SEMICROSSED PRODUCTS OF THE DISK ALGEBRA

KENNETH R. DAVIDSON AND ELIAS G. KATSOULIS

Abstract

If α is the endomorphism of the disk algebra, $\mathrm{A}(\mathbb{D})$, induced by composition with a finite Blaschke product b, then the semicrossed product $A(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}$imbeds canonically, completely isometrically into $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$. Hence in the case of a non-constant Blaschke product b, the C^{*}-envelope has the form $\mathrm{C}\left(\mathcal{S}_{b}\right) \times{ }_{s} \mathbb{Z}$, where $\left(\mathcal{S}_{b}, s\right)$ is the solenoid system for (\mathbb{T}, b). In the case where b is a constant, then the C^{*}-envelope of $\mathrm{A}(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}$is strongly Morita equivalent to a crossed product of the form $\mathrm{C}_{0}\left(\mathcal{S}_{e}\right) \times{ }_{s} \mathbb{Z}$, where $e: \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}$ is a suitable map and $\left(\mathcal{S}_{e}, s\right)$ is the solenoid system for $(\mathbb{T} \times \mathbb{N}, e)$.

1. Introduction

If \mathcal{A} is a unital operator algebra and α is a completely contractive endomorphism, the semicrossed product is an operator algebra $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{+}$ which encodes the covariant representations of (\mathcal{A}, α) : namely completely contractive unital representations $\rho: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ and contractions T satisfying

$$
\rho(a) T=T \rho(\alpha(a)) \quad \text { for all } a \in \mathcal{A} .
$$

Such algebras were defined by Peters [9] when \mathcal{A} is a C^{*}-algebra.
One can readily extend Peter's definition [9] of the semicrossed product of a C^{*}-algebra by a *-endomorphism to unital operator algebras and unital completely contractive endomorphisms. One forms the polynomial algebra $\mathcal{P}(\mathcal{A}, \mathfrak{t})$ of formal polynomials of the form $p=\sum_{i=0}^{n} \mathfrak{t}^{i} a_{i}$, where $a_{i} \in \mathcal{A}$, with multiplication determined by the covariance relation $a \mathfrak{t}=\mathfrak{t} \alpha(a)$ and the norm

$$
\|p\|=\sup _{(\rho, T) \text { covariant }}\left\|\sum_{i=0}^{n} T^{i} \rho\left(a_{i}\right)\right\| .
$$

[^0]This supremum is clearly dominated by $\sum_{i=0}^{n}\left\|a_{i}\right\|$; so this norm is well defined. The completion is the semicrossed product $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{+}$. Since this is the supremum of operator algebra norms, it is also an operator algebra norm. By construction, for each covariant representation (ρ, T), there is a unique completely contractive representation $\rho \times T$ of $\mathcal{A} \times{ }_{\alpha} \mathbb{Z}_{+}$into $\mathcal{B}(\mathcal{H})$ given by

$$
\rho \times T(p)=\sum_{i=0}^{n} T^{i} \rho\left(a_{i}\right) .
$$

This is the defining property of the semicrossed product.
In this note, we examine semicrossed products of the disk algebra by an endomorphism which extends to a $*$-endomorphism of $\mathrm{C}(\mathbb{T})$. In the case where the endomorphism is injective, these have the form $\alpha(f)=f \circ b$ where b is a non-constant Blaschke product. We show that every covariant representation of $(\mathrm{A}(\mathrm{D}), \alpha)$ dilates to a covariant representation of $(\mathrm{C}(\mathbb{T}), \alpha)$. This is readily dilated to a covariant representation (σ, V), where σ is a $*$-representation of $\mathrm{C}(\mathbb{T})$ (so $\sigma(z)$ is unitary) and V is an isometry. To go further, we use the recent work of Kakariadis and Katsoulis [6] to show that $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$imbeds completely isometrically into a C^{*}-crossed product $\mathrm{C}\left(\mathcal{S}_{b}\right) \times{ }_{\alpha} \mathbb{Z}$. In fact,

$$
\mathrm{C}_{\mathrm{e}}^{*}\left(\mathrm{C}(\mathbb{T}) \times_{\alpha} \mathbb{Z}^{+}\right)=\mathrm{C}\left(\mathcal{S}_{b}\right) \times_{\alpha} \mathbb{Z},
$$

and as a consequence, we obtain that (ρ, T) dilates to a covariant representation (τ, W), where τ is a *-representation of $\mathrm{C}(\mathbb{T})$ (so $\sigma(z)$ is unitary) and W is a unitary.

