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Abstract. We define the complete numerical radius norm for ho-
momorphisms from any operator algebra into B(H), and show that
this norm can be computed explicitly in terms of the completely
bounded norm. This is used to show that if K is a complete C-
spectral set for an operator T , then it is a complete M -numerical
radius set, where M = 1

2 (C + C−1). In particular, in view of
Crouzeix’s theorem, there is a universal constant M (less than
5.6) so that if P is a matrix polynomial and T ∈ B(H), then
w(P (T )) ≤M‖P‖W (T ). When W (T ) = D, we have M = 5

4 .

In 2007, Michel Crouzeix [6] proved the remarkable fact that for
any operator T on a Hilbert space H, the numerical range is a com-
plete C-spectral set for some constant with a universal bound of 11.08.
Moreover in [5], he conjectures that the optimal constant is 2, which is
the case for a disc. This inspired a result of Drury [7] who proved that
if the numerical range of T is contained in the disc, then the numerical
radius of any polynomial in T is bounded by 5

4
times the supremum

norm of the polynomial over the disc. Generally all that one can say
about the relationship between the norm and numerical radius is that
w(X) ≤ ‖X‖, with equality for many operators, so the improvement
from 2 to Drury’s 5

4
was unexpected.

In this note, we establish a precise relationship between the com-
pletely bounded norm of a homomorphism of an arbitrary operator
algebra and what we call the complete numerical radius norm of the
homomorphism. When applied to the case of the disc, our relationship
yields Drury’s result in the matrix polynomial case, and our result also
applies to the general study of C-spectral sets.
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We now introduce the definitions and prior results that we shall need.
A set K is a C-spectral set for an operator T if for every rational

function f with poles off of K, one has

‖f(T )‖ ≤ C‖f‖K

where ‖f‖K = sup{|f(z)| : z ∈ K}. It is a complete C-spectral set if
this inequality holds for all matrices with rational coefficients. This in-
equality clearly extends to R(K), the uniform closure of these rational
functions in C(K). It is well-known that when the complement of K is
connected (such as when K is convex), it suffices to verify this inequal-
ity for polynomials. When the constant C = 1, we call K a (complete)
spectral set. The second author [11] showed in 1984 that K is a com-
plete C-spectral set for T if and only if there is an invertible operator
S so that K is a complete spectral set for STS−1 and ‖S‖ ‖S−1‖ ≤ C.

The numerical range of an operator T is the set

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}.

This set is always convex and contains the spectrum of T . The numer-
ical radius of T is

w(T ) = sup{|λ| : λ ∈ W (T )}.

It is well known that w(T ) ≤ ‖T‖ ≤ 2w(T ), and that this inequality is
sharp.

Early estimates for w(p(T )) for a polynomial p in the case of the disc
were due to Berger and Stampfli [4]: if w(T ) ≤ 1 and p(0) = 0, then
w(p(T )) ≤ ‖p‖D. A recent result of Drury [7] deals with the case of
p(0) 6= 0:

w(p(T )) ≤ 5

4
‖p‖D.

This inequality can be seen to be sharp for T = [ 0 2
0 0 ] and the Möbius

map that takes 0 to 1/2. Drury gives more precise information about
the shape of W (p(T )) as a “teardrop”. For another proof of this fact,
see [9]. Since we are primarily interested in matrix polynomials, this
geometric picture is no longer valid, but we prove the same 5

4
inequality.

We will say that a compact set K is a C ′-numerical radius set for T
if

w(f(T )) ≤ C ′‖f‖K for all f ∈ R(K),

and it is a complete C ′-numerical radius set if the same inequality holds
for matrices over R(K). One of our key results is the following:
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Theorem 3.1. Let C ≥ 1 and set C ′ = 1
2
(C + C−1). A compact

subset K ⊂ C is a complete C-spectral set for T ∈ B(H) if and only if
it is a complete C ′-numerical radius set for T .

In fact, we will prove a general result about unital operator algebras.
Recall that every unital operator algebra A has a family of norms on
Mn(A), and that A may be represented completely isometrically as
an algebra of operators on some Hilbert space. See [12] for details.
If Φ : A → B(H) is a bounded linear map, it induces coordinatewise
maps Φ(n) : Mn(A) → Mn(B(H)) ' B(H(n)); and one defines the
completely bounded norm by

‖Φ‖cb = sup
n≥1
‖Φ(n)‖.

We will also define a complete numerical radius norm on such maps

‖Φ‖wcb := sup
n≥1

sup
A∈Mn(A), ‖A‖≤1

w(Φ(n)(A)).

