1. If $\overline{b_{r}\left(z_{0}\right)} \subset \Omega$ and $\varphi \in X^{*},\left\{\varphi\left(\frac{1}{h}\left(f\left(z_{0}+h\right)-f\left(z_{0}\right)\right)\right):|h| \leq r\right\}$ is bounded because $\varphi \circ f$ is analytic. So $\left\{\frac{1}{h}\left(f\left(z_{0}+h\right)-f\left(z_{0}\right)\right):|h| \leq r\right\}$ is bounded by the Uniform Boundedness Principle (Banach-Steinhaus Theorem). In particular, f is continuous at z_{0} for each $z_{0} \in \Omega$. Define $x_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right)\left(r e^{i t}\right)^{-n} d t$. Complex analysis shows that $\varphi \circ f\left(z_{0}+z\right)=\sum_{n \geq 0} \varphi\left(x_{n}\right) z^{n}$ for all $|z| \leq r$. Thus the Uniform Boundedness Principle implies that $\sup _{n \geq 0}\left\|x_{n}\right\| r^{n}<\infty$, so that the series converges in X for $|z|<r$; and the Hahn-Banach Theorem implies that $f\left(z_{0}+z\right)=\sum_{n \geq 0} x_{n} z^{n}$. Hence f is strongly analytic.

Some people failed to observe that the series actually converges on a disc.
2. Let f be analytic on $U \supset \sigma(a)$ and g analytic on $V \supset f(\sigma(a))=\sigma(f(a))$. By the spectral mapping theorem, $\sigma(f(a))=f(\sigma(a))$, so $g(f(a))$ is defined. Use $U_{0}=U \cap f^{-1}(V)$. Choose a contour C_{1} is $U_{0} \backslash \sigma(a)$ so that $\operatorname{ind}_{C_{1}}(z)=1$ for $z \in \sigma(a)$ and equals 0 on U_{0}^{c}. Let C_{2} be a contour in V such that $\operatorname{ind}_{C_{2}}(z)=1$ for $z \in f(\sigma(a)) \cup f\left(C_{1}\right)$ and equals 0 on V^{c}. Then using interchange of variables and Cauchy's Theorem,

$$
\begin{aligned}
g(f(a)) & =\frac{1}{2 \pi i} \int_{C_{2}} g(z)(z-f(a))^{-1} d z \\
& =\frac{1}{2 \pi i} \int_{C_{2}} g(z) \frac{1}{2 \pi i} \int_{C_{1}} \frac{R(a, w)}{z-f(w)} d w d z \\
& =\frac{1}{2 \pi i} \int_{C_{1}} R(a, w) \frac{1}{2 \pi i} \int_{C_{2}} \frac{g(z)}{z-f(w)} d z d w \\
& =\frac{1}{2 \pi i} \int_{C_{1}} R(a, w) g(f(w)) d w=g(f(a)) .
\end{aligned}
$$

3. (a) This is a routine calculation, but you must establish absolute convergence so that rearrangement of the sums is valid.
(b) A standard argument from complex analysis shows that there is a branch f of $\log (z)$ which is analytic in a neighbourhood of $\sigma(a)$. Let $b=f(a)$ and use Q2 to show that $e^{b}=(\exp \circ \log)(a)=\operatorname{id}(a)=a$.
4. (a) $A^{2^{n}}$ shifts to the right 2^{n} places, and its weights are the product of 2^{n} consecutive weights of A. All but one term is the same for each weight except for the multiple of 2^{n}, which is often 2^{-n} but can be smaller. The norm of $A^{2^{n}}$ is the largest, the product of the first 2^{n} weights. This is a power of 2^{-1} where there are 2^{n-1} even terms, $\ldots, 2^{n-k}$ multiples of 2^{k}, up to $k=n$. Thus the logarithm base 2 of the product is $-2^{n-1}-2^{n-2}-\cdots-2^{1}-2^{0}=1-2^{n}$. Divide by 2^{n} and find the limit is -1 . Therefore $\operatorname{spr}(A)=\lim _{n \rightarrow \infty}\left\|A^{2^{n}}\right\|^{1 / 2^{n}}=2^{-1}$.
(b) Let $U=\operatorname{diag}\left(\lambda^{n}\right)_{n \geq 0}$. Compute $U A U^{*}$. The spectrum is invariant under rotation about 0 .
(c) Every 2^{k+1} st weight of A_{k} is zero, so $A_{k}^{2^{k+1}}=0$ is a nilpotent operator. Therefore $\sigma\left(A_{k}\right)=\{0\}$. Also $\left\|A-A_{k}\right\|=2^{-k-1}$.
(d) If $\lambda-A$ is invertible, solve $e_{0}=(\lambda-A) \sum c_{n} e_{n}$ to get $c_{0}=\lambda^{-1}$ and $c_{n}=b_{n} \lambda^{-n-1}$ for $n \geq 1$. Since $\lim _{n \rightarrow \infty} c_{n}=0$, this means that $|\lambda| \geq \lim b_{n}^{1 / n}=\operatorname{spr}(A)$. Since $\sigma(A)$ has circular symmetry, this means that $\sigma(A)$ is the disc of radius $1 / 2$.
(e) $A_{k} \rightarrow A$, but the spectral radius has limit 0 ; and thus is discontinuous. You can also say that the spectrum is discontinuous, say with respect to the Hausdorff metric between compact sets of \mathbb{C}

$$
d_{H}(A, B)=\max \left\{\sup _{a \in A} \inf _{b \in B}|a-b|, \sup _{b \in B} \inf _{a \in A}|a-b|\right\} .
$$

