1. (a) If K is a p-set for A and $L \subset K$ is a p-set for $\left.A\right|_{K}$, prove L is a p-set for A.
(b) Show that every p-set with at least 2 points contains a proper subset which is a p-set. Hence show that every p-set contains a p-point.
2. Let A be a function algebra, and let Γ be its Shilov boundary.
(a) Let $\varphi \in \mathcal{M}_{A}$. Prove that there is a minimal closed subset E of Γ supporting a representing measure for φ.
(b) Suppose that $\varphi \in \mathcal{M}_{A} \backslash \Gamma$, and let E be a minimal closed support set found in (a). Prove that E has no isolated points.
Hint: if $x \in E$ is isolated, pick $f \in A$ with $f(x)=0$ and $\varphi(f)=1$.
3. Let A_{α} be the algebra from Assignment 1. Suppose that B is a function algebra so that $A_{\alpha} \subset B \subset \mathrm{C}\left(\mathbb{T}^{2}\right)$. Show that either $B=A_{\alpha}$ or $B=\mathrm{C}\left(\mathbb{T}^{2}\right)$.

Hint: Either z is invertible in B or there is a $\varphi \in \mathcal{M}_{B}$ so that $\varphi(z)=0$. Look up a proof of Wermer's maximality theorem, and adapt the argument. See Gamelin, p.38, or Hoffman, Banach spaces of analytic functions, p.93.
4. (a) Let $f \in A$ and $\varphi \in \mathcal{M}_{A}$. Show that if $|\varphi(f)|=\|f\|$, then f is constant on the Gleason part $P(\varphi)$.
(b) Let K be a compact subset of a Gleason part P. Prove that if $\psi \in \mathcal{M}_{A}$ satisfies $|\psi(f)| \leq\|f\|_{K}$ for all $f \in A$, then $\psi \in P$.
5. Let $\varphi \in \mathcal{M}_{A}$. Suppose that there is a function $g \in \operatorname{ker} \varphi$ which has an nth root $g_{n} \in A$ for all $n \geq 1$. Prove that \hat{g} vanishes on the Gleason part of φ.
6. Let $T: A \rightarrow A$ be a surjective isometry.
(a) Show that there is a bijection σ of $\operatorname{Ch}(A)$ onto itself and a map $\lambda: \operatorname{Ch}(A) \rightarrow \mathbb{T}$ so that $T^{*} \delta_{x}=\lambda(x) \delta_{\sigma(x)}$ for all $x \in \operatorname{Ch}(A)$.
(b) Show that $\lambda=T(1)$ restricted to $\mathrm{Ch}(A)$.
(c) Show that $\lambda(x) T(f g)(x)=T(f)(x) T(g)(x)$ for $x \in \operatorname{Ch}(A)$. Deduce that λ is invertible in A. Hint: choose f, g to make the right side nice.
(d) Show that $|\lambda(x)|=1$ on all of \mathcal{M}_{A}, and that $T(f)=\lambda \theta(f)$, where θ is an isometric automorphism of A.

