PM 810

Assignment 3

- 1. (a) Show that if \mathcal{A} is a separable C*-algebra, then it has an approximate unit consisting of an increasing sequence.
 - (b) Show that if $0 \le a, 0 \le b$ and ||a|| < 1 and ||b|| < 1, then $c = b + (1-b)^{1/2} [(1-b)^{-1/2}(a-b)(1-b)^{-1/2}]_+ (1-b)^{1/2}$ satisfies $b \le c, a \le c$ and ||c|| < 1.
- 2. Show that if \mathcal{J} is a closed ideal of a C*-algebra \mathcal{A} and $a \in \mathcal{A}$, then there is an element $j \in \mathcal{J}$ such that $||a j|| = \text{dist}(a, \mathcal{J})$. **Hint:** write $|a| ||a + \mathcal{J}|| 1$ as $b_+ b_-$.
- 3. Show that if S and T are two normal operators, then there is a *-isomorphism between $C^*(S)$ and $C^*(T)$ taking S to T if and only if $\sigma(S) = \sigma(T)$.
- 4. (a) The ultraweak (or σ -weak) topology is the weakest topology on $\mathcal{B}(H)$ such that the functionals $\omega(T) = \sum_{n\geq 1} \langle Tx_n, y_n \rangle$ are continuous for all families $\{x_n, y_n : n \geq 1\}$ of vectors such that $\sum_{n\geq 1} \|x_n\| \|y_n\| < \infty$. Likewise the ultrastrong topology is the topology determined by seminorms of the form $\rho(T) = \left(\sum_{n\geq 1} \|Tx_n\|^2\right)^{1/2}$ where $\sum_{n\geq 1} \|x_n\|^2 < \infty$. Prove that these two topologies have the same continuous linear functionals.
 - (b) Find a linear functional on $\mathcal{B}(H)$ which is ultraweak continuous but not WOT continuous. Hence find a subspace of $\mathcal{B}(H)$ such that its ultraweak closure is properly contained in its WOT-dense closure.
 - (c) Rework the proof of von Neumann's Double Commutant Theorem to show that if \mathcal{A} is a non-degenerate C*-subalgebra of $\mathcal{B}(H)$, then \mathcal{A}'' equals the ultraweak closure of \mathcal{A} .
- 5. Let $\mathcal{A} \subset \mathcal{B}(H)$ be a concrete C*-algebra. Suppose that $A \in \mathcal{A}$ has a polar decomposition A = U|A|. Show that Uf(|A|) belongs to \mathcal{A} provided that $f \in C(\sigma(|A|))$ and f(0) = 0.
- 6. (a) If X commutes with a normal operator N, show that it also commutes with N^* . **Hint:** The entire function $f(z) = e^{zN^*} X e^{-zN^*} = e^{zN^*} e^{-\overline{z}N} X e^{\overline{z}N} e^{-zN^*}$ is bounded.
 - (b) Show that if M and N are normal and MX = XN, then $M^*X = XN^*$. **Hint:** $\begin{bmatrix} M & 0 \\ 0 & N \end{bmatrix}$ commutes with $\begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$.
 - (c) Show that two similar normal operators are unitarily equivalent. **Hint:** take the unitary part of the polar decomposition of the similarity and apply part (a).
- 7. Let \mathcal{A} be a finite dimensional C*-algebra.
 - (a) Let π be an irreducible representation of \mathcal{A} on $\mathcal{B}(H)$. Prove that dim $H < \infty$, that $\pi(\mathcal{A}) = \mathcal{B}(H)$ and that ker π is a maximal ideal.
 - (b) Show that \mathcal{A} has a faithful finite dimensional representation.
 - (c) Prove that \mathcal{A} is *-isomorphic to the direct sum of a finite number of full matrix algebras.