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CHAPTER 1

Measures

1.1. Introduction

The idea of Riemann integration is the following: Convergence of the upper

and lower sums to the same limit is required for
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Riemann integrability. The integral
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FIGURE 1.1. Riemann Integral

b n
is approximated by Riemann sums / f(z)dr ~ Z L;(t; — t;—1). The function
a

i=1

f(x) has to be ‘almost continuous’ in order for this to succeed. It is too restrictive.
Moreover there are no good limit theorems. (Again one needs uniform convergence

for most results,)
Lebesgue’s approach was to chop up the

range instead. Then one gets the
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FIGURE 1.2. Lebesgue integral

b n
approximations/ f(z)dr =~ Zy,{{x t yio1 < f(z) < y;}|. The notation
@ i=1
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|A| is meant to convey the length of a set A. The complication is that, even for
continuous functions, the sets {z : y;—1 < f(x) < y;} are neither open nor closed,
and can be complicated. It is a Borel set, and that will be seen to be good enough.
Lebesgue’s idea was to extend the notion of length or measure from open intervals
to a function m on a much larger class of sets so that

(1) m((a,b)) =b—a

(2) m(A+z) =m(A) forsets Aand z € R (translation invariance)

(3) if A is the disjoint union A = U 1 Ap, then m(A) = "> m(Ay).
(countable additivity)

It turns out that it is not possible to define such a function on all subsets of R.
To see this, we define an equivalence relation on [0, 1) by x ~ y if x —y € Q. Then
use the Axiom of Choice to select a set A which contains exactly one element from
each equivalence class. Enumerate Q N [0,1) = {0 = ro, 71,72, ... } and define

A, =A+r,(mod 1) = ((A+rn)U(A—|—rn — 1)) N[0,1) for n>0.
Now by translation invariance and finite additivity,

m(A)

m(A+ry,)

(A4rn)N[0,1)) + m((A+r,)N[1,2))
(A+r)Nn[0,1)) +m((A+r, —1)N0, 1))
(An).

Observe that A,,, N A, = @ if m # n. By construction, | J,,~; An = [0, 1). Hence
by countable additivity, B

[
333

=> m(A,) =) m(A
n=0 n=0

There is no value that can be assigned to m(A) to make sense of this.
The way we deal with this is to declare that the set A is not measureable. We
will only assign a value to m(A) for a class of ‘nice’ sets.

1.1.1. REMARK. Banach showed that it is possible to define a finitely additive,
translation invariant function on all subsets of R. However in R” for n > 3, even
this is not possible. The Banach-Tarski paradox shows that if A and B are two
bounded subsets of R* with interior, then there is a finite decomposition of each:
A= U;;Ai and B = U?:lBi and rigid motions (a combination of a rotation and
a translation) which carry A; onto B;. For example let A be the sphere of radius 1
and let B be the sphere of radius 10'°. Clearly this does not preserve volume, in
spite of what common sense suggests. This decomposition requires the Axiom of
Choice, and can’t be accomplished by hand.
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1.2. o-Algebras

1.2.1. DEFINITION. If X is a set, an algebra of subsets is a non-empty col-
lection of subsets of X, i.e., A C P(X), which contains the empty set, &, and is
closed under complements and finite unions. A o-algebra is an algebra B of sub-
sets of X which is closed under countable unions. We say that (X, BB) is a measure
space.

1.2.2 SIMPLE PROPERTIES OF 0-ALGEBRAS. Let A be an algebra of sub-
sets A C P(X); and let B be a o-algebra of subsets of X.

(1) A is non-empty, so suppose that £ € A. Then E¢, @ and X = @° all
belong to A.

) fE,Fe AthenEUF, ENF = (ECUF°)°, E\ F = E N F° and
EAF = (E\ F)U(F \ E) belong to A.

(3) If E, € B, then 51 En = (Upns, ES)" € B.

(4) If E, € B, then U5, En = U, Fn where F,, = E, \ ' E; are
disjoint elements of B.

(5) If By are o-algebras for A € A, then B = (., B) is a o-algebra. So if
&€ C P(X) is any collection of subsets, the intersection of all o-algebras
containing £ is the unique smallest o-algebra containing £. This is called
the o-algebra generated by £.

1.2.3. DEFINITION. If X is a topological space, the Borel sets are the elements
of the o-algebra Borx or Bor(X') generated by the collection of open subsets of X.

A Gj set is a countable intersection of open sets. An Fj; set is a countable
union of closed sets.

1.2.4. DEFINITION. A measure on (X,B)isamap p: B — [0,00) U {oo} =:
[0, 00] such that ;(@) = 0 and is countably additive: if A = |J, A, where
A, NAy, =@if m #n, then p(A) = .o, pn(Ai). -

A measure p if finite if 4(X) < oo and o-finite if X = |, ~, E, such that
w(Ey,) < oo forn > 1. Itis called a probability measure if 1(X) = 1. A measure
w is semi-finite if for every F' € B with u(F) # 0, thereisan £ € Bwith E C F
and 0 < p(F) < oc.

1.2.5 SIMPLE PROPERTIES OF MEASURES. Let i be a measure on (X, B).

(1) (monotonicity) If E, F € B with E C F, then

p(E) = p(E) + u(F\ E) 2 p(E).
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(2) (subadditivity) If E,, € B, write |J,,~, B, = Un>1Fn where F,, C E,.
Then B B

wE) = ZM(Fn) < ZM(En)

n>1 n>1

(3) (continuity from below) If E,, € B with E,, C E,; for n > 1, then
setting Fy = &,

,U( U En) = M(UnzlE" \ Enfl) = Z#(En \ En—1)

n>1 n>1
n
= Jim, 3 B\ Bict) = lim ()
1=
(4) (continuity from above) If E,, D E, 1 forn > 0 and p(Ep) < oo, then
M( m En) = nlggoM(E’rJ
n>1
1.2.6 SIMPLE EXAMPLES OF MEASURES. Let 1 be a measure on (X, B).
E if FE isfinit
(1) Counting measure on (X, P(X))1is pe(E) = ] 1 %S _ o e.
00 if E isinfinite.

This measure is semi-finite. It is o-finite if and only if X is countable.

1 if E
(2) point mass on (X, P(X)) for z € X is 6,(E) = hre

0 if x¢FE.
This is a probability measure.

if F=0
(3) Define pon (X,P(X)) by u(E) = {go ;f Eto This is a valid

measure, but it is essentially useless. Note that it is not even semifinite.

