1. (a) Let's write elements of l_{p} as $\mathbf{a}=\left(a_{i}\right)_{i \geq 1}$. Let $\mathbf{e}_{i}, i \geq 1$, denote the standard basis for l^{p}. Observe that evaluation $\varepsilon_{i}(\mathbf{a})=a_{i}$ is multiplicative for each $i \geq 1$. Suppose that φ is a multiplicative linear functional. Since $\operatorname{span}\left\{\mathbf{e}_{i}: i \geq 1\right\}$ is dense in l^{p}, there is some j so that $\varphi\left(\mathbf{e}_{j}\right)=\lambda \neq 0$. Then if $i \neq j, 0=\varphi\left(\mathbf{e}_{i} \mathbf{e}_{j}\right)=\varphi\left(\mathbf{e}_{i}\right) \lambda$; whence $\varphi\left(\mathbf{e}_{i}\right)=0$. While $\lambda^{2}=\varphi\left(\mathbf{e}_{j}^{2}\right)=$ $\varphi\left(\mathbf{e}_{j}\right)=\lambda$ shows that $\varphi\left(\mathbf{e}_{j}\right)=1$. Thus φ agrees with ε_{j} on $\operatorname{span}\left\{\mathbf{e}_{i}: i \geq 1\right\}$, and hence on all of l_{p}. So $\mathcal{M}_{l^{p}}=\left\{\varepsilon_{i}: i \geq 1\right\}$.
(b) The set $J=\operatorname{span}\left(l_{p}\right)^{2}$ is an ideal. It is proper because it lies in the subspace $l_{p / 2}$; that is, if $\mathbf{a}=\left(a_{i}\right)$ and $\mathbf{b}=\left(b_{i}\right)$ are in l_{p}, then by Cauchy-Schwartz,

$$
\sum\left|a_{i} b_{i}\right|^{p / 2} \leq\left(\sum\left|a_{i}\right|^{p}\right)^{1 / 2}\left(\sum\left|b_{i}\right|^{p}\right)^{1 / 2}<\infty .
$$

This extends to the span by standard methods even when $p<2$. The algebra l_{p} / J has the trivial product, and thus every subspace is an ideal. Consequently any subspace of l_{p} containing J is an ideal. Take a subspace M of codimension 1 containing J. This is then a maximal ideal. However it is not closed because J is dense, and is not modular because l_{p} / M has the trivial multiplication and so it isn't unital.
2. If $f \in \mathcal{I}_{0}(E)$, let U be open containing E such that $\left.f\right|_{U}=0$. For each $x \in X \backslash U$, there is a function $g_{x} \in \mathcal{I}$ such that $g_{x}(x) \neq 0$. So $V_{x}=g_{x}^{-1}(\mathbb{C} \backslash\{0\})$ is an open cover of $X \backslash U$. Let $V_{x_{1}}, \ldots, V_{x_{n}}$ be a finite open cover. Then $g=\sum_{i=1}^{n} g_{x_{i}} \overline{g_{x_{i}}}$ is an element of \mathcal{I} which is strictly positive on $X \backslash U$. Therefore $h=\left\{\begin{array}{ll}f(x) / g(x) & \text { for } x \in X \backslash U \text { is continuous on } X \text {. Hence } f=h g \\ 0 & \text { for } x \in U\end{array}\right.$ is belongs to \mathcal{I}. The second inclusion is trivial.
3. (a) If φ is a multiplicative linear functional on \mathfrak{B}, then $\varphi \theta$ is multiplicative on \mathfrak{A}. Thus if $a \in \operatorname{rad} \mathfrak{A}$, then $0=\varphi \theta(a)$ for all φ. So $\sigma(\theta(a))=\{\varphi(\theta(a)\}=\{0\}$. Since \mathfrak{B} is semisimple, $\theta(a)=0$. Since θ is injective, $a=0$. So \mathfrak{A} is also semisimple.
(b) Point evaluation ε_{x} for $x \in[0,1]$ are clearly multiplicative. These separate points, and so $\operatorname{rad} C^{1}[0,1]=\{0\}$; i.e., it is semisimple. The closed subspace \mathcal{J} is an ideal because if $f \in \mathcal{J}$ and $g \in C^{1}[0,1]$, $f g(0)=0$ and $(f g)^{\prime}(0)=f^{\prime}(0) g(0)+f(0) g^{\prime}(0)=0$. So $\mathfrak{B}=\mathfrak{A} / \mathcal{J}$ is a Banach algebra. Let φ be a multiplicative functional on \mathfrak{B}. Then φq is multiplicative on \mathfrak{A}, where q is the quotient map. This must coincide with some ε_{x} which vanishes on \mathcal{J}, and hence it must be ε_{0}. Thus there is a unique multiplicative functional. Therefore $\operatorname{rad} \mathfrak{B}=\operatorname{ker} \varphi$ is proper.