In contrast, if α is induced by a constant Blashcke product, we can no longer identify $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}\right)$up to isomorphism. In that case, α is evaluation at a boundary point. Even though every covariant representation of $(\mathrm{A}(\mathrm{D}), \alpha)$ dilates to a covariant representation of $(\mathrm{C}(\mathbb{T}), \alpha)$, the theory of [6] is not directly applicable since α is not injective. Instead, we use the process of "adding tails to C^{*}-correspondences" [8], as modified in $[3,7]$ and we identify $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathrm{C}(\mathrm{T}) \times_{\alpha} \mathbb{Z}^{+}\right)$up to strong Morita equivalence as a crossed product. In Theorem 2.6 we show that $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathrm{C}(\mathrm{T}) \times_{\alpha} \mathbb{Z}^{+}\right)$is strongly Morita equivalent to a C^{*}-algebra of the form $\mathrm{C}_{0}\left(\mathcal{S}_{e}\right) \times_{s} \mathbb{Z}$, where

$$
e: \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}
$$

is a suitable map and $\left(\mathcal{S}_{e}, s\right)$ is the solenoid system for $(\mathbb{T} \times \mathbb{N}, e)$.
Semi-crossed products of the the disc algebra were introduced and first studied by Buske and Peters in [1], following relevant work of Hoover, Peters and Wogen [5]. The algebras $\mathrm{A}(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}$, where α is
an arbitrary endomorphism, where classified up to algebraic endomorphism in [2]. Results associated with their C*-envelope can be found in [1, Proposition III.13] and [10, Theorem 2]. The results of the present paper subsume and extend these earlier results.

2. The Disk Algebra

The C^{*}-envelope of the disk algebra $A(\mathbb{D})$ is $C(\mathbb{T})$, the space of continuous functions on the unit circle. Suppose that α is an endomorphism of $C(T)$ which leaves $A(D)$ invariant. We refer to the restriction of α to $\mathrm{A}(\mathbb{D})$ as α as well. Then $b=\alpha(z) \in \mathrm{A}(\mathbb{D})$; and has spectrum

$$
\sigma_{\mathrm{A}(\mathbb{D})}(b) \subset \sigma_{\mathrm{A}(\mathbb{D})}(z)=\overline{\mathrm{D}}
$$

and

$$
\sigma_{\mathrm{C}(\mathbb{T})}(b) \subset \sigma_{\mathrm{C}(\mathbb{T})}(z)=\mathrm{T} .
$$

Thus $\|b\|=1$ and $b(\mathbb{T}) \subset \mathbb{T}$. It follows that b is a finite Blaschke product. Therefore $\alpha(f)=f \circ b$ for all $f \in \mathrm{C}(\mathbb{T})$. When b is not constant, α is completely isometric.

A (completely) contractive representation ρ of $\mathrm{A}(\mathrm{D})$ is determined by $\rho(z)=A$, which must be a contraction. The converse follows from the matrix von Neumann inequality; and shows that $\rho(f)=f(A)$ is a complete contraction. A covariant representation of $(\mathrm{A}(\mathrm{D}), \alpha)$ is thus determined by a pair of contractions (A, T) such that

$$
A T=T b(A)
$$

The representation of $\mathrm{A}(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}$is given by

$$
\rho \times T\left(\sum_{i=0}^{n} \mathfrak{t}^{i} f_{i}\right)=\sum_{i=0}^{n} T^{i} f_{i}(A),
$$

which extends to a completely contractive representation of the semicrossed product by the universal property.