1.2.7. DEFINITION. A measure p on (X, B) is complete if E € B, u(E) =0
and F' C E implies that F' € B.

1.2.8. THEOREM. If (X, B, u) is a measure, then

B={EUF:E,N€B, FCN, u(N) =0}

is a o-algebra and ji(E U F) := u(E) is a complete measure on (X, B) such that
f|g = p.. Moreover this is the smallest o-algebra containing I3 on which p extends
to a complete measure.

PROOF. Note that (EUF)® = (EUN)°U(N\(EUF)). So B is closed under
complements. Also if E; U F; € B and F; C N; where N; € BB and u(N;) = 0,
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then

UEuFR=JEu|JE=EUF

i>1 i>1 i>1
where F' = | J,~, Fi C U;>; Ni =t N, N € Band p(N) = 0 by subadditivity. So
B is a o-algebra. Moreover this is clearly the smallest o-algebra containing B and
all subsets of null sets.

Next we show that i is well-defined. Suppose that A = Fy U F} = E, U F;

where E; € B, F; C N; and u(NV;) = 0. Let E = Ey N E, € B. Then

ECEZ'CAC(E]UN])Q(EQUNQ)C(E]ﬂEQ)UN]UNz.

Therefore pu(E) < pu(E;) < p(E) + p(Ni) + p(N2) = p(E). So p(Er) = p(E).
Thus i(A) = p(E;) is well-defined. In particular, if A € B, then i(A) = p(A).
So fi|p = p.

To see that fz is countably additive, suppose that A; = F; U F; are disjoint, and
F; € N; where N; are null sets. Then A := U7j>1A’i = (UZ>1EZ) U (Uz>lFl)
Moreover F' = | J;»; F; C U;»; Ni =: N, and (N) = 0 by subadditivity. So

fi(A) = p( izlEi) = ZM(Ei) = Zﬂ(Ai)-
i>1 i>1
Thus i is a measure.

If £ € B, then i(E) = p(E), so fi|g = u; i.e. i extends the definition of p.
To see that [ is complete, suppose that i(M) =0and G C M. Then M = EU F
where E,N € B, F C N and u(N) = 0. Also u(E) = (M) = 0. Thus
G CMCEUN,and u(EUN) = 0. Hence G € B. Thus i is a complete
measure.

Clearly B is the smallest o-algebra containing B and all subsets of null sets.
Moreover it is clear that the only way to extend the definition of y to B and be a
measure is to set i(F) = 0 when F' C N and pu(N) = 0. Thus, this is the unique
smallest complete measure extending . |

1.2.9. DEFINITION. If ; is a measure on (X, B), then (X, B, fi) is called the
completion of L.

1.2.10. DEFINITION. Let ;1 be a measure on (X, B). A property about points
in X is true pu-almost everywhere if it is true except on a set of measure O (a null
set). Write a.e.(u) or just a.e. if the measure is understood.

For example, the statement about f : X — R saying that f = Oa.e.(x) means
that there is a p-null set N so that f(z) = 0 for z € X \ N. It does not say that
{z : f(x) # 0} is measurable, only that it is contained in the set N of measure 0.
However if 1 is a complete measure, then all subsets of null sets are measurable.
So in this case, it is true that {x : f(z) # 0} is measurable.
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1.3. Construction of Measures

We need to develop some machinery so that we can define more interesting
measures such as Lebesgue measure on the real line. Indeed, the construction of
a family of measures related to Lebesgue measure will be our main application of
this machinery at this time.

1.3.1. DEFINITION. Let X be a non-empty set. An outer measure on X is a
map p* : P(X) — [0, oo] such that

(1) w*(2) = 0.

(2) (monotonicity) if A C B, then p*(A) < p*(B).

(3) (sub-additivity) if {A; : i > 1} is a countable collection of sets, then
M*(Uizl Ai) =< Eizl 1 (4q).

In other words, p1* is a monotone, subadditive function on subsets of X. The
following easy proposition shows that outer measures can easily be produced.

1.3.2. PROPOSITION. Supposethat{&, X} C E CP(X)and p: E — [0,]
is a function with (&) = 0. For A € P(X), define

pr(A) =inf{> uE;):E €& Ac|)E}.
i>1 i>1

Then u* is an outer measure.

PROOF. Note that " (@) = 0 by definition, and that monotonicity is imme-
diate. To establish sub-additivity, suppose that {A; : i > 1} C P(X). There is
nothing to prove unless Zz‘zl 1" (A;) < oo. In this case, let ¢ > 0. For each i, find

sets Ey; € £ for j > 1sothat A; C ;5 Eijand 3,5 p(Eij) < p*(A;) +27".
Then A = {J;, A; is covered by ;> U;>, Eij and so
prA) <Y B <Y (pHA) +27) =D pt(A) +e
i>1 j>1 i>1 i>1

Since £ > 0 is arbitrary, this establishes the claim. So y* is an outer measure. W

1.3.3. EXAMPLE. Let X = R and let £ denote the collection of all bounded
open intervals. Define p((a,b)) = b — a. This determines an outer measure which
will be used to construct Lebesgue measure.

1.3.4. DEFINITION. Let p* be an outer measure on X. A subset A C X is
w*-measurable if

p(E)=p (ENA)+u* (ENA° forall EC X.
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Note that subadditivity shows that p*(E) < p*(ENA) + p*(E N A°). So we
only need to show that p/*(E) > p*(ENA) + p*(E N A°) when p*(E) < co. We
are selecting those sets A for which this is always additive.

The main result about outer measures is the following important result.

1.3.5. CARATHEODORY’S THEOREM. Let u* be an outer measure on X.
Then the collection B of all u*-measurable sets is a o-algebra, and . = p/*|p is a
complete measure.

PROOF. It is clear from the definition that if A is measurable, then so is A°€.
Suppose that A, B € Bandlet £ C X. Then

p(E)

p(ENA)+p*(EnN A%
W (ENA)+p*(ENA°NB) 4+ p*(ENA°N B°)
> (EN(AUB))+ p (EN(AUB)°).

The first line follows since A is p*-measurable. The second line follows since
B is p*-measurable. The last line follows from subadditivity of p*. This is the
non-trivial direction, so this is an equality. Thus A U B is p*-measurable.
Combining these two observations shows that B is an algebra of sets, and thus
is closed under finite unions and intersections.
Next suppose that A and B are disjoint. Then

(BN (AUB)) = p*(E N (AUB) N A) 4+ p*(E N (AUB) N A°)
= (ENA)+p"(ENB).

