
Pure Math 810 Comments on Assignment 1

1. If br(z0) ⊂ Ω and ϕ ∈ X∗,
{
ϕ
(
1
h(f(z0 + h) − f(z0))

)
: |h| ≤ r

}
is bounded because

ϕ ◦ f is analytic. So
{
1
h(f(z0 + h) − f(z0)) : |h| ≤ r

}
is bounded by the Uniform

Boundedness Principle (Banach-Steinhaus Theorem). In particular, f is continuous at z0
for each z0 ∈ Ω. Define xn = 1

2π

∫ 2π
0 f(z0 + reit)(reit)−n dt. Complex analysis shows that

ϕ ◦ f(z0 + z) =
∑

n≥0 ϕ(xn)zn for all |z| ≤ r. Thus the Uniform Boundedness Principle

implies that supn≥0 ‖xn‖rn < ∞, so that the series converges in X for |z| < r; and the
Hahn-Banach Theorem implies that f(z0+z) =

∑
n≥0 xnz

n. Hence f is strongly analytic.
Some people failed to observe that the series actually converges on a disc.

2. Let f be analytic on U ⊃ σ(a) and g analytic on V ⊃ f(σ(a)) = σ(f(a)). By the spectral
mapping theorem, σ(f(a)) = f(σ(a)), so g(f(a)) is defined. Use U0 = U ∩ f−1(V ).
Choose a contour C1 is U0 \ σ(a) so that indC1(z) = 1 for z ∈ σ(a) and equals 0 on U c0 .
Let C2 be a contour in V such that indC2(z) = 1 for z ∈ f(σ(a)) ∪ f(C1) and equals 0
on V c. Then using interchange of variables and Cauchy’s Theorem,

g(f(a)) =
1

2πi

∫
C2

g(z)(z − f(a))−1 dz

=
1

2πi

∫
C2

g(z)
1

2πi

∫
C1

R(a,w)

z − f(w)
dw dz

=
1

2πi

∫
C1

R(a,w)
1

2πi

∫
C2

g(z)

z − f(w)
dz dw

=
1

2πi

∫
C1

R(a,w)g(f(w)) dw = g(f(a)).

3. (a) This is a routine calculation, but you must establish absolute convergence so that
rearrangement of the sums is valid.

(b) A standard argument from complex analysis shows that there is a branch f of log(z)
which is analytic in a neighbourhood of σ(a). Let b = f(a) and use Q2 to show that
eb = (exp ◦ log)(a) = id(a) = a.

4. (a) A2n shifts to the right 2n places, and its weights are the product of 2n consecutive
weights of A. All but one term is the same for each weight except for the multiple
of 2n, which is often 2−n but can be smaller. The norm of A2n is the largest, the
product of the first 2n weights. This is a power of 2−1 where there are 2n−1 even terms,
. . . , 2n−k multiples of 2k, up to k = n. Thus the logarithm base 2 of the product is
−2n−1 − 2n−2 − · · · − 21 − 20 = 1− 2n. Divide by 2n and find the limit is −1. Therefore
spr(A) = lim

n→∞
‖A2n‖1/2n = 2−1.

(b) Let U = diag(λn)n≥0. Compute UAU∗. The spectrum is invariant under rotation
about 0.

(c) Every 2k+1st weight of Ak is zero, so A2k+1

k = 0 is a nilpotent operator. Therefore

σ(Ak) = {0}. Also ‖A−Ak‖ = 2−k−1.

(d) If λ − A is invertible, solve e0 = (λ − A)
∑
cnen to get c0 = λ−1 and cn = bnλ

−n−1

for n ≥ 1. Since limn→∞ cn = 0, this means that |λ| ≥ lim b
1/n
n = spr(A). Since σ(A) has

circular symmetry, this means that σ(A) is the disc of radius 1/2.
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(e) Ak → A, but the spectral radius has limit 0; and thus is discontinuous. You can also
say that the spectrum is discontinuous, say with respect to the Hausdorff metric between
compact sets of C

dH(A,B) = max
{

sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|

}
.

5. (a) On C \ σ(a)ε, R(a, z) is analytic and tends to 0 as |z| → ∞. In particular, it is
continuous and vanishes at infinity; so it is bounded, say by M . If ‖a− b‖ < 1/M , then
for λ ∈ C \ σ(a)ε, ‖(a− λ)− (b− λ)‖ < 1/M ≤ 1/‖R(a, λ)‖. Therefore b− λ is invertible
and thus σ(b) ⊂ σ(a)ε.

(b) If e = e2 and e 6= 0, then spr(e) = lim ‖e‖1/n = 1; so ‖e‖ ≥ 1. Likewise if e 6= 1,
then ‖1− e‖ ≥ 1. Thus among idempotents, {0} and {1} are isolated points.

If σ1 is a clopen subset of σ(a), choose a contour C in ρ(a) such that indC(z) = 1 for
z ∈ σ1 and equals 0 on C \ (σ1)ε. Let M = sup{‖R(a, z)‖ : z ∈ C} and δ = 1/M . If
‖b − a‖ < δ, and bt = (1 − t)a + tb for 0 ≤ t ≤ 1, then R(bt, z) is defined for z ∈ C
and 0 ≤ t ≤ 1. Let et = 1

2πi

∫
C R(bt, z) dz be the Riesz spectral projection of bt for σ1.

Since b0 = a, we have e0 6= 0. Moreover t → et is easily verified to be continuous. So it
is always non-zero. Therefore ∅ 6= σ(b|Ran e1) ⊂ intC ⊂ σ(a)ε; whence it has non-empty
spectrum in a neighbourhood of σ(a)ε.

In the special case that σ1 = σ(a), we have e0 = 1. As this is an isolated component
of the idempotents, et = 1 for 0 ≤ t ≤ 1. Whence e1 = 1 and so σ(b) ⊂ intC ⊂ σ(a)ε.
So this is an alternate proof of 5(a).

6. (a) Clearly A−10 is closed under products and inverses. So it is a subgroup. Also aeba−1 =

a
∑

n≥0
1
n!b

na−1 =
∑

n≥0
1
n!(aba

−1)n = eaba
−1

. So this is a normal subgroup of A−1.

(b) By 3(b), elements in b1(1) are exponentials. So if b ∈ A−10 and ‖b − c‖ < ‖b−1‖−1,
then c = b(b−1c) where ‖b−1c− 1‖ ≤ ‖b−1‖ ‖c− b‖ < 1. Thus b−1c is an exponential, and
hence c is a finite product of exponentials. So A0 is open. As it is a subgroup of A−1, the
complement A−1 \ A−10 is the union of cosets, and hence is also open. Therefore A−10 is
(relatively) closed in A−1; and thus is the union of connected components. Any element
b = ea1 . . . ean can be connected in A0 to 1 by the path bt = eta1 . . . etan for 0 ≤ t ≤ 1.
Therefore A−10 is the connected component of 1.

(c) C(T)−1 consists of those functions f whose directed image is a closed curve in C\{0}.
It is a standard fact that every such curve is homotopic to the curve zn where n =
indf(T)(0). In particular, if indf(T)(0) = 0, then f is homotopic in C(T)−1 to 1, and

thus lies in C(T)−10 . Conversely, since winding number is continuous, and hence locally

constant, every f ∈ C(T)−10 has winding number 0 around 0. Finally, C(T)−1/C(T)−10 ' Z
via the map sending f to indf(T)(0). To check that this is a group homomorphism, you

need the fact that indfg(T) = indf(T) + indg(T) for f, g ∈ C(T)−1.


