} 0 & T \\ 0 & 0 \end{bmatrix}$ to a contraction of the form $\begin{bmatrix} * & S \\ * & * \end{bmatrix}$ which commutes with $\begin{bmatrix} U & 0 \\ 0 & \alpha(U) \end{bmatrix}$ and has $\mathcal{H} \oplus \mathcal{H}$ as a common semi-invariant subspace. Clearly, we may take the * entries to all equal 0 without changing things. So (U,S) satisfies the same covariance relations US = Sb(U). Therefore we have obtained a dilation to the covariance relations for $(C(\mathbb{T}), \alpha)$.

Once we have a covariance relation for $(C(\mathbb{T}), \alpha)$, we can try to dilate further. Extending S to an isometry V follows a well-known path. Observe that

$$b(U)S^*S = S^*US = S^*Sb(U).$$

Thus $D = (I - S^*S)^{1/2}$ commutes with b(U). Write $b^{(n)}$ for the composition of b with itself n times, Hence we can now use the standard Schaeffer dilation of S to an isometry V and simultaneously dilate U to U_1 as follows:

$$V = \begin{bmatrix} S & 0 & 0 & 0 & \dots \\ D & 0 & 0 & 0 & \dots \\ 0 & I & 0 & 0 & \dots \\ 0 & 0 & I & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix} \text{ and } U_1 = \begin{bmatrix} U & 0 & 0 & 0 & \dots \\ 0 & b(U_1) & 0 & 0 & \dots \\ 0 & 0 & b^{(2)}(U_1) & 0 & \dots \\ 0 & 0 & 0 & b^{(3)}(U_1) & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

A simple calculation shows that $U_1V = Vb(U_1)$. So as above, (U, V) satisfies the covariance relations for $(C(\mathbb{T}), \alpha)$.

We would like to make V a unitary as well. This is possible in the case where b is non-constant, but the explicit construction is not obvious. Instead, we use the theory of C*-envelopes and maximal dilations. First we need the following.

Lemma 2.2. Let b be a finite Blaschke product, and let $\alpha(f) = f \circ b$. Then

$$C_e^*(A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+) \simeq C_e^*(C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+).$$

Proof. The previous Theorem identifies $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ completely isometrically as a subalgebra of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$. The C*-envelope \mathcal{C} of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$ is a Cuntz-Pimsner algebra containing a copy of $C(\mathbb{T})$ which is invariant under gauge actions. Now \mathcal{C} is a C*-cover of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$, so it is easy to see that it is also a C*-cover of $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$. Since $A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+$ is invariant under the same gauge actions, its Shilov ideal $\mathcal{J} \subseteq \mathcal{C}$ will be invariant by these actions as well. If $\mathcal{J} \neq 0$ then by gauge invariance $\mathcal{J} \cap C(\mathbb{T}) \neq 0$. Since the quotient map

$$A(\mathbb{D}) \longrightarrow C(\mathbb{T})/(\mathcal{J} \cap C(\mathbb{T}))$$

is completely isometric, we obtain a contradiction. Hence $\mathcal{J}=0$ and the conclusion follows.

We now recall some of the theory of semicrossed products of C*-algebras. When \mathfrak{A} is a C*-algebra, the completely isometric endomorphisms are the faithful *-endomorphisms. In this case, Peters shows [9, Prop.I.8] that there is a unique C*-algebra \mathfrak{B} , a *-automorphism β of \mathfrak{B} and an injection j of \mathfrak{A} into \mathfrak{B} so that $\beta \circ j = j\alpha$ and \mathfrak{B} is the closure of $\bigcup_{n\geq 0}\beta^{-n}(j(\mathfrak{A}))$. It follows [9, Prop.II.4] that $\mathfrak{A}\times_{\alpha}\mathbb{Z}_{+}$ is completely isometrically isomorphic to the subalgebra of the crossed product algebra $\mathfrak{B}\times_{\beta}\mathbb{Z}$ generated as a non-self-adjoint algebra by an isomorphic copy $j(\mathfrak{A})$ of \mathfrak{A} and the unitary \mathfrak{u} implementing β in the crossed product. Actually, Kakariadis and the second author [6, Thm.2.5] show that $\mathfrak{B}\times_{\beta}\mathbb{Z}$ is the C*-envelope of $\mathfrak{A}\times_{\alpha}\mathbb{Z}_{+}$. This last result is valid for semicrossed products of not necessarily unital C*-algebras by (non-degenerate) injective *-endomorphisms and we will use it below in that form.