By induction, we see that if Ay, ..., A, are pairwise disjoint y*-measurable sets,
then for any £ C X,

HEN| A Z“ (ENA;)

Now we consider countable unions. Let A; € B fori > 1. Set B, = ;| 4;
and B = |J;>, Ai. Set A, = A;\ B;_ sothat B, = |J;_, A} and B = | J;>, 4. We
know that B,,, A}, € B. Take any £ C X. Using the additivity from the previous
paragraph,

p(E) = p*(EN By) + p*(EN By)
> (ENBy)+ p* (EN B°)

= w(ENA}) + p*(ENB°).
i=1
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This is true for all n > 1 so we can take limits and get

pH(E) > > @ (ENA) + p* (BN B°)
i>1
> (ENB)+ u*(ENB°)
> p*(E)

The last two lines use subadditivity. When p*(E) < oo, we obtain equality, and
thus B is p*-measurable. Therefore B is a o-algebra.

Next suppose that the A; are pairwise disjoint. So A} = A; in the previous
paragraph. Taking E' = B, we get that

u(B) =Y u(Ai) > u(B).

i>1

Therefore y is countably additive on B.
Finally suppose that p*(A) = 0. Then for £ C X,

W (E) < 1H(ENA) + p*(ENA) < i (A) + 17 (E) = ' (B).
Hence this is an equality, showing that A is p*-measurable and ©(A) = 0. Any

subset ' C A also has p*(F) = 0, and thus F is p*-measurable. Therefore
(X, B, n) is a complete measure. [ |

1.4. Premeasures

1.4.1. DEFINITION. A premeasure is a function 1 : A — [0, c0] defined on
an algebra A C P(X) of sets such that u(@) = 0 and whenever A; € A are
pairwise disjoint and A = ;- 4; € A, then pu(A) = .o, u(A;). In particular,
premeasures are additive: p(A1UAz) = u(Ar) + pu(Az) if Ay, Ay € Aare disjoint.

A premeasure is an improvement on the arbitrary function used in Proposi-
tion 1.3.2 to define an outer measure. In that earlier construction, the outer measure
need not reflect much about the original function . However in the case of a
premeasure, the Carathéodory construction yields a measure that extends the pre-
measure.

1.4.2. THEOREM. If i is a premeasure on an algebra A C P(X), then apply-

ing Carathéodory’s Theorem to the outer measure * yields a complete measure
(X, B, i) such that B > A and fi| 4 = fu.

PROOF. By Proposition 1.3.2, p* is an outer measure. So an application of
Carathéodory’s Theorem 1.3.5, there is a complete measure (X, B, i) defined on
the o-algebra B of y*-measurable sets.
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Suppose that A € A and A; € A such that A C |5 A;. Define
i—1
B,L:AﬂAl\UA] for ¢>1,
j=1
which belong to A since it is an algebra. By construction, the B; are pairwise
disjoint and A = Uz’ZIBi' Therefore, since p is a premeasure,

u(A) =" u(Bi) <> (4.

i>1 i>1

Therefore

pr(A) =inf { Y p(Ai): Ac A} = pA).

i>1 i>1

Now we show that A is y*-measurable. Let £ C X with p*(E) < oo, and let
e >0. Wecanfind A; € Asothat £ C |J,~; Asand Y~ u(4;) < p*(E) +e.
Notice that EN A C J;»; Ai N Aand EN A¢ C U~ A; N A°. Therefore by the
additivity of p,

pH(ENA) +p(ENAS) <Y p(AinA) + > p(A; N A°)

i>1 i>1
= u(A) < p(B) +e.
i>1

Since £ > 0 is arbitrary, u*(E N A) + p*(E N A¢) < p*(FE), which is the non-
trivial inequality; so this is an equality. Hence A is p*-measurable. We conclude
that A C Band for A € A, i(A) = u*(A) = u(A). So fi|4 = p. [

Here is further detail about the outer measure construction which explains when
the extension is unique.

1.4.3. PROPOSITION. Let ;1 be a premeasure on an algebra A C P(X) and let
(X, B, i) be the measure of Theorem 1.4.2. Let v be any measure on a o-algebra
C satisfying A C C C B such that v|4 = p. Then v(E) < i(E) forall E € C,
with equality if i(E) < oo. Moreover, if E is o-finite, then v(E) = (E). So if
is o-finite, then [i|c is the unique extension of u to a measure on C.

PROOF. Let E € C.If E C U1»21 A; for A; € A, then by subadditivity,

v(E) < S u(A) = 3 n(4).

i>1 i>1

Now take the inf over all such covers of E to obtain v(E) < fi(E).
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If i(E) < coand e > 0, we can choose the A; sothat ) 0~ p(A;) < fi(E)+e.
Let B; = A; \ U;;ll Aj, whicharein A;and A = {J;5, 4i = Uilei~ Then

v(A) = Y w(B) = 3 u(Bi) = i A).

i>1 i>1
Therefore
V(E) + v(A\ E) = v(A) = i(A) = i(E) + i(A\ E) < i(E) +&.
Sov(A\E) < i(A\E) < e. Whence v(E) > i(A) —e > a(E) —2e. Lete — 0
to get v(E) = u(E).
Now if E = {J,,~, En where fi(E,,) < oo, we may replace F,, with | J!" | E;
so that E,, C E,, . Then by continuity from below,

v(B) = lim v(E;) = lim j(E;) = i(E).

Finally if y is o-finite, then every set £/ € C is sigma-finite. Thus fi|¢ is the unique
extension of . |

1.5. Lebesgue-Stieltjes measures on R

Suppose that 1 is a Borel measure on R such that p(K) < oo if K is compact.
Then we define a function F' : R — R by

2 = w([0, x]) if >0
F() {—,u((x,())) if x<O0.