A contractive representation σ of $\mathrm{C}(\mathbb{T})$ is a $*$-representation, and is likewise determined by $U=\sigma(z)$, which must be unitary; and all unitary operators yield such a representation by the functional calculus. A covariant representation of $(\mathrm{C}(\mathbb{T}), \alpha)$ is given by a pair (U, T) where U is unitary and T is a contraction satisfying $U T=T b(U)$. To see this, multiply on the left by U^{*} and on the right by $b(U)^{*}$ to obtain the identity

$$
U^{*} T=T b(U)^{*}=T \bar{b}(U)=T \alpha(\bar{z})(U)
$$

The set of functions $\{f \in \mathrm{C}(\mathbb{T}): f(U) T=T \alpha(f)(U)\}$ is easily seen to be a norm closed algebra. Since it contains z and \bar{z}, it is all of $\mathrm{C}(\mathbb{T})$. So the covariance relation holds.

Theorem 2.1. Let b be a finite Blaschke product, and let $\alpha(f)=f \circ b$. Then $\mathrm{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^{+}$is (canonically completely isometrically isomorphic to) a subalgebra of $\mathrm{C}(\mathbb{T}) \times_{\alpha} \mathbb{Z}^{+}$.

Proof. To establish that $A(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}$is completely isometric to a subalgebra of $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$, it suffices to show that each (A, T) with $A T=T b(A)$ has a dilation to a pair (U, S) with U unitary and S a contraction such that

$$
U S=S b(U) \quad \text { and }\left.\quad P_{\mathcal{H}} S^{n} U^{m}\right|_{\mathcal{H}}=T^{n} A^{m} \text { for all } m, n \geq 0
$$

This latter condition is equivalent to \mathcal{H} being semi-invariant for the algebra generated by U and S.

The covariance relation can be restated as

$$
\left[\begin{array}{cc}
A & 0 \\
0 & b(A)
\end{array}\right]\left[\begin{array}{ll}
0 & T \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & T \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & b(A)
\end{array}\right]
$$

Dilate A to a unitary U which leaves \mathcal{H} semi-invariant. Then $\left[\begin{array}{cc}A & 0 \\ 0 & b(A)\end{array}\right]$ dilates to $\left[\begin{array}{ccc}U & 0 \\ 0 & b(U)\end{array}\right]$. By the Sz.Nagy-Foiaş Commutant Lifting Theorem, we may dilate $\left[\begin{array}{cc}0 \\ 0 & T\end{array}\right]$ to a contraction of the form $\left[\begin{array}{cc}* \\ * \\ *\end{array}\right]$ which commutes with $\left[\begin{array}{cc}U & 0 \\ 0 & \alpha(U)\end{array}\right]$ and has $\mathcal{H} \oplus \mathcal{H}$ as a common semi-invariant subspace. Clearly, we may take the $*$ entries to all equal 0 without changing things. So (U, S) satisfies the same covariance relations $U S=S b(U)$. Therefore we have obtained a dilation to the covariance relations for (C(T), α).

Once we have a covariance relation for $(\mathrm{C}(\mathbb{T}), \alpha)$, we can try to dilate further. Extending S to an isometry V follows a well-known path. Observe that

$$
b(U) S^{*} S=S^{*} U S=S^{*} S b(U)
$$

Thus $D=\left(I-S^{*} S\right)^{1 / 2}$ commutes with $b(U)$. Write $b^{(n)}$ for the composition of b with itself n times, Hence we can now use the standard Schaeffer dilation of S to an isometry V and simultaneously dilate U to U_{1} as follows:
$V=\left[\begin{array}{ccccc}S & 0 & 0 & 0 & \ldots \\ D & 0 & 0 & 0 & \ldots \\ 0 & I & 0 & 0 & \ldots \\ 0 & 0 & I & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots & \ddots\end{array}\right]$ and $U_{1}=\left[\begin{array}{ccccc}U & 0 & 0 & 0 & \ldots \\ 0 & b\left(U_{1}\right) & 0 & 0 & \cdots \\ 0 & 0 & b^{(2)}\left(U_{1}\right) & 0 & \cdots \\ 0 & 0 & 0 & b^{(3)}\left(U_{1}\right) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]$.
A simple calculation shows that $U_{1} V=V b\left(U_{1}\right)$. So as above, (U, V) satisfies the covariance relations for $(\mathrm{C}(\mathbb{T}), \alpha)$.