Our main result is the following:

Theorem 2.3. Let A be an operator algebra, and let Φ be a com-
pletely bounded homomorphism. Then

‖Φ‖wcb =
1

2

(
‖Φ‖cb + ‖Φ‖−1cb

)
.

We complete this introduction with a bit more background on the
numerical radius. Ando [1] provided some useful characterizations of
w(T ). One we require is Ando’s numerical radius formula:

w(T ) = min
{

1
2
‖A+B‖ :

[
A T
T ∗ B

]
≥ 0
}
.

Numerical range is intimately connected to dilation theory. The first
such result was due to Berger [3], who showed that if w(T ) ≤ 1, then
there is a unitary operator U on a Hilbert space K containing H such
that

T n = 2PHU
n|H for n ≥ 1.

Easy examples show that the converse is not valid. Sz.Nagy and Foiaş
[13] introduced the notion of a ρ-contraction (for ρ ≥ 1) as an operator
T for which there is a ρ-dilation, meaning a unitary operator U on
K ⊃ H such that

T n = ρPHU
n|H for n ≥ 1.
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Okubo and Ando [10] show that if T is a ρ-contraction, then there is
an invertible S so that ‖STS−1‖ ≤ 1 and ‖S‖ ‖S−1‖ ≤ ρ. By the
remarks above, this shows that D is a complete ρ-spectral set for T . In
particular, if w(T ) ≤ 1, then T is a 2-contraction by Berger’s dilation,
and thus D is a complete 2-spectral set for T .

In view of the work of Crouzeix [6], there has been a lot of renewed
interest in numerical range. See the monograph [8] and the recent
survey [2] for many relevant references.

2. The main theorem

We begin with a key observation which yields one direction of our
theorem.

Lemma 2.1. If ‖T‖ ≤ 1 and ‖S‖ ‖S−1‖ ≤ C, then

w(S−1TS) ≤ 1

2
(C + C−1).

Proof. Using polar decomposition, S = U |S|, we may replace T by
the unitarily equivalent U∗TU and suppose that S > 0. After scaling,
we may suppose that C−1/2I ≤ S ≤ C1/2I. Since ‖T‖ ≤ 1 we have
that[

0 0
0 0

]
≤
[
S−1 0

0 S

] [
I T
T ∗ I

] [
S−1 0

0 S

]
=

[
S−2 S−1TS

ST ∗S−1 S2

]
By Ando’s numerical radius formula, we obtain that

w(S−1TS) ≤ 1

2
‖S−2 + S2‖

≤ sup{1

2
(t+ t−1) : C−1 ≤ t ≤ C}

=
1

2
(C + C−1).

To establish the converse, we first need a simple computational lemma.

Lemma 2.2. Let B ∈ B(H) and let T =

[
αI B
0 αI

]
. Then

‖T‖ =
‖B‖+

√
‖B‖2 + 4|α|2
2

and w(T ) = |α|+ 1
2
‖B‖.

In particular, ‖T‖ = 1 if and only if |α|2 + ‖B‖ = 1.

Proof. It is straightforward to show that ‖T‖ =
∥∥∥[ ‖B‖ |α||α| 0

]∥∥∥, and com-

putation of the eigenvalues of this self-adjoint matrix yields the desired
formula. Routine manipulation now shows that ‖T‖ = 1 if and only
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if |α|2 + ‖B‖ = 1. It is also easy to see that W ([ 0 B0 0 ]) = W
([

0 ‖B‖
0 0

])
is a disc centred at 0 of radius ‖B‖/2. Hence W (T ) = α + ‖B‖

2
D, and

therefore w(T ) = |α|+ 1
2
‖B‖.

Theorem 2.3. Let A be a unital operator algebra, and let Φ be a unital
completely bounded homomorphism. Then

‖Φ‖wcb =
1

2

(
‖Φ‖cb + ‖Φ‖−1cb

)
.

Proof. Let C = ‖Φ‖cb. By Paulsen’s similarity theorem [11], there
is an invertible operator S so that AdS ◦ Φ is completely contractive
and ‖S‖ ‖S−1‖ = C. (Here AdS(T ) = STS−1.) Let A ∈ Mn(A)
with ‖A‖ = 1. Then T := (AdS ◦ Φ)(n)(A) satisfies ‖T‖ ≤ 1 and
Φ(A) = AdS−1(n)(T ). Hence by Lemma 2.1, w(Φ(n)(A)) ≤ 1

2
(C+C−1).

Thus

‖Φ‖wcb ≤
1

2
(C +

1

C
).

Conversely, suppose that A ∈ Mn(A) with ‖A‖ = 1 such that
‖Φ(n)(A)‖ > C − ε for some ε > 0. Define B ∈M2n(A) by

B =

[
C−1In (1− C−2)A

0 C−1In

]
.