Note that F' is monotone increasing (i.e. non-decreasing if you prefer double neg-
atives). For x > 0 and x4 < z, with x,, | z, the continuity from above Prop-
erty 1.2.5(4) shows that

F(a) = p(()[0,4]) = lim p([0,2]) = lim F(xy).

n—00 n—00
n>1

This uses the fact that 14([0, 2]) < oo. Similarly if # < 0 and 0 > x,, | x, then the
continuity from below property shows that
F(x) = _:U’(U (mn,O)) = lim _M(<$na0>) = lim F(xn>
n— o0

n—00
n>1

Thus F' is right continuous.
The function F' may fail to be left continuous. For example, for the point mass

1 if >0
do, F(x) = . . If we knew that there was Lebesgue measure on
0 if <0

the line, it would determine the function F'(z) = x.
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The Lebesgue-Stieltjes construction works in the other direction. Let /' : R —
R be a monotone increasing, right continuous function. We will extend the defini-
tion to include F'(co0) = lim,_,o0 F'(x) and F(—00) = lim,_,_ o, F'(z), and these
values may include co or —oo respectively.

Set A to be the algebra of sets consisting of all finite unions of half open in-
tervals (a, b], where we allow b = 0o and a = —o0; so that (a, 00), (—o0, b] and
(—00, 00) belong to A. Since (a,b]® = (—o0, a]U (b, c0) is in A, it is easy to check
that A is an algebra. Define

1.5.1. LEMMA. pp is a premeasure.

PROOF. First let’s show that i is well defined. To this end, suppose that [ =
(a,b] = U?:] (a;, b;]. Then after rearrranging if necessary, we may suppose that
a=a <b=ay<--<b,_1=a,<b, =0 Thenif weset a, i :=b, =b,

D F(b) — Fla;) =Y Flais1) — Fla;) = F(b) — F(a).
i=1

Thus p(I) does not depend on the decomposition into finitely many pieces. This
readily extends to a finite union of intervals.

Now we consider the restricted version of countable additivity. Suppose that
I=(ab]= Ui> 1 (@;, b;]. This is more difficult to deal with because these intervals
cannot be ordered, end to end, as in the case of a finite union. One direction is easy:

since I = (J;_, (az, b]U(I \ U}, (a;, b;]) and the last set belongs to A,

n

pe(D) =Y pr((as, b)) + pe (T\ (s, b)) > ue((ai, bi]).
i=1 i=1

i=1

Taking a limit as n — oo yields that pp (1) > >, pr((as, bi)).

Conversely, first suppose that a,b € R. Fix € > 0. By right continuity, there
isad > 0sothat F(a +J) < F(a)+ . Likewise, there are §; > 0 so that
F(b; + 6;) < F(b;) + 2 %. The compact interval [a + J, b] has the open cover
{(ai, bi+0;) : i > 1}; so there is a finite subcover (a;,, b, +6;, ), ..., (as,, bi,+0;,).
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Therefore Z?: F(bi;+0i;) — F(aij) > F(b) — F(a+9). Consequently,

ZHF az; z ZF

i>1 i>1

p
> F(b, + ;) — 27e — F(ay))

(b) — (a+6)—5
(b) = F(a

) —
Now lete | 0 to get » ;- pir((as, bi]) > F(b) — F(a); whence we have equality.
Now if b = oo, we still have » ;- | ur((a;, bi]) > ,uF((a, N]) = F(N) — F(a) for
N e N. Letting N — oo, we get > <, ir((a;, b;]) > F(oo) — F(a). Similarly
we can handle a = —oc. ;

Finally if A = UZL: | (@, by] is written as a disjoint union of half open intervals,
we can split the union into m pieces and use the argument for a single interval on
each one. Thus we obtain countable additivity (provided the union remains in A).
So up is a premeasure. |

1.5.2. THEOREM. If F : R — R is an increasing, right continuous function,
then there is a complete measure (R, B, i) that extends pp. The o-algebra B
contains the o-algebra Borg of Borel sets. The restriction of fip to Borg is the
unique Borel measure iy on R such that j1p((a,b]) = F(b) — F(a) forall a < b.

Conversely, if p is a Borel measure on R such that u(K) < oo for compact sets
K C R, then there is an increasing, right continuous function F' : R — R such that
W = pp. Also given two increasing, right continuous functions F, G, ur = ug if
and only if F — G is constant.

PROOF. By Lemma 1.5.1, pf is a premeasure. Thus by Theorem 1.4.2, there
is a complete measure i on a o-algebra B containing A which extends pr. The
o-algebra B contains the o-algebra generated by A. So it contains all intervals
(a,;0) = U,>(a,b— 1], Hence it contains all open sets (because every open subset
of R is the countable union of intervals), and thus all Borel sets. The restriction yi
of fip to Borg is a Borel measure with pp((a,b]) = F(b) — F(a) for all a < b.
Since pr is o-finite, Proposition 1.4.3 shows that this Borel measure is unique.

Conversely, we showed that every Borel measure which is finite on bounded
intervals determines an increasing, right continuous function F' : R — R such that
pur((a,b]) = F(b) — F(a) for all @ < b. By the uniqueness of the construction, we
see that u = pp. Finally, if ug = pr, then

uc((a,b]) = G(b) — G(a) = F(b) — F(a) for a<b.
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It follows that G(z) = F'(z) + (G(0) — F'(0)); i.e., F' — G is constant. [

1.5.3. COROLLARY. Lebesgue measure is the complete measure m = [ip for
the function F(x) = x. The o-algebra L of Lebesgue measurable sets contains all
Borel sets, and m((a,b)) =b—aforalla < binR.

Lebesgue measure has some special properties. If £ C R and s € R, let
E+s={r+s:zx€ E}andsE = {sz:x € E}.

1.5.4. THEOREM. Lebesgue measure is translation invariant: m(E + s) =
m(E) for all Lebesgue measurable sets E C R. Also m(sE) = |s|m(E).

PROOF. The set of open intervals is invariant under translation, and hence so
is Borg. The measure my(E) = m(E + s) agrees with m on open intervals. By
Theorem 1.5.2, the measures are determined by the functions

) m((0,z]) x>0 ) me((0,z]) >0
F(z) = {—m((w,O]) r<o 4 Gl@)= {—ms((:v,O]) <0’

However as we have observed, these functions are equal. So ms = m. Hence
m(E + s) = m(FE) for all Borel sets £ C R. Now Proposition 1.4.3 shows that
there is a unique extension of m|pey, to the o-algebra £ of Lebesgue measurable
sets.

If s = 0, then m(0E) = 0 = Om(F), so suppose that s # 0. Let ns(F) =
|s|~!'m(sE). Observe that

ns((a,b)) = |s| 7 |sb — sa| = b —a = m((a,b)).

