1. Let A be a function algebra. Find all extreme points of the unit ball of A^{*}.
2. Prove that if X is metrizable, and A is a function algebra on X, then $\operatorname{Ch}(A)$ is the unique minimal boundary set for A.
3. Let Λ be an uncountable set, let $X=\prod_{\lambda \in \Lambda}[0,1]$, and let $A=\mathrm{C}(X)$. A point in X may be written $x=\left(x_{\lambda}\right)_{\lambda \in \Lambda}$.
(a) Show that every $f \in A$ depends on only countably many coordinates.
(b) Show that every point of X is a p-point.
(c) Show that $E=\left\{x \in X: x_{\lambda}=0\right.$ except countably often $\}$ is a boundary for A.
(d) Find another boundary which is disjoint from E, showing that there is no minimal boundary.
4. Let $0<\alpha<1$ be an irrational number. Consider \mathbb{T}^{2} as a subset of \mathbb{C}^{2}. Let A_{α} be the subalgebra of $\mathrm{C}\left(\mathbb{T}^{2}\right)$ spanned by $\left\{z^{m} w^{n}: m, n \in \mathbb{Z}\right.$ and $\left.m+n \alpha \geq 0\right\}$.
(a) Show that A is a Dirichlet algebra, i.e., $\{f+\bar{g}: f, g \in A\}$ is dense in $\mathrm{C}\left(\mathbb{T}^{2}\right)$.
(b) Let $\varphi \in \mathcal{M}_{A_{\alpha}}$ and let $r=|\varphi(z)|$. Prove that $|\varphi(w)|=r^{\alpha}$.
(c) Prove that if $f(z)$ is a bounded analytic function on the right half plane H_{+} and continuous on $\overline{H_{+}}$, then $\sup _{z \in H_{+}}|f(z)|=\sup _{y \in \mathbb{R}}|f(i y)|$. Hint: Fix a branch $L(z)$ of $\log (z+1)$ on H_{+}. For $\varepsilon>0$, let $g_{\varepsilon}(z)=f(z) e^{-\varepsilon L(z)}$. This is continuous at ∞.
(d) If $0<r \leq 1$ and $\theta, \eta \in[0,2 \pi)$, show that there is a $\varphi \in \mathcal{M}_{A_{\alpha}}$ such that $\varphi(z)=r e^{\overline{i \theta}}$ and $\varphi(w)=r^{\alpha} e^{i \eta}$. Hint: if $p(z, w)=\sum a_{m, n} z^{m} w^{n}$ is a finite sum of monomials in A_{α}, define an analytic function at $u=x+i y \in H_{+}$by $f(u)=\sum a_{m, n} e^{i(m \theta+n \eta)} e^{-(m+n \alpha) u}=\sum a_{m, n} e^{-(m+n \alpha) x} e^{i(\theta-y) m} e^{i(\eta / \alpha-y) n \alpha}$. Note that $\varphi(p)=f(-\log r)$.
(e) Decribe $\mathcal{M}_{A_{\alpha}}$.
5. Let μ be a finite measure on \mathbb{C} with compact support K. Define $\hat{\mu}(w)=\int_{K} \frac{d \mu(z)}{z-w}$.
(a) Show that $\hat{\mu}$ is analytic on $\mathbb{C} \backslash K$ and $\lim _{|w| \rightarrow \infty} \hat{\mu}(w)=0$.
(b) Show that $\hat{\mu}(w)$ is defined and finite m_{2} a.e., where m_{2} is planar Lebesgue measure. Hint: estimate $\int_{K}|\hat{\mu}(w)| d m_{2}(w)$.
(c) Show that if $X \subset \mathbb{C}$ is a compact set and $\mu \in M(X)$, then $\mu \perp R(X)$ if and only if $\hat{\mu}=0$ on $\mathbb{C} \backslash X$.
6. Let $X \subset \mathbb{C}$ be a compact set. Show that $R(X)$ is doubly generated as a function algebra. Hint: Fix a sequence $a_{n}, n \geq 1$, consisting of one point in each bounded component of $\mathbb{C} \backslash X$. Choose $\varepsilon_{n}>0$ decreasing sufficiently rapidly to 0 , and define $f_{1}(z)=z$ and $f_{2}(z)=\sum_{n \geq 1} \frac{\varepsilon_{n}}{z-a_{n}}$. Let B be the function algebra generated by f_{1} and f_{2}. If $z-a_{1}$ is not invertible in B, take $\varphi \in \mathcal{M}_{B}$ with $\varphi(z)=a_{1}$; and estimate $\left|\varphi\left(\left(z-a_{1}\right) f_{2}\right)\right|$. If you have defined $\left(\varepsilon_{n}\right)$ properly, you will get a contradiction.