We would like to make V a unitary as well. This is possible in the case where b is non-constant, but the explicit construction is not obvious. Instead, we use the theory of C^{*}-envelopes and maximal dilations. First we need the following.

Lemma 2.2. Let b be a finite Blaschke product, and let $\alpha(f)=f \circ b$. Then

$$
\mathrm{C}_{e}^{*}\left(\mathrm{~A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^{+}\right) \simeq \mathrm{C}_{e}^{*}\left(\mathrm{C}(\mathbb{T}) \times_{\alpha} \mathbb{Z}^{+}\right)
$$

Proof. The previous Theorem identifies $\mathrm{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^{+}$completely isometrically as a subalgebra of $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$. The C^{*}-envelope \mathcal{C} of $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$is a Cuntz-Pimsner algebra containing a copy of $\mathrm{C}(\mathbb{T})$ which is invariant under gauge actions. Now \mathcal{C} is a C^{*}-cover of $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$, so it is easy to see that it is also a C^{*}-cover of $A(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}$. Since $\mathrm{A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^{+}$is invariant under the same gauge actions, its Shilov ideal $\mathcal{J} \subseteq \mathcal{C}$ will be invariant by these actions as well. If $\mathcal{J} \neq 0$ then by gauge invariance $\mathcal{J} \cap \mathrm{C}(\mathbb{T}) \neq 0$. Since the quotient map

$$
\mathrm{A}(\mathbb{D}) \longrightarrow \mathrm{C}(\mathbb{T}) /(\mathcal{J} \cap \mathrm{C}(\mathbb{T}))
$$

is completely isometric, we obtain a contradiction. Hence $\mathcal{J}=0$ and the conclusion follows.

We now recall some of the theory of semicrossed products of C^{*} algebras. When \mathfrak{A} is a C^{*}-algebra, the completely isometric endomorphisms are the faithful $*$-endomorphisms. In this case, Peters shows [9, Prop.I.8] that there is a unique C^{*}-algebra \mathfrak{B}, a $*$-automorphism β of \mathfrak{B} and an injection j of \mathfrak{A} into \mathfrak{B} so that $\beta \circ j=j \alpha$ and \mathfrak{B} is the closure of $\bigcup_{n \geq 0} \beta^{-n}(j(\mathfrak{A}))$. It follows [9, Prop.II.4] that $\mathfrak{A} \times{ }_{\alpha} \mathbb{Z}_{+}$is completely isometrically isomorphic to the subalgebra of the crossed product algebra $\mathfrak{B} \times_{\beta} \mathbb{Z}$ generated as a non-self-adjoint algebra by an isomorphic copy $j(\mathfrak{A})$ of \mathfrak{A} and the unitary \mathfrak{u} implementing β in the crossed product. Actually, Kakariadis and the second author [6, Thm.2.5] show that $\mathfrak{B} \times{ }_{\beta} \mathbb{Z}$ is the C^{*}-envelope of $\mathfrak{A} \times{ }_{\alpha} \mathbb{Z}_{+}$. This last result is valid for semicrossed products of not necessarily unital C^{*}-algebras by (nondegenerate) injective $*$-endomorphisms and we will use it below in that form.

In the case where $\mathfrak{A}=\mathrm{C}_{0}(X)$ is commutative and α is induced by an injective self-map of X, the pair (\mathfrak{B}, β) has an alternative description.

Definition 2.3. Let X be a topological space and φ a surjective selfmap of X. We define the solenoid system of (X, φ) to be the pair $\left(\mathcal{S}_{\varphi}, s\right)$, where

$$
\mathcal{S}_{\varphi}=\left\{\left(x_{n}\right)_{n \geq 1}: x_{n}=\varphi\left(x_{n+1}\right), x_{n} \in X, n \geq 1\right\}
$$

equipped with the relative topology inherited from the product topology on $\prod_{i=1}^{\infty} X_{i}, X_{i}=X, i=1,2, \ldots$, and s is the backward shift on \mathcal{S}_{φ}.