Arguing as in the previous paragraph, we see that ny = m. Hence m(sE) =
|s|ns(E) = |s|m(F) for all measurable sets E. [

1.5.5. REMARK. A point {a} has Lebesgue-Stieltjes measure
pr({al) = lim pp((a—La)) = F(a) ~ lim F(z) = F(a) - F(a")

Thus pp(a) > 0 if and only if F' has a jump discontinuity at a. In this case, we
say that a is an atom of . The only discontinuities of a monotone function are
jump discontinuities. There are at most countably many jump discontinuities. To
see this, consider how many jumps of size at least 0 there can be in (a, b]; at most
(F(b) — F(a))/d which is finite. So there are at most n(F'(n) — F'(—n)) points
in (—n,n] with a jump of more than % The union of this countable collection
of finite sets is countable, and contains all of the jumps. Note, however that the
discontinuities can be dense, say at every rational point.

Suppose that the discontinuities occur at a; with jump «; > 0 for ¢ > 1. Recall
that ¢, is the point mass that sets 6(A) = 1 if z € A and §,(A) = 0 otherwise.
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Then p, = Zi>1 ;04 1s called an atomic measure. When we subtract it from .,
we get a measure /i, = i — [ig, Which has no atomic part. There are increasing,
right continuous functions F,, and F% so that u, = pp, and yu. = prF,. Moreover
F is continuous and Fj, is entirely determined by its jumps. We can show that (up
to a constant)

Fa(x)_{ D fiv<ai<ay @ i 220

- Z{i:az<ai<0} @ if <0
This converges for every @ because }_ ;o< <,3 % < F(x) — F(0) < oo when
x >0, and similarly ;.. . <oy 2 < F(0) — F(x) when z < 0.

We conclude this section with some regularity properties of jir-measurable
sets.

1.5.6. THEOREM. Let [ir be a Lebesgue-Stielties measure. For E C R, the
following are equivalent.

(1) Eis fip-measurable.

(2) Foralle > 0, there is an open set U O E such that 1;,(U \ E) < e.
(3) Foralle > 0, there is an closed set C C E such that p;,(E \ C) < e.
(4) Thereis a Gs set G O E so that uj,(G \ E) = 0.

(5) There is an F, set F' C E so that jij,(E'\ F) = 0.

In this case,

par(E) =inf{up(U) : E C U open} = sup{ur(K) : E D K compact}.

PROOF. First assume that E is bounded. Fix ¢ > 0. Since E is measurable,
fr(E) = pp(E) = infup(A) where E C A = ;5(ai, bi]. Now fip(E) < oo
so we can choose A so that up(A) < fip(E)+¢/2. Foreachi > 1, choose ¢; > b;
so that F'(¢;) < F(b;) + 27" 'e. Let U = J,»,(ai, ;). Since E is measurable,
w(A) = ph(E) + (A \ E). Thus uh(A\ E) < £/2. Also

pr(U\A) = pr(|J0ia) <> Fla) - Fb) <e/2.
i>1 i>1
So fip(U\ E) = pp(U\ A) + pp(A\ E) <e.

Now if E is unbounded, let E,, = E N (n — 1,n] for n € Z. Find an open
set U, D E,, with u(U, \ E,) < 2-2nl=1¢ Then £ C U := Unez Un is an
open set, and pi (U \ E) < Y, 7y (Un \ Ep) < 5423,5,27" e <. So
(1) = (2).

(2) = (4). Find open sets Uy, D> E with p},(U,\ E) < +. Set G = ;5 Un.
This is a G set containing E such that y(G\ E) < pi(U,\E) < L foralln > 1.
Hence ;1}.(G \ E) = 0.
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(4) = (1). Since iy is complete and p}.(G \ E) = 0, the set G \ E is
[irp-measurable. Since pr is a Borel measure, G is also fip-measurable. Therefore
E =G\ (G\ E) is ip-measurable.

(1) = (3). If E is measurable, so is E€. By the equivalence of (1) and (2),
there is an open set U O E° such that pu},(U \ E¢) < e. Let C = U*, which is
closedand C' C E. Then puj(E\ C) = pj(U \ E°) < e.

(3) => (5). Select closed sets Cy, C E with pjn(E\ Cp) < L. Let F =
U1 Cn- Thisis an Fy; set contained in £ such that . (E\ F) < pp(E\Cy) < 1
forall n > 1. Hence puj.(E \ F) = 0.

(5) = (1). Since fir is complete and pj.(E \ F) = 0, the set £ \ F is
[ -measurable. Since up is a Borel measure, F' is also jip-measurable. Therefore
E =FU(FE\F)is ip-measurable.

For the final statement, the first statement holds by (2), and the second holds by
(4) provided that we use closed sets. If F is bounded, the closed sets are compact.
So suppose that F is unbounded. Set E;,, = E N [—n,n|. Then

fir(E) =sup fip(Ey,) =sup  sup  pup(K). L
n>1 n>1 E, DK compact



CHAPTER 2

Functions

2.1. Measurable Functions

2.1.1. DEFINITION. Let (X,.A) and (Y, ) be measure spaces. A function
f: X =Y is measurable if f~'(B) € Aforall B € B.

In particular, f : X — F € {R,C} is measurable if f~!(B) € A for all
B € Bory; i.e. for all Borel sets B C F.

We are most often interested in scalar valued functions, i.e. with range in R or
C. We always use the o-algebra of Borel sets, not Lebesgue measurable sets, when
defining measurable functions.

It is not necessary to verify the measurability condition on all Borel sets, only
on a generating family. That is, if £ C 3 generates BB as a o-algebra and f~!(E) €
Aforall E € &, then f is measurable. This follows from the easy facts:

FHE) = (HE) and Y E) = U (B

n>1 n>1
So the following proposition is immediate.

2.1.2. PROPOSITION. Let (X, A) and (Y, B) be measure spaces.

@ Iff: X =Y, then{B € B: f(B) € A} is a o-algebra.

®) If f : X = R, the following are equivalent:
(1) f is measurable.
(2) {z € X : f(x) < a} is measurable for all o € R.
(3) {z € X : f(z) < a} is measurable for all o € R.
(4) {x € X : f(x) > a} is measurable for all o € R.
(5) {x € X : f(x) > a} is measurable for all o € R.

© If f : X — C, then f is measurable if and only if Re f and Im f are
measurable R-valued functions.

2.1.3. COROLLARY. Let X be a topological space, and consider (X, Borx).
Continuous functions f : X — F are (Borel) measurable.

