1. Let ℓ_{p}, for $1 \leq p<\infty$, be a Banach algebra with pointwise multiplication.
(a) Find its maximal ideal space.
(b) Prove that it has maximal ideals which are not modular. Hint: $\left(l_{p}\right)^{2}$ is a proper ideal.
2. Let X be a compact Hausdorff space, and let \mathcal{I} be an ideal of $\mathrm{C}(X)$, not necessarily closed. Let $E=\operatorname{ker} \mathcal{I}=\{x \in X: f(x)=0$ for all $f \in \mathcal{I}\}$. Let $I_{0}(E)$ be the ideal of functions that vanish on an open neighbourhood of E, and let $I(E)$ denote the ideal of functions which vanish on E. Prove that $I_{0}(E) \subset \mathcal{I} \subset I(E)$.
3. Let \mathfrak{A} and \mathfrak{B} be unital commutative Banach algebras.
(a) Suppose that $\theta: \mathfrak{A} \rightarrow \mathfrak{B}$ is an injective homomorphism, and \mathfrak{B} is semisimple. Prove that \mathfrak{A} is semisimple. Hint: if $a \in \operatorname{rad}(\mathfrak{A})$, what can you say about $\sigma(\theta(a))$?
(b) Let $\mathfrak{A}=C^{1}[0,1]$ with $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$. Let $\mathcal{J}=\left\{f \in \mathfrak{A}: f(0)=f^{\prime}(0)=0\right\}$. Show that \mathfrak{A} is semisimple but $\mathfrak{A} / \mathcal{J}$ is not.
4. Let \mathfrak{A} be a unital commutative Banach algebra. If $a_{1}, \ldots, a_{n} \in \mathfrak{A}$, define the joint spectrum to be $\sigma\left(a_{1}, \ldots, a_{n}\right)=\left\{\lambda=\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right) \in \mathbb{C}^{n}: \varphi \in \mathcal{M}(\mathfrak{A})\right\}$.
(a) Show that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \notin \sigma\left(a_{1}, \ldots, a_{n}\right)$ if and only if there are $b_{1}, \ldots, b_{n} \in \mathfrak{A}$ such that $\sum_{i=1}^{n}\left(a_{i}-\lambda_{i}\right) b_{i}=1$.
(b) We say a_{1}, \ldots, a_{n} generate \mathfrak{A} if the set of polynomials in a_{1}, \ldots, a_{n} is dense in \mathfrak{A}. If this occurs, show that $\Phi: \mathcal{M}(\mathfrak{A}) \rightarrow \sigma\left(a_{1}, \ldots, a_{n}\right)$ given by $\Phi(\varphi)=\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right)$ is a homeomorphism.
(c) If a_{1}, \ldots, a_{n} generate \mathfrak{A}, show that $\sigma\left(a_{1}, \ldots, a_{n}\right)$ is polynomially convex; i.e. if $\lambda \in \mathbb{C}^{n}$ and $|p(\lambda)| \leq \sup \left\{|p(z)|: z \in \sigma\left(a_{1}, \ldots, a_{n}\right)\right\}$, then $\lambda \in \sigma\left(a_{1}, \ldots, a_{n}\right)$. Hint: if $\lambda \notin \sigma\left(a_{1}, \ldots, a_{n}\right)$, use part (a) and approximate $1-\sum_{i=1}^{n}\left(a_{i}-\lambda_{i}\right) b_{i}=0$ by a polynomial.
5. Let \mathfrak{A} be a (non-commutative) Banach algebra.
(a) Prove that $\mathfrak{A} / \operatorname{rad}(\mathfrak{A})$ is semisimple.
(b) If \mathfrak{J} is a closed ideal of \mathfrak{A}, show that $\operatorname{rad}(\mathfrak{J})=\mathfrak{J} \cap \operatorname{rad}(\mathfrak{A})$.
6. Let $\mathfrak{A}, \mathfrak{B}$ be (non-commutative) Banach algebras, and let $\theta: \mathfrak{A} \rightarrow \mathfrak{B}$ be a surjective homomorphism.
(a) Show that $\theta(\operatorname{rad}(\mathfrak{A})) \subset \operatorname{rad}(\mathfrak{B})$.
(b) If \mathfrak{B} is semisimple, prove that $\operatorname{ker} \theta$ is closed.