It is easy to see that if $\mathfrak{A}=\mathrm{C}_{0}(X)$, with X a locally compact Hausdorff space, and α is induced by an surjective self-map φ of X, then the pair (\mathfrak{B}, β) for (\mathfrak{A}, α) described above, is conjugate to the solenoid system $\left(\mathcal{S}_{\varphi}, s\right)$. Therefore, we obtain

Corollary 2.4. Let b be a non-constant finite Blaschke product, and let $\alpha(f)=f \circ b$ on $\mathrm{C}(\mathbb{T})$. Then

$$
\mathrm{C}_{e}^{*}\left(\mathrm{~A}(\mathbb{D}) \times_{\alpha} \mathbb{Z}^{+}\right)=\mathrm{C}\left(\mathcal{S}_{b}\right) \times{ }_{s} \mathbb{Z} .
$$

where $\left(\mathcal{S}_{b}, s\right)$ is the solenoid system of (\mathbb{T}, b).
The above Theorem leads to a dilation result, for which a direct proof is far from obvious.

Corollary 2.5. Let α be an endomorphism of $\mathrm{A}(\mathrm{D})$ induced by a nonconstant finite Blaschke product and let $A, T \in \mathcal{B}(\mathcal{H})$ be contractions satisfying

$$
A T=T \alpha(A)
$$

Then there exist unitary operators U and W on a Hilbert space $\mathcal{K} \supset \mathcal{H}$ which simultaneously dilate A and T, in the sense that

$$
\left.P_{\mathcal{H}} W^{m} U^{n}\right|_{\mathcal{H}}=T^{m} A^{n} \quad \text { for all } m, n \geq 0
$$

so that

$$
U W=W \alpha(U)
$$

Proof. Every covariant representation (A, T) of $(\mathrm{A}(\mathrm{D}), \alpha)$ dilates to a covariant representation $\left(U_{1}, V\right)$ of $(\mathrm{C}(\mathrm{T}), \alpha)$. This in turn dilates to a maximal dilation τ of $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$, in the sense of Dritschel and McCullough [4]. The maximal dilations extend to $*$-representations of the C^{*}-envelope. Then A is dilated to $\tau(j(z))=U$ is unitary and T dilates to the unitary W which implements the automorphism β on \mathfrak{B}, and restricts to the action of α on $\mathrm{C}(\mathrm{T})$.

The situation changes when we move to non-injective endomorphisms α of $\mathrm{A}(\mathrm{D})$. Indeed, let $\lambda \in \mathbb{T}$ and consider the endomorphism α_{λ} of $\mathrm{A}(\mathrm{D})$ induced by evaluation on λ, i.e.,

$$
\alpha_{\lambda}(f)(z)=f(\lambda) \quad \text { for all } z \in \mathbb{D} .
$$

(Thus α_{λ} is the endomorphism of $\mathrm{A}(\mathbb{D})$ corresponding to a constant Blaschke product.) If two contractions A, T satisfy

$$
A T=T \alpha_{\lambda}(A)=\lambda T
$$

then the existence of unitary operators U, W, dilating A and T respectively, implies that $A=\lambda I$. It is easy to construct a pair A, T satisfying $A T=\lambda T$ and yet $A \neq \lambda I$. This shows that the analogue Corollary 2.5 fails for $\alpha=\alpha_{\lambda}$ and therefore one does not expect $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathrm{~A}(\mathrm{D}) \times_{\alpha_{\lambda}} \mathbb{Z}^{+}\right)$ to be isomorphic to the crossed product of a commutative C^{*}-algebra, at least under canonical identifications. However as we have seen, a weakening of Corollary 2.5 is valid for $\alpha=\alpha_{\lambda}$ if one allows W to be an isometry instead of a unitary operator. In addition, we can identify $\mathrm{C}_{\mathrm{e}}^{*}\left(\mathrm{~A}(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}\right)$as being strongly Morita equivalent to a crossed product C^{*}-algebra. Indeed, if

