Assignment 4

- 1. (a) For a von Neumann algebra \mathcal{N} , show that the extreme points of $\overline{b_1(\mathcal{N}_+)}$ are precisely the projections.
 - (b) Show that for $\mathcal{N} = \mathcal{B}(H)$, the set of extreme points of the unit ball is strictly larger than the set of unitaries.
- 2. Suppose that ρ is a representation of a C*-algebra A on a Hilbert space H with a unit cyclic vector x. Define a state by $f(a) = \langle \rho(a)x, x \rangle$. Show that ρ is unitarily equivalent to the GNS construct π_f via a unitary operator U such that $Ux_f = x$. This shows that the GNS construction is unique. **Hint:** set $U\dot{a} = \rho(a)x$.
- 3. Suppose that π and σ are irreducible representations of a C*-algebra \mathfrak{A} . Suppose that there is a non-zero operator T such that $\pi(a)T = T\sigma(a)$ for all $a \in \mathfrak{A}$. Prove that π and σ are unitarily equivalent. **Hint:** show that the partial isometry in the polar decomposition of T is the desired unitary.
- 4. An operator algebra $\mathcal{A} \subset \mathcal{B}(H)$ is reflexive if every $T \in \mathcal{B}(H)$ satisfying $TM \subset M$ for every invariant subspace M of \mathcal{A} belongs to \mathcal{A} . An operator A is reflexive if the WOT-closed (nonself-adjoint, unital) algebra W(A) generated by A is reflexive.
 - (a) Prove that every von Neumann algebra is reflexive.
 - (b) Prove that normal operators on separable Hilbert space are reflexive. **Hint:** $W(N) \subset W^*(N) \simeq L^{\infty}(\mu)$. If $h(N) \in W^*(N) \setminus W(N)$, use Hahn–Banach to find a separating functional f in $L^1(\mu)$. Factor $f = g\overline{k}$ where $g, k \in L^2(\mu)$.
- 5. Use the polar decomposition of a compact operator K to show that it may be written as $K = \sum_{n\geq 1} s_n e_n f_n^*$ where s_n is a positive sequence decreasing to 0, and $\{e_n\}$ and $\{f_n\}$ are orthonormal sequences. Here ef^* is the rank one operator $ef^*(x) = \langle x, f \rangle e$. The sequence $s_n(K)$ are called the **singular values** of K.
- 6. A compact operator K is trace class if $||K||_1 := \sum_{n \ge 1} s_n(K) < \infty$. The collection of all trace class operators on a separable Hilbert space H is denoted by \mathfrak{S}_1 .
 - (a) Show that if x_n and y_n are orthonormal sequences, then $\sum_{n\geq 1} |\langle Kx_n, y_n \rangle| \leq ||K||_1$.
 - (b) Show that \mathfrak{S}_1 is complete subspace in the trace norm, and that the ideal of finite rank operators is dense in \mathfrak{S}_1 .
 - (c) Show that $||AKB||_1 \leq ||A|| ||K||_1 ||B||$. Hence \mathfrak{S}_1 is a non-closed 2-sided ideal of $\mathcal{B}(H)$.
 - (d) Fix an orthonormal basis $\{e_n\}$ and define the trace by $\operatorname{Tr}(K) = \sum_{n \ge 1} \langle Ke_n, e_n \rangle$. Show that $\operatorname{Tr}(KT) = \operatorname{Tr}(TK)$ for all $K \in \mathfrak{S}_1$ and $T \in \mathcal{B}(H)$. Hence deduce that Tr is independent of the choice of basis.
 - (e) Each $T \in \mathcal{B}(H)$ defines a linear functional φ_T on \mathfrak{S}_1 by $\varphi_T(K) = \operatorname{Tr}(TK)$. Show that $\|\varphi_T\| = \|T\|$.
 - (f) Show that if φ is a linear functional on \mathfrak{S}_1 , then the sesquilinear form $\langle x, y \rangle := \varphi(xy^*)$ determines a bounded linear operator T such that $\varphi = \varphi_T$.
 - (g) Deduce that $\mathcal{B}(H)$ is the dual space of \mathfrak{S}_1 . Show that this weak-* topology on $\mathcal{B}(H)$ corresponds to the ultraweak topology.