Then by Lemma 2.2, ‖B‖ = 1. Moreover by the second part of that
lemma,

‖Φ‖wcb ≥ w(Φ(2n)(B))

= w
([

C−1In (1− C−2)Φ(n)(A)
0 C−1In

])
> C−1 +

1

2
(1− C−2)(C − ε)

>
1

2
(C +

1

C
)− ε

2
.

As ε > 0 was arbitrary, we obtain

‖Φ‖wcb =
1

2
(C +

1

C
) =

1

2

(
‖Φ‖cb + ‖Φ‖−1cb

)
.

Remark 2.4. Inverting the above function shows that for a unital
homomorphism Φ,

‖Φ‖cb = ‖Φ‖wcb +
√
‖Φ‖2wcb − 1.
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3. Consequences

As an immediate application, we obtain the second theorem stated
in the introduction. Note that convexity of K is not required.

Theorem 3.1. Let C ≥ 1 and set C ′ = 1
2
(C+C−1). A compact subset

K ⊂ C is a complete C-spectral set for T ∈ B(H) if and only if it is a
complete C ′-numerical radius set for T .

Proof. If K is a complete C-spectral set for T , then the map ΦT (f) =
f(T ) for f ∈ R(K) has ‖ΦT‖cb ≤ C. Hence by Theorem 2.3,

‖ΦT‖wcb =
1

2

(
‖ΦT‖cb + ‖ΦT‖−1cb

)
≤ 1

2
(C + C−1) = C ′.

Thus K is a complete C ′-numerical radius set for T .
Conversely, since ‖A‖ ≤ 2w(A), if K is a complete C ′-spectral set

for T , it follows that Φ is completely bounded. Then

1

2
(C + C−1) = C ′ ≥ ‖Φ‖wcb =

1

2

(
‖Φ‖cb + ‖Φ‖−1cb

)
implies that ‖ΦT‖cb ≤ C. So K is a complete C-spectral set for T .

We apply this to the family of Cρ-contractions. For these operators,
the set K is the unit disc.

Corollary 3.2. Suppose that T is a Cρ-contraction for ρ ≥ 1. If
F : D→Mn is a matrix polynomial (or has coefficients in A(D)), then

w(F (T )) ≤ 1

2
(ρ+ ρ−1)‖F‖∞.

Proof. By [10, Theorem 2], there is an invertible operator S such that
‖S−1TS‖ ≤ 1 and ‖S‖ ‖S−1‖ ≤ ρ. After scaling, we may suppose that
‖F‖∞ = 1. Then by the generalized von Neumann inequality, we have

1 ≥ ‖F (S−1TS)‖ = ‖(S−1 ⊗ In)F (T )(S ⊗ In)‖.

Now an application of Lemma 2.1 yields the conclusion.

The case ρ = 2 includes all operators T with w(T ) ≤ 1. This provides
a matrix polynomial version of Drury’s scalar inequality [7].

Corollary 3.3. Suppose that T has w(T ) ≤ 1. If F : D → Mn is a
matrix polynomial (or has coefficients in A(D)), then

w(F (C)) ≤ 5

4
‖F‖∞.
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Remark 3.4. Note that the class of operators which have the disc an
a complete 2-spectral set contains many operators which do not have
numerical radius 1. For example, let

T =

[
1/2 3/2
0 1/2

]
and S =

[
2 0
0 1

]
.

Then ‖S−1TS‖ = 1 and ‖S‖ ‖S−1‖ = 2 but w(T ) = 5/4.

As we mentioned in the introduction, Crouzeix showed [6] that the
numerical range W (T ) is a complete C-spectral set for T for a universal
constant C < 11.08. Crouzeix conjectures [5] that the optimal constant
is 2, which is the case for a disc by [10]. The following are immediate
from Theorem 3.1.

Corollary 3.5. Let T be a bounded operator on H. Suppose that W (T )
has a complete Crouzeix constant of C, and let C ′ = 1

2
(C + C−1).

If F : W (T ) → Mn is a matrix polynomial (or has coefficients in
A(W (T ))), then

w(F (T )) ≤ C ′‖F‖W (T ).

In particular, the constant C ′ = 5.6 is valid.

Corollary 3.6. Let T be a bounded operator on H. Then W (T ) is a
complete 2-spectral set for T if and only if

w(F (T )) ≤ 5

4
‖F‖W (T )

for every matrix polynomial F .

Thus Crouzeix’s conjecture is true for the norm case if and only if
the above 5/4’s inequality holds for every operator T . Also, we know
that 2 and 5

4
are the best possible constants in each case.
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