Pure Math 810

Comments on Assignment 1

- 1. If $\overline{b_r(z_0)} \subset \Omega$ and $\varphi \in X^*$, $\{\varphi(\frac{1}{h}(f(z_0+h)-f(z_0))) : |h| \leq r\}$ is bounded because $\varphi \circ f$ is analytic. So $\{\frac{1}{h}(f(z_0+h)-f(z_0)) : |h| \leq r\}$ is bounded by the Uniform Boundedness Principle (Banach-Steinhaus Theorem). In particular, f is continuous at z_0 for each $z_0 \in \Omega$. Define $x_n = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it})(re^{it})^{-n} dt$. Complex analysis shows that $\varphi \circ f(z_0 + z) = \sum_{n\geq 0} \varphi(x_n) z^n$ for all $|z| \leq r$. Thus the Uniform Boundedness Principle implies that $\sup_{n\geq 0} ||x_n|| r^n < \infty$, so that the series converges in X for |z| < r; and the Hahn-Banach Theorem implies that $f(z_0+z) = \sum_{n\geq 0} x_n z^n$. Hence f is strongly analytic. Some people failed to observe that the series actually converges on a disc.
- 2. Let f be analytic on $U \supset \sigma(a)$ and g analytic on $V \supset f(\sigma(a)) = \sigma(f(a))$. By the spectral mapping theorem, $\sigma(f(a)) = f(\sigma(a))$, so g(f(a)) is defined. Use $U_0 = U \cap f^{-1}(V)$. Choose a contour C_1 is $U_0 \setminus \sigma(a)$ so that $\operatorname{ind}_{C_1}(z) = 1$ for $z \in \sigma(a)$ and equals 0 on U_0^c . Let C_2 be a contour in V such that $\operatorname{ind}_{C_2}(z) = 1$ for $z \in f(\sigma(a)) \cup f(C_1)$ and equals 0 on V^c . Then using interchange of variables and Cauchy's Theorem,

$$g(f(a)) = \frac{1}{2\pi i} \int_{C_2} g(z)(z - f(a))^{-1} dz$$

= $\frac{1}{2\pi i} \int_{C_2} g(z) \frac{1}{2\pi i} \int_{C_1} \frac{R(a, w)}{z - f(w)} dw dz$
= $\frac{1}{2\pi i} \int_{C_1} R(a, w) \frac{1}{2\pi i} \int_{C_2} \frac{g(z)}{z - f(w)} dz dw$
= $\frac{1}{2\pi i} \int_{C_1} R(a, w) g(f(w)) dw = g(f(a)).$

3. (a) This is a routine calculation, but you must establish absolute convergence so that rearrangement of the sums is valid.

(b) A standard argument from complex analysis shows that there is a branch f of $\log(z)$ which is analytic in a neighbourhood of $\sigma(a)$. Let b = f(a) and use Q2 to show that $e^b = (\exp \circ \log)(a) = \operatorname{id}(a) = a$.

4. (a) A^{2^n} shifts to the right 2^n places, and its weights are the product of 2^n consecutive weights of A. All but one term is the same for each weight except for the multiple of 2^n , which is often 2^{-n} but can be smaller. The norm of A^{2^n} is the largest, the product of the first 2^n weights. This is a power of 2^{-1} where there are 2^{n-1} even terms, \ldots , 2^{n-k} multiples of 2^k , up to k = n. Thus the logarithm base 2 of the product is $-2^{n-1} - 2^{n-2} - \cdots - 2^1 - 2^0 = 1 - 2^n$. Divide by 2^n and find the limit is -1. Therefore $\operatorname{spr}(A) = \lim_{n \to \infty} ||A^{2^n}||^{1/2^n} = 2^{-1}$.

(b) Let $U = \text{diag}(\lambda^n)_{n \ge 0}$. Compute UAU^* . The spectrum is invariant under rotation about 0.

(c) Every 2^{k+1} st weight of A_k is zero, so $A_k^{2^{k+1}} = 0$ is a nilpotent operator. Therefore $\sigma(A_k) = \{0\}$. Also $||A - A_k|| = 2^{-k-1}$.

(d) If $\lambda - A$ is invertible, solve $e_0 = (\lambda - A) \sum c_n e_n$ to get $c_0 = \lambda^{-1}$ and $c_n = b_n \lambda^{-n-1}$ for $n \ge 1$. Since $\lim_{n\to\infty} c_n = 0$, this means that $|\lambda| \ge \lim_n b_n^{1/n} = \operatorname{spr}(A)$. Since $\sigma(A)$ has circular symmetry, this means that $\sigma(A)$ is the disc of radius 1/2.