16
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PROOF. Since f is continuous, if U C F is open, then f~!(U) is open and thus
Borel. |

The following records some basic operations that preserve measurability.

2.1.4. PROPOSITION. Let (X, B) be a measure space.

(a) Suppose that f,qg : X — I are measurable. Then f + \g for A € F and
fg are measurable; and if g # 0O, then f /g is measurable.

®) If fr, :+ X — R are measurable, then sup f,, inf f,, limsup f, and
liminf f,, are measurable. Thus, if f = lim f, exists pointwise, then
f is measurable.

PROOF. Clearly if A # 0, then g is measurable if and only if \g is measurable.
So consider f + g. Note that

{z: f(2) +g(x) <a} = [J{z: f@) <r}n{z:g(z) <a-r}eB.
reQ
So f + g is measurable. Now consider fg. If & > 0, then

{z: fx)g(z) <a} = ({z: f(z) >0} n{z:g(x) <0})
U ({a:f(:z:) <0}Nn{x:g(x) 20})
U J Az 1f@)l <riniz:g@)| < a/r}
reQt

This lies in B. Also

{z: f(z)g(z) <0} = ({z: f(z) >0} n{z: g(z) < 0})
U({a: f(z) <0} n{z:g(z) > 0})
And finally, if o < 0, then

{z: f2)g(x) <a}= | ({z: f(2)>r}n{z:g(z) <a/r})
reQt

U U ({x f(x) <afryn{x:g(x) > T})
reQt
Thus fg is measurable. Finally, if g # 0, then for a > 0, {z : 1/g(z) < a} =
{x:g(x) >a '} U{z: g(x) < 0};also {x: 1/g(x) < 0} = {z : g(x) < 0};
andif o < 0, {z: 1/g(z) < a} = {x: a~! < g(x) < 0}. So 1/g is measurable.
Thus f/g is measurable by the product result.
Now suppose that f,, are measurable for n > 1. Then

{z tsup fr(z) > a} = U{x fa(z) > a} € B.

n>1
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So sup f, is measurable. Similarly inf f,, is measurable. Therefore limsup f,, =
infy>1 sup,,>, fn is measurable, and similarly for liminf f,,. So f = lim f,, exists
pointwise means that f = limsup f,, = liminf f,,. So f is measurable. |

When the measure is complete, changing things on a set of measure 0 has no
important consequence.

2.1.5. PROPOSITION. Let p be a complete measure on (X,B). Then if f is
measurable and g = fa.e.(u), then g is measurable. Also if f,, are measurable
and f is a function such that f, converge to f a.e.(u), then f is measurable.

PROOF. Suppose that NV is a null set such that f = g on X \ N. For any Borel
set BC R, f~1(B)Ag~'(B) C N. As these two sets differ by a subset of a null
set, they differ by a null set by completeness. So one is measurable because the
other is.

Suppose that f(x) = lim f,,(x) except on a null set N. Then f = limsup f,
except on N, and hence is measurable by the previous paragraph. |

2.2. Simple Functions

2.2.1. DEFINITION. Let (X, B) be a measure space. A simple function is a
function ¢ : X — C of the form

n
o(z) = ZaiXEi where a; € C*, E; € Band E; N E; = @ fori # j.

i=1

A simple function is just a measurable function with finite range. Indeed, the
range of ¢ is contained in {a; : 1 < i < n} U {0}. Conversely, if the range of a
measurable function ¢ is contained in {a; : 1 < < n}U{0} with a; # a; # O for
i # j, then we can set E; = ¢~ !({a;}). These are disjoint, and p = Y"1 | a;X ;.
This is called the standard form of a simple function.

Note that the set of all simple functions is an algebra, meaning that it is a
vector space and is closed under products. The subset of simple functions such that
wu(E;) < oo for all 7 is a subalgebra.

The main result of this section is that every measurable function is a limit of
simple functions in a nice way.

2.2.2. PROPOSITION.
(@ If f : X — [0,00] is measurable, then there is a sequence of simple functions

©n, S0 that ¢, < ©pi1, imy, 00 n(z) = f(x), and convergence is uniform on
{z: f(z) < R} forany R € R.
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) If f : X — C is measurable, then there is a sequence of simple functions p,
so that || < |@n+1], imp—oo on(z) = f(z), and convergence is uniform on

{z:|f(x)| < R} forany R € R.

PROOF. (a) Forn > 1,let Ay, = {z : £ < f(z) < L} for0 < k < 47
and Ay4n ,, = {x : f(x) > 2"}. Define simple functions

4n
k

k=1

Observe that
. 4n+1
Ak,n = AZk,n+1UA2k+l,n+l for0 <k < 4™ and A4n7n = Uk_2.4nAk,n+l-
Moreover for 0 < k < 4™,
4n+1
k 2k 2k+1 n k
7 XAy S 5arm XAg i T e XAy and 2 XAy, < Z 3T X Ag -
k=2.4n

Thus ¢, < @pt+1 < f. Moreover, if f(z) < 2N then f(x) — pnp(x) <27 for
alln > N; and if f(z) = oo, then ¢, (xz) = 2". Thus lim,,_, ¢, = f point-
wise. Moreover convergence is uniform on {z : |f(x)| < R} since our estimate is
uniformly good once 2" > R.

(b) Let f = g1 —ga+igs—igs where g; = max{Re f,0}, g» = max{—Re f,0},
g3 = max{Im f,0} and g4 = max{—Im f,0}. For each 1 < i < 4, apply part (a)
to get sequences of simple functions 1; ,, increasing to g;. Then the sequence

Pn = wl,n - ¢2,n + i¢3,n - iw4,n
works. Details are left to the reader. [ |

2.3. Two Theorems about Measurable Functions

Littlewood had three principles of Lebesgue measure:

e every measurable set of finite mesure is almost a finite union of intervals
(use Theorem 1.5.6(2) and throw out the very small intervals).

e Every measurable function is almost continuous (Lusin’s Theorem).

e A pointwise convergence sequence of measurable functions is almost uni-
formly convergent (Egorov’s Theorem).