$$
e: \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}
$$

is defined as

$$
e(z, n)=\left\{\begin{array}{cl}
(1,1) & \text { if } n=1 \\
(z, n-1) & \text { otherwise }
\end{array}\right.
$$

then
Theorem 2.6. Let $\alpha=\alpha_{\lambda}$ be an endomorphism of $\mathrm{A}(\mathrm{D})$ induced by evaluation at a point $\lambda \in \mathbb{T}$. Then $\mathrm{C}_{e}^{*}\left(\mathrm{~A}(\mathbb{D}) \times{ }_{\alpha} \mathbb{Z}^{+}\right)$is strongly Morita equivalent to $\mathrm{C}_{0}\left(\mathcal{S}_{e}\right) \times{ }_{s} \mathbb{Z}$, where $e: \mathbb{T} \times \mathbb{N} \longrightarrow \mathbb{T} \times \mathbb{N}$ is defined above and $\left(\mathcal{S}_{e}, s\right)$ is the solenoid system of $(\mathbb{T} \times \mathbb{N}, e)$.
Proof. In light of Lemma 2.2, it suffices to identify the C^{*}-envelope of $\mathrm{C}(\mathbb{T}) \times{ }_{\alpha} \mathbb{Z}^{+}$. As α is no longer an injective endomorphism of $\mathrm{C}(\mathrm{T})$, we invoke the process of adding tails to C^{*}-correspondences [8], as modified in $[3,7]$.

Indeed, [7, Example 4.3] implies that the C^{*}-envelope of the tensor algebra associated with the dynamical system ($\mathrm{C}(\mathrm{T}), \alpha)$ is strongly Morita equivalent to the Cuntz-Pimsner algebra associated with the injective dynamical system ($\mathrm{T} \times \mathbb{N}, e$) defined above. Therefore by invoking the solenoid system of $(\mathbb{T} \times \mathbb{N}, e)$, the conclusion follows from the discussion following Lemma 2.2.

References

[1] D. Buske and J. Peters, Semicrossed products of the disk algebra: contractive representations and maximal ideals, Pacific J. Math. 185 (1998), 97-113.
[2] K. Davidson, E. Katsoulis, Isomorphisms between topological conjugacy algebras, J. reine angew. Math. 621 (2008), 29-51.
[3] K. Davidson and J. Roydor, C^{*}-envelopes of of tensor algebras for multivariable dynamics, Proc. Edinb. Math. J. 53 (2010), 333-351. Corrigendum, DOI:10.1017/S0013091511000216.
[4] M. Dritschel and S. McCullough, Boundary representations for families of representations of operator algebras and spaces, J. Operator Theory 53 (2005), 159-167.
[5] T. Hoover, J. Peters and W. Wogen, Spectral properties of semicrossed products, Houston J. Math. 19 (1993), 649-660.
[6] E. Kakariadis and E. Katsoulis, Semicrossed products of operator algebras and their C^{*}-envelopes, manuscript.
[7] E. Kakariadis and E. Katsoulis, Contributions to the theory of $C^{*}-$ correspondences with applications to multivariable dynamics, Trans. Amer. Math. Soc., in press.
[8] P. S. Muhly, M. Tomforde, Adding tails to C^{*}-correspondences, Doc. Math. 9 (2004), 79-106.
[9] J. Peters, Semicrossed products of C^{*}-algebras, J. Funct. Anal. 59 (1984), 498534.
[10] S. Power, Completely contractive representations for some doubly generated antisymmetric operator algebras, Proc. Amer. Math. Soc. 126 (1998), 23552359.

Pure Mathematics Department, University of Waterloo, Waterloo, ON N2L-3G1, CANADA

E-mail address: krdavids@uwaterloo.ca
Department of Mathematics, University of Athens, 15784 Athens, GREECE

Alternate address: Department of Mathematics, East Carolina University, Greenville, NC 27858, USA

E-mail address: katsoulise@ecu.edu

[^0]: 2000 Mathematics Subject Classification. 47L55.
 Key words and phrases. semicrossed product, crossed product, disk algebra, C*envelope.

 First author partially supported by an NSERC grant.
 Second author was partially supported by a grant from ECU.