In the case where $\mathfrak{A} = C_0(X)$ is commutative and α is induced by an injective self-map of X, the pair (\mathfrak{B}, β) has an alternative description.

Definition 2.3. Let X be a topological space and φ a surjective selfmap of X. We define the *solenoid system of* (X, φ) to be the pair $(\mathcal{S}_{\varphi}, s)$, where

$$S_{\varphi} = \{(x_n)_{n \ge 1} : x_n = \varphi(x_{n+1}), x_n \in X, n \ge 1\}$$

equipped with the relative topology inherited from the product topology on $\prod_{i=1}^{\infty} X_i$, $X_i = X$, i = 1, 2, ..., and s is the backward shift on S_{φ} .

It is easy to see that if $\mathfrak{A} = C_0(X)$, with X a locally compact Hausdorff space, and α is induced by an surjective self-map φ of X, then the pair (\mathfrak{B}, β) for (\mathfrak{A}, α) described above, is conjugate to the solenoid system $(\mathcal{S}_{\varphi}, s)$. Therefore, we obtain

Corollary 2.4. Let b be a non-constant finite Blaschke product, and let $\alpha(f) = f \circ b$ on $C(\mathbb{T})$. Then

$$C_e^*(A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+) = C(S_b) \times_s \mathbb{Z}.$$

where (S_b, s) is the solenoid system of (\mathbb{T}, b) .

The above Theorem leads to a dilation result, for which a direct proof is far from obvious.

Corollary 2.5. Let α be an endomorphism of $A(\mathbb{D})$ induced by a nonconstant finite Blaschke product and let $A, T \in \mathcal{B}(\mathcal{H})$ be contractions satisfying

$$AT = T\alpha(A)$$
.

Then there exist unitary operators U and W on a Hilbert space $\mathcal{K} \supset \mathcal{H}$ which simultaneously dilate A and T, in the sense that

$$P_{\mathcal{H}}W^mU^n|_{\mathcal{H}} = T^mA^n \quad \text{ for all } m, n \ge 0,$$

so that

$$UW = W\alpha(U)$$
.

Proof. Every covariant representation (A, T) of $(A(\mathbb{D}), \alpha)$ dilates to a covariant representation (U_1, V) of $(C(\mathbb{T}), \alpha)$. This in turn dilates to a maximal dilation τ of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$, in the sense of Dritschel and McCullough [4]. The maximal dilations extend to *-representations of the C*-envelope. Then A is dilated to $\tau(j(z)) = U$ is unitary and T dilates to the unitary W which implements the automorphism β on \mathfrak{B} , and restricts to the action of α on $C(\mathbb{T})$.

The situation changes when we move to *non-injective* endomorphisms α of $A(\mathbb{D})$. Indeed, let $\lambda \in \mathbb{T}$ and consider the endomorphism α_{λ} of $A(\mathbb{D})$ induced by evaluation on λ , i.e.,

$$\alpha_{\lambda}(f)(z) = f(\lambda)$$
 for all $z \in \mathbb{D}$.

(Thus α_{λ} is the endomorphism of A(D) corresponding to a constant Blaschke product.) If two contractions A, T satisfy

