- 1. Suppose that \mathfrak{A} is a unital subalgebra of \mathcal{M}_n such that $\operatorname{Lat} \mathfrak{A} = \{0, \mathbb{C}^n\}$ is trivial. (Such an algebra is called *transitive*.) Show that $\mathfrak{A} = \mathcal{M}_n$ as follows:
 - (a) Show that if T commutes with \mathfrak{A} , then T is scalar. **Hint:** consider ker $(T \lambda I)$.
 - (b) Show that if x and y are linearly independent vectors, then there is an $A \in \mathfrak{A}$ such that Ax = 0 and $Ay \neq 0$. **Hint:** otherwise T(Ax) = Ay defines a well defined operator in \mathfrak{A}' .
 - (c) Construct all of the matrix units of \mathcal{M}_n in \mathfrak{A} .
- 2. Show that every unital subalgebra of \mathcal{M}_2 is similar to one of five possible algebras, and determine which are reflexive.
- 3. Let P be the $n \times n$ projection matrix with $p_{ij} = 1/n$ for all $1 \leq i, j \leq n$. Compute $\operatorname{dist}(P, \mathcal{T}_n)$, and find an explicit upper triangular matrix T so that $||P T|| = \operatorname{dist}(P, \mathcal{T}_n)$.
- 4. (a) Let \mathcal{N} be a nest of order type $\omega = \mathbb{N} \cup \{\infty\}$. Given $K \in \mathcal{K}(\mathcal{H})$, find $T \in \mathcal{T}(\mathcal{N}) \cap \mathcal{K}$ such that $||K T|| = \text{dist}(K, \mathcal{T}(\mathcal{N}))$. **Hint:** find $N_0 < \mathcal{H}$ in \mathcal{N} so that $||P_{N_0}^{\perp}K|| \leq \frac{1}{2} \text{dist}(K, \mathcal{T}(\mathcal{N}))$, and use this to reduce the problem to a finite nest.
 - (b) Let \mathcal{N} be the Volterra nest on $L^2(0,1)$, and let $C = 11^*$. Compute dist $(C, \mathcal{T}(\mathcal{N}))$ and show that there is no closest compact operator. **Hint:** suppose that $T \in \mathcal{T}(\mathcal{N})$ satisfies $||C-T|| = \text{dist}(C, \mathcal{T}(\mathcal{N}))$. Let $x = \sqrt{2}\chi_{(0,1/2)}$. Show that $P_{N_t}^{\perp}TP_{N_t}^{\perp}x = \frac{1}{2}P_{N_t}^{\perp}x$ for all $t \in [0, 1/2)$.
 - (c) Show that one closest element of $\mathcal{T}(\mathcal{N})$ to C is V+D where V is the Volterra operator $Vf(t) = \int_t^1 f(x) dx$ and $D = M_h$ where $h(x) = \min\{x, 1-x\}$. **Hint:** $C = V + V^*$. Chop the nest into 2^n equal pieces. Use Q3 to find a block upper triangular operator which achieves the distance to the block upper triangulars. Take a limit.
- 5. Let $\mathcal{M} = \{M_n\}_{n \ge 1} \cup \{\mathcal{H}\}$ and $\mathcal{N} = \{N_n\}_{n \ge 1} \cup \{\mathcal{H}\}$ be two order ω nests such that $\dim M_n = \dim N_n = n$ for $n \ge 1$ and $\lim_{n \to \infty} \|P_{M_n} P_{N_n}\| = 0$.
 - (a) Show explicitly how to construct a sequence of unitaries U_k such that $U_k I$ are finite rank so that $\lim_{k\to\infty} \sup_{n\geq 1} ||U_k P_{M_n} P_{N_n} U_k|| = 0.$
 - (b) Hence show that there is an invertible operator S with S I compact such that $SM_n = N_n$ for all $n \ge 1$.
 - (c) Also show that there is a unitary operator U such that $UM_n = N_n$ for all $n \ge 1$.
 - (d) **Bonus** Are there examples where you cannot take U I in the compacts?
- 6. Let \mathcal{N} be the Volterra nest. Let $\mathcal{D}(\mathcal{N}) = \mathcal{T}(\mathcal{N}) \cap \mathcal{T}(\mathcal{N})^*$.
 - (a) Show that there are operators A and B in $\mathcal{T}(\mathcal{N})$ such that $(AB BA)^2 = I$. **Hint:** find A and B in $\mathcal{T}(\mathcal{N} \oplus \mathcal{N})$ first, where $\mathcal{N} \oplus \mathcal{N} = \{N_t \oplus N_t : 0 \le t \le 1\}$.
 - (b) Show that there is no ideal \mathcal{I} of $\mathcal{T}(\mathcal{N})$ such that $\mathcal{T}(\mathcal{N}) = \mathcal{D}(\mathcal{N}) + \mathcal{I}$.