Remark: The map taking f to $\left[\begin{array}{cc}f(0) & f^{\prime}(0) \\ 0 & f(0)\end{array}\right]$ is a homomorphism with kernel \mathcal{J}. So \mathfrak{B} is isomorphic to the matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]$ and the radical has the form $\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]$.
4. (a) Consider the ideal generated by $\left\{a_{i}-\lambda_{i}: 1 \leq i \leq n\right\}$. If this is a proper ideal, then it is contained in a maximal ideal (by Zorn's Lemma), say $\operatorname{ker} \varphi$ for $\varphi \in \mathcal{M}(A)$. Thus $0=\varphi\left(a_{i}-\lambda_{i}\right)=$ $\varphi\left(a_{i}\right)-\lambda_{i}$; whence $\lambda \notin \sigma\left(a_{1}, \ldots, a_{n}\right)$. In this case, the ideal does not contain 1 , and so there are no b_{i} 's satisfying the identity.

On the other hand, if it is not a proper ideal, then it does contain 1 . So there are $b_{1}, \ldots, b_{n} \in A$ such that $\sum_{i=1}^{n}\left(a_{i}-\lambda_{i}\right) b_{i}=1$. In this case, there is no maximal ideal containing all $\left\{a_{i}-\lambda_{i}\right.$: $1 \leq i \leq n\}$; so $\lambda \notin \sigma\left(a_{1}, \ldots, a_{n}\right)$.
(b) The map Φ is continuous by definition of the weak-* topology, and the range is compact. Because a_{1}, \ldots, a_{n} generate A, each $\varphi \in \mathcal{M}(A)$ is determined uniquely by its values on a_{1}, \ldots, a_{n}. Therefore Φ is one-to-one. A continuous map of one compact Hausdorff space onto another is a homeomorphism.
(c) If $\lambda \notin \sigma\left(a_{1}, \ldots, a_{n}\right)$, use part (a) to find $b_{1}, \ldots, b_{n} \in A$ so that $\sum_{i=1}^{n}\left(a_{i}-\lambda_{i}\right) b_{i}=1$. As a_{1}, \ldots, a_{n} generate A, there are polynomials $p_{i} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ so that $\left\|b_{i}-p_{i}\left(a_{1}, \ldots, a_{n}\right)\right\|$ are sufficiently small so that

$$
\left\|1-\sum_{i=1}^{n}\left(a_{i}-\lambda_{i}\right) p_{i}\left(a_{1}, \ldots, a_{n}\right)\right\|<\frac{1}{2}
$$

Let $p\left(z_{1}, \ldots, z_{n}\right)=1-\sum_{i=1}^{n}\left(z_{i}-\lambda_{i}\right) p_{i}\left(z_{1}, \ldots, z_{n}\right)$. Then for any $z \in \sigma\left(a_{1}, \ldots, a_{n}\right)$, we have $|p(z)|=\left|\hat{z}\left(p\left(a_{1}, \ldots, a_{n}\right)\right)\right| \leq\left\|p\left(a_{1}, \ldots, a_{n}\right)\right\|<1 / 2$ while $p(\lambda)=1$. So λ is not in the polynomial convex hull of $\sigma\left(a_{1}, \ldots, a_{n}\right)$. Hence the spectrum is polynomially convex.

Alternatively: suppose that $\lambda \in \mathbb{C}^{n}$ is in the polynomially convex hull of $\sigma(a)$. Then

$$
|p(\lambda)| \leq \sup _{z \in \sigma(a)}|p(z)|=\sup _{\varphi \in \mathcal{M}(A)}|\varphi(p(a))| \leq\|p(a)\| \quad \text { for all } \quad p \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]
$$

