PM 810 Assignment 1

Due Thursday January 31.

1. Let Ω be an open subset of \mathbb{C} . Show that a function $f : \Omega \to X$ into a Banach space X is weakly analytic if and only if it is strongly analytic.

Hint: (i) If $\overline{b_r(z_0)} \subset \Omega$, show that $\left\{\frac{1}{h}(f(z_0+h)-f(z_0)): |h| \leq r\right\}$ is bounded. (ii) Show that f is continuous. (iii) Define $x_n = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it})(re^{it})^{-n} dt$. Show that $f(z_0 + z) = \sum_{n>0} x_n z^n$.

- 2. Let a be an element of a unital Banach algebra \mathfrak{A} . Suppose that f(z) is analytic in a neighbourhood of $\sigma(a)$ and that g(w) is analytic in a neighbourhood of $f(\sigma(a))$. Show that $(g \circ f)(a) = g(f(a))$.
- 3. Define $e^a = \sum_{n \ge 0} \frac{1}{n!} a^n$.
 - (a) If ab = ba, show that $e^{a+b} = e^a e^b$.
 - (b) Let $a \in \mathfrak{A}^{-1}$ such that 0 is in the unbounded component of the resolvent. (This includes special case ||1 a|| < 1.) Prove that there is an element $b \in \mathfrak{A}$ such that $a = e^b$.
- 4. Kakutani's shift. Let $\{e_n : n \ge 0\}$ be an orthonormal basis for a Hilbert space \mathcal{H} . Let $a_n = \gcd(n, 2^n)^{-1}$ for $n \ge 1$. Define $A \in \mathcal{B}(\mathcal{H})$ by $Ae_n = a_{n+1}e_{n+1}$ for $n \ge 0$.
 - (a) Compute spr(A). **Hint:** Compute $||A^{2^n}||$.
 - (b) Show A is unitarily equivalent to λA for $|\lambda| = 1$. What does this say about $\sigma(A)$?
 - (c) Define $A_k \in \mathcal{B}(\mathcal{H})$ by $A_k e_n = a_{n,k} e_{n+1}$, where $a_{n,k} = a_{n+1}$ if $a_{n+1} \ge 2^{-k}$ and $a_{n,k} = 0$ otherwise. Find $\sigma(A_k)$. Show that $A = \lim_{k \to \infty} A_k$.
 - (d) Show that $\sigma(A)$ is the disk of radius $\operatorname{spr}(A)$. **Hint:** if $(\lambda A)^{-1}e_0 = \sum c_n e_n$, solve for c_n in terms of λ and $b_n = ||A^n e_0||$. Use info about b_n from 3(a).
 - (e) Conclude that the spectrum and spectral radius are not continuous functions.
- 5. Upper semicontinuity of the spectrum. Let \mathfrak{A} be a unital Banach algebra; $a \in \mathfrak{A}$.
 - (a) Given $\varepsilon > 0$, find $\delta > 0$ so that $||a b|| < \delta$ implies that $\sigma(b)$ is contained in $\sigma(a)_{\varepsilon} := \{z : \operatorname{dist}(z, \sigma(a)) < \varepsilon\}$. **Hint:** Enclose $\sigma(a)$ inside a curve \mathcal{C} contained in $\sigma(a)_{\varepsilon}$. Then ||R(a, z)|| is bounded on \mathcal{C} .
 - (b) Suppose $\sigma(a) = \sigma_1 \cup \sigma_2$, where σ_i are disjoint non-empty clopen subsets of $\sigma(a)$. Enclose σ_1 inside curves C_i so that $\overline{\Omega_i} = C_i \cup \{z : \operatorname{ind}_{C_i}(z) \neq 0\}$ are disjoint (how?). Find $\delta > 0$ so that $||a b|| < \delta$ implies that $\sigma(b) \cap \Omega_i$ is not empty. **Hint:** Use part (a) to get δ . Let $b_t = (1 - t)a + tb$ for $0 \le t \le 1$. Consider the Riesz projection e_t for the operator b_t and its spectrum in Ω_1 . This is a continuous path.
- 6. (a) Let \mathfrak{A}_0^{-1} denote the set of all invertible elements of a Banach algebra \mathfrak{A} which may be written as a finite product of exponentials e^{b_i} . Show that this is a normal subgroup of the group \mathfrak{A}^{-1} of invertible elements of \mathfrak{A} .
 - (b) Show that \mathfrak{A}_0^{-1} consists of all invertible elements which can be connected to the identity by a continuous path of invertible elements. Hence conclude that it is an open subgroup (and thus also closed). **Hint:** problem 3(b).
 - (c) Let $\mathfrak{A} = \mathcal{C}(\mathbb{T})$. Describe $\mathcal{C}(\mathbb{T})_0^{-1}$ and $\mathcal{C}(\mathbb{T})^{-1}/\mathcal{C}(\mathbb{T})_0^{-1}$.