1. Let Ω be an open subset of \mathbb{C}. Show that a function $f: \Omega \rightarrow X$ into a Banach space X is weakly analytic if and only if it is strongly analytic.
Hint: (i) If $\overline{b_{r}\left(z_{0}\right)} \subset \Omega$, show that $\left\{\frac{1}{h}\left(f\left(z_{0}+h\right)-f\left(z_{0}\right)\right):|h| \leq r\right\}$ is bounded.
(ii) Show that f is continuous.
(iii) Define $x_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right)\left(r e^{i t}\right)^{-n} d t$. Show that $f\left(z_{0}+z\right)=\sum_{n \geq 0} x_{n} z^{n}$.
2. Let a be an element of a unital Banach algebra \mathfrak{A}. Suppose that $f(z)$ is analytic in a neighbourhood of $\sigma(a)$ and that $g(w)$ is analytic in a neighbourhood of $f(\sigma(a))$. Show that $(g \circ f)(a)=g(f(a))$.
3. Define $e^{a}=\sum_{n \geq 0} \frac{1}{n!} a^{n}$.
(a) If $a b=b a$, show that $e^{a+b}=e^{a} e^{b}$.
(b) Let $a \in \mathfrak{A}^{-1}$ such that 0 is in the unbounded component of the resolvent. (This includes special case $\|1-a\|<1$.) Prove that there is an element $b \in \mathfrak{A}$ such that $a=e^{b}$.
4. Kakutani's shift. Let $\left\{e_{n}: n \geq 0\right\}$ be an orthonormal basis for a Hilbert space \mathcal{H}. Let $a_{n}=\operatorname{gcd}\left(n, 2^{n}\right)^{-1}$ for $n \geq 1$. Define $A \in \mathcal{B}(\mathcal{H})$ by $A e_{n}=a_{n+1} e_{n+1}$ for $n \geq 0$.
(a) Compute $\operatorname{spr}(A)$. Hint: Compute $\left\|A^{2^{n}}\right\|$.
(b) Show A is unitarily equivalent to λA for $|\lambda|=1$. What does this say about $\sigma(A)$?
(c) Define $A_{k} \in \mathcal{B}(\mathcal{H})$ by $A_{k} e_{n}=a_{n, k} e_{n+1}$, where $a_{n, k}=a_{n+1}$ if $a_{n+1} \geq 2^{-k}$ and $a_{n, k}=0$ otherwise. Find $\sigma\left(A_{k}\right)$. Show that $A=\lim _{k \rightarrow \infty} A_{k}$.
(d) Show that $\sigma(A)$ is the disk of radius $\operatorname{spr}(A)$. Hint: if $(\lambda-A)^{-1} e_{0}=\sum c_{n} e_{n}$, solve for c_{n} in terms of λ and $b_{n}=\left\|A^{n} e_{0}\right\|$. Use info about b_{n} from 3(a).
(e) Conclude that the spectrum and spectral radius are not continuous functions.
5. Upper semicontinuity of the spectrum. Let \mathfrak{A} be a unital Banach algebra; $a \in \mathfrak{A}$.
(a) Given $\varepsilon>0$, find $\delta>0$ so that $\|a-b\|<\delta$ implies that $\sigma(b)$ is contained in $\sigma(a)_{\varepsilon}:=$ $\{z: \operatorname{dist}(z, \sigma(a))<\varepsilon\}$. Hint: Enclose $\sigma(a)$ inside a curve \mathcal{C} contained in $\sigma(a)_{\varepsilon}$. Then $\|R(a, z)\|$ is bounded on \mathcal{C}.
(b) Suppose $\sigma(a)=\sigma_{1} \cup \sigma_{2}$, where σ_{i} are disjoint non-empty clopen subsets of $\sigma(a)$. Enclose σ_{1} inside curves \mathcal{C}_{i} so that $\overline{\Omega_{i}}=\mathcal{C}_{i} \cup\left\{z: \operatorname{ind}_{\mathcal{C}_{i}}(z) \neq 0\right\}$ are disjoint (how?). Find $\delta>0$ so that $\|a-b\|<\delta$ implies that $\sigma(b) \cap \Omega_{i}$ is not empty.
Hint: Use part (a) to get δ. Let $b_{t}=(1-t) a+t b$ for $0 \leq t \leq 1$. Consider the Riesz projection e_{t} for the operator b_{t} and its spectrum in Ω_{1}. This is a continuous path.
6. (a) Let \mathfrak{A}_{0}^{-1} denote the set of all invertible elements of a Banach algebra \mathfrak{A} which may be written as a finite product of exponentials $e^{b_{i}}$. Show that this is a normal subgroup of the group \mathfrak{A}^{-1} of invertible elements of \mathfrak{A}.
(b) Show that \mathfrak{A}_{0}^{-1} consists of all invertible elements which can be connected to the identity by a continuous path of invertible elements. Hence conclude that it is an open subgroup (and thus also closed). Hint: problem 3(b).
(c) Let $\mathfrak{A}=\mathrm{C}(\mathbb{T})$. Describe $\mathrm{C}(\mathbb{T})_{0}^{-1}$ and $\mathrm{C}(\mathbb{T})^{-1} / \mathrm{C}(\mathbb{T})_{0}^{-1}$.