2.3.1. EGOROV’S THEOREM. Let (X,B,u) be a finite measure space,
ie, w(X) < oo. Suppose that f, : X — C are measurable functions and
fn — fae.(u). Then for e > 0, there is a set E € B with n(X \ E) < ¢ so
that f, — f uniformly on E.
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PROOF. Observe that f,, — f uniformly on F provided that for each m > 1,
there is an integer N, so that | f,(z) — f(2)| < L forallz € E and all n > N,,.
Define

Amy = {22 |fale) = f2)| < 3, ¥n 2 Ny = () {a | fule) = f(2)] < ).
n>N
Note that A,,, | C Ay, 2 C ... and that

U Ammn D {xfn(x) —>f($)} :X\N

n>1
where N is a null set. Since X has finite measure, we can choose an integer
Np, so that i(Am nN,,) > p(X) —27™e. Hence pu(Ay, ) < 27™Me. Let B =
Min>1 Am,N,,- Then,

(E°) = p( U Ann) < Z (AT, N,,) < Z 27Me =e.

m>1 m>1 m>1

By the first line of the proof, f,, converges uniformly to f on F. |

2.3.2. LUSIN’S THEOREM. Let f : [a,b] — C be a Lebesgue measurable
function, and let € > 0. Then there is a continuous function g € C|a,b] so that

m({z: f(z) # g(x)}) <e

PROOF. If ¢ = ", a;Xp, is a simple function and 6 > 0, we can find
compact sets A; C E; so that m(J" | (E; \ A;)) < 4. Observe that K = [J 4; is
compact and ¢|x is continuous as a function on K (because it is locally constant).

Choose simple functions ¢, converging pointwise to f. Find compact sets K,
so that ¢y, is continuous and m([a,b] \ K,) < 27" 'e. Then Ko = () K, is
compact, each ¢, |k, is continuous, and

m([a,b]\ Ko) <Y m([a,b]\ Kn) < /2.

By Egorov’s Theorem, there is a measurable set £ C Ky with m(Kp \ E) < ¢/4
so that so that ¢, converge uniformly to f on E. Then by Theorem 1.5.6, there
is a closed set K C E with m(FE \ K) < ¢/4. Since ¢, |k are continuous, and
converge uniformly to f|x, we see that f|x is continuous. Also
E € €

m([a,b}\K) < m([a,b] \Ko) +m(Ko\E)+m(E\K) < §+Z +Z =e.

It remains to extend f|x to a continuous function g on [a, b]. This is a (non-
trivial) exercise in a basic real analysis course. Just make g piecewise linear on
each open component of the complement. Once achieved, {z : f(x) # g(z)} is
contained in [a, b] \ K, thus has measure less than ¢. [



CHAPTER 3

Integration

The goal of this chapter is to develop a theory of integration with respect to an
arbitrary measure.

3.1. Integrating positive functions
We begin by considering the integral only of positive functions. Moreover, we
insist that the function be measurable. We fix a measure space (X, B, i1). Let
LT ={f: X — [0, 0] measurable}.

Notice that L™ only depends on the measure space (X, ) and not on u. The
simple functions have a very natural definition of integral. We bootstrap that into a
definition for positive measurable functions. Remember that simple functions only
take finite values.

3.1.1. DEFINITION. If ¢ =", a;Xg, is a simple function in L™, set

/sodu = aiu(E;).
=1

We use the convention that 0 - oo = 0 = oo - 0. For general f € L™, define
/fd,u,:: sup{/apdu:0§ o < f, (psimple}.

Also define / fdu:= /fXA dp for any measurable set A € B.
A

The convention that 0 - co = 0 means that f = 0Xx has / fdu = 0 even

if u(X) = oo; since the integral of a simple function should not be changed by
adding a zero function to it. The second identity oo - 0 = 0 is also needed to
coincide with the notion that the value of f on a set of measure 0 should not affect

the integral. So / 00Xz} dpp = 0'is p(w) = 0. At this stage, we allow oo both as a

value of f and of the integral. Later, in some cases, we impose further restrictions.

21
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In various books, you will see the following notations which all mean the same

thing:
[tan [ 1@ an), [ @ u, |1

Of course, the last one will only make sense if the measure p is known. We will
use this when convenient to simplify the notation.

3.1.2. LEMMA. Let ¢, be simple functions in L', and let f,g € L.
(@) [ @ dupis well defined.
(b) If ¢ > 0, then [ codu=c [ pdpu. W) [efdp=c/[ fdu
© [e+vdu=[odu+ [Pdp
(d) If<p<¢thenfsodu<f¢du Y Iff<g [fdu< [gdp
() v(A) = [, pdu for A € B defines a measure on (X, B).

PROOF. (a) Suppose that ¢ = > " | a; X, = > bjX ;. We can disregard
zeros, so we may suppose that a; # 0 # b;. Moreover since the E; and Fj are
pairwise disjoint collections, we have that {a; : 1 <i <m} ={b;: 1 < j <n}
Let cq,. .., ¢, be the distinct non-zero values of ¢, and set Ay, = {z : p(z) = ¢}
for 1 < k < p. Then

Ak = U{EZ Lap = Ck} = U{F] : bj = Ck}.

Therefore
n p
S aip(B) = o Y ulE)
=1 k= a;=cg
101 ' P
=> an( |J E) =) crn(Ar)
k=1 a;=cy, k=1
P
=Sl U £) =3 hucs
k=1 bj=ci

(b) is trivial, and (b’) follows because
{p:rpeL", simple, p <cf}={cp:peL", simple, p < f}.

For (c), suppose that o = > a;Xg, and ¢ = ZTZO bjXF,;, where we add in
the term ag = by = O and Ey = (U, E;)“ and Fyy = (U;‘:l F;)¢ in order that
X =UEi = U?:()Fj- Define A;; = E; N F;for0 <: <mand0 < j < n.
Then

m n

SOIZZCMXAW w:ZZbiXAU and (P"i'l/):ZZ(ai‘Fbj)XA

i=0 j=0 i=0 j=0 i=0 ij=0
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Therefore using (a), we get

/90 +vdp = Z Z(az + ;) p(4ij)

i—0 j=0

= Z a; Z n(Aij) + Z b; ZN(AW)
=0 7=0 7=0 =0

- Z aifu( U Aj) + Z bip( U Aij)
=0 7=0 7=0 i=0

CL“LL i ‘|‘ b; ,u gOd,u + z/)d,u

=2 Z () = [edu+ [

(d) Write ¢ and ¥ as in (c), and note that
m n m n
p=2 2 X, S¥=3 ) biXa,
i=0 j=0 i=01 j=0
means that a; < b; if A;; # . Therefore by (a),

