- 1. Let ℓ_p , for $1 \leq p < \infty$, be a Banach algebra with pointwise multiplication.
 - (a) Find its maximal ideal space.
 - (b) Prove that it has maximal ideals which are not modular. **Hint:** $(l_p)^2$ is a proper ideal.
- 2. Let X be a compact Hausdorff space, and let \mathcal{I} be an ideal of C(X), not necessarily closed. Let $E = \ker \mathcal{I} = \{x \in X : f(x) = 0 \text{ for all } f \in \mathcal{I}\}$. Let $I_0(E)$ be the ideal of functions that vanish on an open neighbourhood of E, and let I(E) denote the ideal of functions which vanish on E. Prove that $I_0(E) \subset \mathcal{I} \subset I(E)$.
- 3. Let \mathfrak{A} and \mathfrak{B} be unital commutative Banach algebras.
 - (a) Suppose that $\theta : \mathfrak{A} \to \mathfrak{B}$ is an injective homomorphism, and \mathfrak{B} is semisimple. Prove that \mathfrak{A} is semisimple. Hint: if $a \in \operatorname{rad}(\mathfrak{A})$, what can you say about $\sigma(\theta(a))$?
 - (b) Let $\mathfrak{A} = C^1[0,1]$ with $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Let $\mathcal{J} = \{f \in \mathfrak{A} : f(0) = f'(0) = 0\}$. Show that \mathfrak{A} is semisimple but \mathfrak{A}/\mathcal{J} is not.
- 4. Let \mathfrak{A} be a unital commutative Banach algebra. If $a_1, \ldots, a_n \in \mathfrak{A}$, define the *joint spectrum* to be $\sigma(a_1, \ldots, a_n) = \{\lambda = (\varphi(a_1), \ldots, \varphi(a_n)) \in \mathbb{C}^n : \varphi \in \mathcal{M}(\mathfrak{A})\}.$
 - (a) Show that $\lambda = (\lambda_1, \dots, \lambda_n) \notin \sigma(a_1, \dots, a_n)$ if and only if there are $b_1, \dots, b_n \in \mathfrak{A}$ such that $\sum_{i=1}^n (a_i \lambda_i) b_i = 1$.
 - (b) We say a_1, \ldots, a_n generate \mathfrak{A} if the set of polynomials in a_1, \ldots, a_n is dense in \mathfrak{A} . If this occurs, show that $\Phi : \mathcal{M}(\mathfrak{A}) \to \sigma(a_1, \ldots, a_n)$ given by $\Phi(\varphi) = (\varphi(a_1), \ldots, \varphi(a_n))$ is a homeomorphism.
 - (c) If a_1, \ldots, a_n generate \mathfrak{A} , show that $\sigma(a_1, \ldots, a_n)$ is polynomially convex; i.e. if $\lambda \in \mathbb{C}^n$ and $|p(\lambda)| \leq \sup\{|p(z)| : z \in \sigma(a_1, \ldots, a_n)\}$, then $\lambda \in \sigma(a_1, \ldots, a_n)$. **Hint:** if $\lambda \notin \sigma(a_1, \ldots, a_n)$, use part (a) and approximate $1 - \sum_{i=1}^n (a_i - \lambda_i)b_i = 0$ by a polynomial.
- 5. Let \mathfrak{A} be a (non-commutative) Banach algebra.
 - (a) Prove that $\mathfrak{A}/\operatorname{rad}(\mathfrak{A})$ is semisimple.
 - (b) If \mathfrak{J} is a closed ideal of \mathfrak{A} , show that $rad(\mathfrak{J}) = \mathfrak{J} \cap rad(\mathfrak{A})$.
- 6. Let $\mathfrak{A}, \mathfrak{B}$ be (non-commutative) Banach algebras, and let $\theta : \mathfrak{A} \to \mathfrak{B}$ be a surjective homomorphism.
 - (a) Show that $\theta(\operatorname{rad}(\mathfrak{A})) \subset \operatorname{rad}(\mathfrak{B})$.
 - (b) If \mathfrak{B} is semisimple, prove that ker θ is closed.