Thus evaluation at λ is a continuous multiplicative functional on the polynomials in a_{1}, \ldots, a_{n}. So it extends to a character ψ on A by continuity. Thus $\lambda=\psi\left(a_{1}, \ldots, a_{n}\right)$ belongs to $\sigma(a)$.
5. (a) Let π be an irreducible representation of $\mathfrak{A} / \operatorname{rad} \mathfrak{A}$ and let $q: \mathfrak{A} \rightarrow \mathfrak{A} / \operatorname{rad} \mathfrak{A}$ be the quotient map. Then πq is an irreducible representation of \mathfrak{A}. Conversely every irreducible representation σ of \mathfrak{A} has kernel containing $\operatorname{rad} \mathfrak{A}$. Thus there is a representation π of $\mathfrak{A} / \operatorname{rad} \mathfrak{A}$ given by $\pi(q(a))=\sigma(a)$. This is irreducible and $\sigma=\pi q$. Thus

$$
\operatorname{rad}(\mathfrak{A} / \operatorname{rad} \mathfrak{A})=\bigcap \operatorname{ker} \pi=q(\bigcap \operatorname{ker} \pi q)=q(\operatorname{rad} \mathfrak{A})=\{0\}
$$

So $\mathfrak{A} / \operatorname{rad}(\mathfrak{A})$ is semisimple.
(b) Let (X, π) be an irreducible \mathfrak{A} module. Then $\mathfrak{J} X$ is a submodule. So either it is $\{0\}$ or X. In the second case, X is irreducible for \mathfrak{J} as well. To see this, let $x_{0} \neq 0$ and let $x \in X$. There is some $b \in \mathfrak{J}$ and some $x_{1} \in X$ so that $b x_{1}=x$. Choose $a \in \mathfrak{A}$ so that $a x_{0}=x_{1}$. Then $b a x_{0}=x$. Since $b a \in \mathfrak{J}$, we see that \mathfrak{J} acts transitively and thus X is irreducible as a \mathfrak{J}-module. Conversely, if X is an irreducible \mathfrak{J}-module, make it into an \mathfrak{A} module as follows: fix $x_{0} \neq 0$ and identify X with $\mathfrak{J} / J_{x_{0}}$ where here $J_{x_{0}}=\left\{a \in \mathfrak{J}: a x_{0}=0\right\}$. We can make X into an \mathfrak{A} module by defining $a \dot{j}:=(a j)$. This is clearly still irreducible.

Now if $a \in \operatorname{rad} \mathfrak{J}$ and π is an irreducible representation of \mathfrak{A}, then it restricts to zero or an irreducible representation of \mathfrak{J} and thus $\pi(a)=0$. So $\operatorname{rad} \mathfrak{J} \subset \mathfrak{J} \cap \operatorname{rad} \mathfrak{A}$. Conversely, if $a \in \mathfrak{J} \cap \operatorname{rad} \mathfrak{A}$ and π is an irreducible representation of \mathfrak{J}, then by the previous paragraph, it extends to an irreducible representation of \mathfrak{A}. Thus $\pi(a)=0$ and hence $a \in \operatorname{rad} \mathfrak{J}$.

Remark: One can work instead with maximal modular left ideals. If I is a maximal modular left ideal of \mathfrak{A}, then $I \cap \mathfrak{J}$ is either \mathfrak{J} or maximal modular. Conversely if J is a maximal modular left ideal of \mathfrak{J} with right modular unit u, then $I=\{a \in \mathfrak{A}: a u \in J\}$ is a maximal modular left ideal of \mathfrak{A}. The details are left to you.
6. (a) If (X, π) is an irreducible representation of \mathfrak{B}, then \mathfrak{B} acts transitively on X. Since θ is surjective, $\pi \theta(\mathfrak{A})=\pi(\mathfrak{B})$ acts transitively on X, and hence $\pi \theta$ is irreducible. Thus rad $\mathfrak{A} \subset$ $\bigcap_{\pi \in \operatorname{irred}(\mathfrak{B})} \operatorname{ker} \pi \theta$. Thus $\theta(\operatorname{rad} \mathfrak{A}) \subset \bigcap_{\pi \in \operatorname{irred}(\mathfrak{B})} \operatorname{ker} \pi=\operatorname{rad} \mathfrak{B}$.
(b) Since \mathfrak{B} is semisimple, $\bigcap_{\pi \in \operatorname{irred}(\mathfrak{B})} \operatorname{ker} \pi=\{0\}$. Each $\pi \theta$ is irreducible, and thus its kernel is primitive and thus closed. So we have $\operatorname{ker} \theta=\bigcap_{\pi \in \operatorname{irred}(\mathfrak{B})} \operatorname{ker} \pi \theta$ is closed.