(e) $A_k \to A$, but the spectral radius has limit 0; and thus is discontinuous. You can also say that the spectrum is discontinuous, say with respect to the Hausdorff metric between compact sets of \mathbb{C}

$$d_H(A, B) = \max \{ \sup_{a \in A} \inf_{b \in B} |a - b|, \sup_{b \in B} \inf_{a \in A} |a - b| \}.$$

5. (a) On $\mathbb{C} \setminus \sigma(a)_{\varepsilon}$, R(a, z) is analytic and tends to 0 as $|z| \to \infty$. In particular, it is continuous and vanishes at infinity; so it is bounded, say by M. If ||a - b|| < 1/M, then for $\lambda \in \mathbb{C} \setminus \sigma(a)_{\varepsilon}$, $||(a - \lambda) - (b - \lambda)|| < 1/M \le 1/||R(a, \lambda)||$. Therefore $b - \lambda$ is invertible and thus $\sigma(b) \subset \sigma(a)_{\varepsilon}$.

(b) If $e = e^2$ and $e \neq 0$, then $\operatorname{spr}(e) = \lim \|e\|^{1/n} = 1$; so $\|e\| \ge 1$. Likewise if $e \neq 1$, then $\|1 - e\| \ge 1$. Thus among idempotents, $\{0\}$ and $\{1\}$ are isolated points.

If σ_1 is a clopen subset of $\sigma(a)$, choose a contour C in $\rho(a)$ such that $\operatorname{ind}_C(z) = 1$ for $z \in \sigma_1$ and equals 0 on $\mathbb{C} \setminus (\sigma_1)_{\varepsilon}$. Let $M = \sup\{\|R(a,z)\| : z \in C\}$ and $\delta = 1/M$. If $\|b-a\| < \delta$, and $b_t = (1-t)a + tb$ for $0 \le t \le 1$, then $R(b_t, z)$ is defined for $z \in C$ and $0 \le t \le 1$. Let $e_t = \frac{1}{2\pi i} \int_C R(b_t, z) dz$ be the Riesz spectral projection of b_t for σ_1 . Since $b_0 = a$, we have $e_0 \ne 0$. Moreover $t \rightarrow e_t$ is easily verified to be continuous. So it is always non-zero. Therefore $\emptyset \ne \sigma(b|_{\operatorname{Ran} e_1}) \subset \operatorname{int} C \subset \sigma(a)_{\varepsilon}$; whence it has non-empty spectrum in a neighbourhood of $\sigma(a)_{\varepsilon}$.

In the special case that $\sigma_1 = \sigma(a)$, we have $e_0 = 1$. As this is an isolated component of the idempotents, $e_t = 1$ for $0 \le t \le 1$. Whence $e_1 = 1$ and so $\sigma(b) \subset \operatorname{int} C \subset \sigma(a)_{\varepsilon}$. So this is an alternate proof of 5(a).

6. (a) Clearly \mathfrak{A}_0^{-1} is closed under products and inverses. So it is a subgroup. Also $ae^ba^{-1} = a\sum_{n>0}\frac{1}{n!}b^na^{-1} = \sum_{n>0}\frac{1}{n!}(aba^{-1})^n = e^{aba^{-1}}$. So this is a normal subgroup of \mathfrak{A}^{-1} .

(b) By 3(b), elements in $b_1(1)$ are exponentials. So if $b \in \mathfrak{A}_0^{-1}$ and $||b-c|| < ||b^{-1}||^{-1}$, then $c = b(b^{-1}c)$ where $||b^{-1}c - 1|| \le ||b^{-1}|| ||c - b|| < 1$. Thus $b^{-1}c$ is an exponential, and hence c is a finite product of exponentials. So \mathfrak{A}_0 is open. As it is a subgroup of \mathfrak{A}^{-1} , the complement $\mathfrak{A}^{-1} \setminus \mathfrak{A}_0^{-1}$ is the union of cosets, and hence is also open. Therefore \mathfrak{A}_0^{-1} is (relatively) closed in \mathfrak{A}^{-1} ; and thus is the union of connected components. Any element $b = e^{a_1} \dots e^{a_n}$ can be connected in \mathfrak{A}_0 to 1 by the path $b_t = e^{ta_1} \dots e^{ta_n}$ for $0 \le t \le 1$. Therefore \mathfrak{A}_0^{-1} is the connected component of 1.

(c) $C(\mathbb{T})^{-1}$ consists of those functions f whose directed image is a closed curve in $\mathbb{C} \setminus \{0\}$. It is a standard fact that every such curve is homotopic to the curve z^n where $n = \inf_{f(\mathbb{T})}(0)$. In particular, if $\inf_{f(\mathbb{T})}(0) = 0$, then f is homotopic in $C(\mathbb{T})^{-1}$ to 1, and thus lies in $C(\mathbb{T})_0^{-1}$. Conversely, since winding number is continuous, and hence locally constant, every $f \in C(\mathbb{T})_0^{-1}$ has winding number 0 around 0. Finally, $C(\mathbb{T})^{-1}/C(\mathbb{T})_0^{-1} \simeq \mathbb{Z}$ via the map sending f to $\inf_{f(\mathbb{T})}(0)$. To check that this is a group homomorphism, you need the fact that $\inf_{fg(\mathbb{T})} = \inf_{f(\mathbb{T})} + \inf_{g(\mathbb{T})}$ for $f, g \in C(\mathbb{T})^{-1}$.