- 1. Let A be a function algebra. Find all extreme points of the unit ball of A^* .
- 2. Prove that if X is metrizable, and A is a function algebra on X, then Ch(A) is the unique minimal boundary set for A.
- 3. Let Λ be an uncountable set, let $X = \prod_{\lambda \in \Lambda} [0, 1]$, and let A = C(X). A point in X may be written $x = (x_{\lambda})_{\lambda \in \Lambda}$.
 - (a) Show that every $f \in A$ depends on only countably many coordinates.
 - (b) Show that every point of X is a p-point.
 - (c) Show that $E = \{x \in X : x_{\lambda} = 0 \text{ except countably often}\}$ is a boundary for A.
 - (d) Find another boundary which is disjoint from E, showing that there is no minimal boundary.
- 4. Let $0 < \alpha < 1$ be an irrational number. Consider \mathbb{T}^2 as a subset of \mathbb{C}^2 . Let A_{α} be the subalgebra of $C(\mathbb{T}^2)$ spanned by $\{z^m w^n : m, n \in \mathbb{Z} \text{ and } m + n\alpha \geq 0\}$.
 - (a) Show that A is a Dirichlet algebra, i.e., $\{f + \overline{g} : f, g \in A\}$ is dense in $\mathbb{C}(\mathbb{T}^2)$.
 - (b) Let $\varphi \in \mathcal{M}_{A_{\alpha}}$ and let $r = |\varphi(z)|$. Prove that $|\varphi(w)| = r^{\alpha}$.
 - (c) Prove that if f(z) is a bounded analytic function on the right half plane H_+ and continuous on $\overline{H_+}$, then $\sup_{z \in H_+} |f(z)| = \sup_{y \in \mathbb{R}} |f(iy)|$. **Hint:** Fix a branch L(z) of $\log(z+1)$ on H_+ . For $\varepsilon > 0$, let $g_{\varepsilon}(z) = f(z)e^{-\varepsilon L(z)}$. This is continuous at ∞ .
 - (d) If $0 < r \leq 1$ and $\theta, \eta \in [0, 2\pi)$, show that there is a $\varphi \in \mathcal{M}_{A_{\alpha}}$ such that $\varphi(z) = re^{i\theta}$ and $\varphi(w) = r^{\alpha}e^{i\eta}$. **Hint:** if $p(z, w) = \sum a_{m,n}z^{m}w^{n}$ is a finite sum of monomials in A_{α} , define an analytic function at $u = x + iy \in H_{+}$ by $f(u) = \sum a_{m,n}e^{i(m\theta+n\eta)}e^{-(m+n\alpha)u} = \sum a_{m,n}e^{-(m+n\alpha)x}e^{i(\theta-y)m}e^{i(\eta/\alpha-y)n\alpha}$. Note that $\varphi(p) = f(-\log r)$.
 - (e) Decribe $\mathcal{M}_{A_{\alpha}}$.
- 5. Let μ be a finite measure on \mathbb{C} with compact support K. Define $\hat{\mu}(w) = \int_{K} \frac{d\mu(z)}{z-w}$.
 - (a) Show that $\hat{\mu}$ is analytic on $\mathbb{C} \setminus K$ and $\lim_{|w| \to \infty} \hat{\mu}(w) = 0$.
 - (b) Show that $\hat{\mu}(w)$ is defined and finite m_2 a.e., where m_2 is planar Lebesgue measure. **Hint:** estimate $\int_K |\hat{\mu}(w)| dm_2(w)$.
 - (c) Show that if $X \subset \mathbb{C}$ is a compact set and $\mu \in M(X)$, then $\mu \perp R(X)$ if and only if $\hat{\mu} = 0$ on $\mathbb{C} \setminus X$.
- 6. Let $X \subset \mathbb{C}$ be a compact set. Show that R(X) is doubly generated as a function algebra. **Hint:** Fix a sequence $a_n, n \geq 1$, consisting of one point in each bounded component of $\mathbb{C} \setminus X$. Choose $\varepsilon_n > 0$ decreasing sufficiently rapidly to 0, and define $f_1(z) = z$ and $f_2(z) = \sum_{n \geq 1} \frac{\varepsilon_n}{z a_n}$. Let B be the function algebra generated by f_1 and f_2 . If $z a_1$ is not invertible in B, take $\varphi \in \mathcal{M}_B$ with $\varphi(z) = a_1$; and estimate

 $|\varphi((z-a_1)f_2)|$. If you have defined (ε_n) properly, you will get a contradiction.