5. (a) On $\mathbb{C} \backslash \sigma(a)_{\varepsilon}, R(a, z)$ is analytic and tends to 0 as $|z| \rightarrow \infty$. In particular, it is continuous and vanishes at infinity; so it is bounded, say by M. If $\|a-b\|<1 / M$, then for $\lambda \in \mathbb{C} \backslash \sigma(a)_{\varepsilon},\|(a-\lambda)-(b-\lambda)\|<1 / M \leq 1 /\|R(a, \lambda)\|$. Therefore $b-\lambda$ is invertible and thus $\sigma(b) \subset \sigma(a)_{\varepsilon}$.
(b) If $e=e^{2}$ and $e \neq 0$, then $\operatorname{spr}(e)=\lim \|e\|^{1 / n}=1$; so $\|e\| \geq 1$. Likewise if $e \neq 1$, then $\|1-e\| \geq 1$. Thus among idempotents, $\{0\}$ and $\{1\}$ are isolated points.

If σ_{1} is a clopen subset of $\sigma(a)$, choose a contour C in $\rho(a)$ such that $\operatorname{ind}_{C}(z)=1$ for $z \in \sigma_{1}$ and equals 0 on $\mathbb{C} \backslash\left(\sigma_{1}\right)_{\varepsilon}$. Let $M=\sup \{\|R(a, z)\|: z \in C\}$ and $\delta=1 / M$. If $\|b-a\|<\delta$, and $b_{t}=(1-t) a+t b$ for $0 \leq t \leq 1$, then $R\left(b_{t}, z\right)$ is defined for $z \in C$ and $0 \leq t \leq 1$. Let $e_{t}=\frac{1}{2 \pi i} \int_{C} R\left(b_{t}, z\right) d z$ be the Riesz spectral projection of b_{t} for σ_{1}. Since $b_{0}=a$, we have $e_{0} \neq 0$. Moreover $t \rightarrow e_{t}$ is easily verified to be continuous. So it is always non-zero. Therefore $\emptyset \neq \sigma\left(\left.b\right|_{\operatorname{Ran}_{1}}\right) \subset \operatorname{int} C \subset \sigma(a)_{\varepsilon}$; whence it has non-empty spectrum in a neighbourhood of $\sigma(a)_{\varepsilon}$.

In the special case that $\sigma_{1}=\sigma(a)$, we have $e_{0}=1$. As this is an isolated component of the idempotents, $e_{t}=1$ for $0 \leq t \leq 1$. Whence $e_{1}=1$ and so $\sigma(b) \subset \operatorname{int} C \subset \sigma(a)_{\varepsilon}$. So this is an alternate proof of 5(a).
6. (a) Clearly \mathfrak{A}_{0}^{-1} is closed under products and inverses. So it is a subgroup. Also $a e^{b} a^{-1}=$ $a \sum_{n \geq 0} \frac{1}{n!} b^{n} a^{-1}=\sum_{n \geq 0} \frac{1}{n!}\left(a b a^{-1}\right)^{n}=e^{a b a^{-1}}$. So this is a normal subgroup of \mathfrak{A}^{-1}.
(b) By 3(b), elements in $b_{1}(1)$ are exponentials. So if $b \in \mathfrak{A}_{0}^{-1}$ and $\|b-c\|<\left\|b^{-1}\right\|^{-1}$, then $c=b\left(b^{-1} c\right)$ where $\left\|b^{-1} c-1\right\| \leq\left\|b^{-1}\right\|\|c-b\|<1$. Thus $b^{-1} c$ is an exponential, and hence c is a finite product of exponentials. So \mathfrak{A}_{0} is open. As it is a subgroup of \mathfrak{A}^{-1}, the complement $\mathfrak{A}^{-1} \backslash \mathfrak{A}_{0}^{-1}$ is the union of cosets, and hence is also open. Therefore \mathfrak{A}_{0}^{-1} is (relatively) closed in \mathfrak{A}^{-1}; and thus is the union of connected components. Any element $b=e^{a_{1}} \ldots e^{a_{n}}$ can be connected in \mathfrak{A}_{0} to 1 by the path $b_{t}=e^{t a_{1}} \ldots e^{t a_{n}}$ for $0 \leq t \leq 1$. Therefore \mathfrak{A}_{0}^{-1} is the connected component of 1 .
(c) $\mathrm{C}(\mathbb{T})^{-1}$ consists of those functions f whose directed image is a closed curve in $\mathbb{C} \backslash\{0\}$. It is a standard fact that every such curve is homotopic to the curve z^{n} where $n=$ $\operatorname{ind}_{f(\mathbb{T})}(0)$. In particular, if $\operatorname{ind}_{f(\mathbb{T})}(0)=0$, then f is homotopic in $\mathrm{C}(\mathbb{T})^{-1}$ to 1 , and thus lies in $\mathrm{C}(\mathbb{T})_{0}^{-1}$. Conversely, since winding number is continuous, and hence locally constant, every $f \in \mathrm{C}(\mathbb{T})_{0}^{-1}$ has winding number 0 around 0 . Finally, $\mathrm{C}(\mathbb{T})^{-1} / \mathrm{C}(\mathbb{T})_{0}^{-1} \simeq \mathbb{Z}$ via the map sending f to $\operatorname{ind}_{f(\mathbb{T})}(0)$. To check that this is a group homomorphism, you need the fact that $\operatorname{ind}_{f g(\mathbb{T})}=\operatorname{ind}_{f(\mathbb{T})}+\operatorname{ind}_{g(\mathbb{T})}$ for $f, g \in \mathrm{C}(\mathbb{T})^{-1}$.