$$AT = T\alpha_{\lambda}(A) = \lambda T$$

then the existence of unitary operators U,W, dilating A and T respectively, implies that $A=\lambda I$. It is easy to construct a pair A,T satisfying $AT=\lambda T$ and yet $A\neq\lambda I$. This shows that the analogue Corollary 2.5 fails for $\alpha=\alpha_\lambda$ and therefore one does not expect $\mathrm{C}^*_\mathrm{e}(\mathrm{A}(\mathbb{D})\times_{\alpha_\lambda}\mathbb{Z}^+)$ to be isomorphic to the crossed product of a commutative C*-algebra, at least under canonical identifications. However as we have seen, a weakening of Corollary 2.5 is valid for $\alpha=\alpha_\lambda$ if one allows W to be an isometry instead of a unitary operator. In addition, we can identify $\mathrm{C}^*_\mathrm{e}(\mathrm{A}(\mathbb{D})\times_\alpha\mathbb{Z}^+)$ as being strongly Morita equivalent to a crossed product C*-algebra. Indeed, if

$$e \colon \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}$$

is defined as

$$e(z,n) = \begin{cases} (1,1) & \text{if } n = 1\\ (z,n-1) & \text{otherwise,} \end{cases}$$

then

Theorem 2.6. Let $\alpha = \alpha_{\lambda}$ be an endomorphism of $A(\mathbb{D})$ induced by evaluation at a point $\lambda \in \mathbb{T}$. Then $C_e^*(A(\mathbb{D}) \times_{\alpha} \mathbb{Z}^+)$ is strongly Morita equivalent to $C_0(\mathcal{S}_e) \times_s \mathbb{Z}$, where $e \colon \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}$ is defined above and (\mathcal{S}_e, s) is the solenoid system of $(\mathbb{T} \times \mathbb{N}, e)$.

Proof. In light of Lemma 2.2, it suffices to identify the C*-envelope of $C(\mathbb{T}) \times_{\alpha} \mathbb{Z}^+$. As α is no longer an injective endomorphism of $C(\mathbb{T})$, we invoke the process of adding tails to C*-correspondences [8], as modified in [3, 7].

Indeed, [7, Example 4.3] implies that the C*-envelope of the tensor algebra associated with the dynamical system $(C(\mathbb{T}), \alpha)$ is strongly Morita equivalent to the Cuntz-Pimsner algebra associated with the injective dynamical system $(\mathbb{T} \times \mathbb{N}, e)$ defined above. Therefore by invoking the solenoid system of $(\mathbb{T} \times \mathbb{N}, e)$, the conclusion follows from the discussion following Lemma 2.2.

References

- [1] D. Buske and J. Peters, Semicrossed products of the disk algebra: contractive representations and maximal ideals, Pacific J. Math. 185 (1998), 97–113.
- [2] K. Davidson, E. Katsoulis, *Isomorphisms between topological conjugacy algebras*, J. reine angew. Math. **621** (2008), 29–51.
- K. Davidson and J. Roydor, C*-envelopes of of tensor algebras for multivariable dynamics, Proc. Edinb. Math. J. 53 (2010), 333-351. Corrigendum, DOI:10.1017/S0013091511000216.
- [4] M. Dritschel and S. McCullough, Boundary representations for families of representations of operator algebras and spaces, J. Operator Theory 53 (2005), 159–167.

- [5] T. Hoover, J. Peters and W. Wogen, Spectral properties of semicrossed products, Houston J. Math. 19 (1993), 649–660.
- [6] E. Kakariadis and E. Katsoulis, Semicrossed products of operator algebras and their C*-envelopes, manuscript.
- [7] E. Kakariadis and E. Katsoulis, Contributions to the theory of C*-correspondences with applications to multivariable dynamics, Trans. Amer. Math. Soc., in press.
- [8] P. S. Muhly, M. Tomforde, Adding tails to C*-correspondences, Doc. Math. 9 (2004), 79–106.
- [9] J. Peters, Semicrossed products of C*-algebras, J. Funct. Anal. 59 (1984), 498– 534.
- [10] S. Power, Completely contractive representations for some doubly generated antisymmetric operator algebras, Proc. Amer. Math. Soc. 126 (1998), 2355– 2359.

Pure Mathematics Department, University of Waterloo, Waterloo, ON N2L–3G1, CANADA

E-mail address: krdavids@uwaterloo.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, 15784 ATHENS, GREECE

Alternate address: Department of Mathematics, East Carolina University, Greenville, NC 27858, USA

E-mail address: katsoulise@ecu.edu