/«pdu Zzazu i <ZZW i) /@Z}du

i=0 j=0 i=0 j=0
(d") follows because
{p:pe LT, simplep < f} C{p:pcL", simple p < g}.
(e)Clearly v(@) =0 and v takes values in [0, 0o]. Suppose that A; are pairwise
disjoint sets in B with A = [ ;>14;. Then

() = [ pdu= S a(Bi0 A)
=1

= Zai,u( . j>1Ei NAj;) = ZaiZM(Ei N 4;)
i=1 - gzl

i=1

= ZZaiu(Ei NA;) = Z/A‘SOCZ,U = ZV(AJ').

i1 i=1 j>1 j>1

Thus v is countably additive, and hence is a measure. |

3.2. Two limit theorems

This section establishes two fundamental limit theorems, and extends the addi-
tivity of the integral to arbitrary functions in L.
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3.2.1. LEMMA. Let ¢ > 0 be a simple function,. Let A,, € B with A,, C An11
and J,,>, An = X. Then

lim gpdu:/cpdu.

n—oo A

PROOF. Letv(A) = / © dp be the measure defined in Lemma 3.1.2(e). Then
A

lim pdp = lim v(A,) =v(X) = /cpdu

n—oo A n—oo
n

by the property of continuity from below. |

3.2.2. MONOTONE CONVERGENCE THEOREM. Let (X, B, 1) be a mea-
sure space. Let f, € L' such that f, < fni1 for n > 1. Define f(z) =
limy, 00 frn(x). Then

/fdu:nlgrgo/fndu.

PROOF. Since f,(z) is increasing, the limit always exists in [0, co]. Also since
Jn < fat1 < f, we have that

/fndué/fn+1du§/fdu.

Thus limy,_, [ f5 dp exists in [0, co] and is no larger than [ f dpu.

Conversely, suppose that ¢ < f is a non-negative simple function, and let
e > 0. Define 4, = {z : fo(z) > (1 —e)p(x)}. Since p(zr) < oo and
falz) = f(x) > ¢(x), we have A, C A,4q1 and |J,,~; An = X. Therefore
by Lemma 3.2.1,

(1—5)/gpd,u: lim (1—e)pdu < lim/ frndp < lim /fndu.
n n—oo A’IL n—oo

n—oo A

Let ¢ | 0 to get that [ pdp < lim, o [ fy du. Taking the supremum yields
J fdp <limy_yoo [ frn dp. So equality holds. [ |

3.2.3. COROLLARY. The integral is countably additive on L. That is, if f,, €

LY forn > 1, then
j[jz:fndﬂzzjzzj/fndﬂ‘

n>1 n>1
PROOF. Apply MCT to the sequence g, = ZZ:] fn- |

3.2.4. COROLLARY. If f € L, v(A) = [, f du is a measure on (X, B).
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PROOF. Countable additivity is a special case of the previous corollary; since

3.2.5. LEMMA. If f € L, then [ fdu = 0ifand only if f = Oa.e.(u).

PROOF. If f = Oa.e.(u) and 0 < ¢ < f where ¢ = > " | a;Xp, is a simple
function, then a; > 0 implies p(E;) = 0. Therefore [ pdp =Y i, a;ip(E;) = 0.
Hence [ fdu = supg< < [ pdu = 0.

Conversely, suppose that [ fdp = 0. Let E = {x : f(z) > 0} and E,

{z: f(x) > +}. Then ¢, = 2Xp, < f. S00 = [ fdu> [ondp = Lu(Ey).
Therefore u(E) = limy, 00 u(Ey,) = 05 ie. f = 0a.e.(u). [

3.2.6. COROLLARY. If f, fn € L such that f, < fni1a.e.(u)forn > 1and
f(x) =limy, o0 fr(z)a.e.(u), then

/fdﬂz lim /fndu
PROOF. Define

Ep={z: fu(x) > fas1(z)} forn >1 and EO:{x:nILrgofn(x)#f(x)}.

Then p(E,) = 0 for n > 0 by hypothesis. Let £ = |J,,~ En. Then u(E) = 0,
faXge < frni1Xge and fXge = lim, o0 fnXge. So by the MCT and Lemma 3.2.5,

/ fdp = / FXer dpy = lim / FaXpe dj = lim. / £ d. n

3.2.7. EXAMPLE. Things don’t work out quite as well for limits which are not
monotone. For example, let f,, = %X[O,n] € L™ (m). Then f,, — 0 uniformly on
R. However,

lim | fy m—hml—l;éo—/Odm.

n—oo

The following theorem provides an important inequality.

3.2.8. FATOU’S LEMMA. Let (X, B, i) be a measure space. Suppose f, € L™
forn > 1. Then

/lim inf f, dp < lim inf/ fndu.

PROOF. Let g (x) = infy>y, fi(x) < fo(z). Then g, < gpy1 forn > 1, and
liminf f,, = lim,,—,cc g5- Therefore by MCT,
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/liminffn dp = lim /gn dp = liminf/gn dp < liminf/fn dp. W
n o

3.3. Integrating complex valued functions

3.3.1. DEFINITION. Let (X, BB, ;1) be a measure space. A measurable function
f: X — Cisintegrable if

171 =/!fdu<00-

The set of all integrable functions will be (provisionally) called L' (p). Write f =
fi—fat+ifz—ifs where fi = Re f V0 =max{Re f,0}, f» = (—Re f) VO,
fa=ImfVvO0and f3 = (—Im f) V0. If f is integrable, define

[ fan- /fldu [rdusi [ fadu=i [ fid

Note that since f; € L' and f; < |f|, we have [ fidu < [|f]dp < co. So
| f du is defined as a complex number.

The reason for the temporary nature of our definition of L'(y) is that this is
not a normed vector space, due to the fact that if f = Oa.e.(u), then || f]|; = 0. So
|| - ||1 is just a pseudo-norm. That is, it satisfies | Af||; = |A|||f]||1 and the triangle
inequality, but is not positive definite. We will rectify this soon by identifying

functions which agree a.e. into an equivalence class representing an element of
L' ().

3.3.2. PROPOSITION. L'(u) is a vector space and || - || is a pseudo-norm.
That is, it is positive homogeneous: || \f|1 = ||| fll1 for A € C, and the triangle
inequality holds, but || f||1 = 0 if and only if f = Oa.e.(uu). The map [ taking f to

[ f du is linear; and
| [ | < [1f1du= 1511

PROOF. Showing that L'(y) is a vector space is straightforward. Multipli-
cation by a real number or an imaginary number merely scales and shuffles the
functions f;, so homogeneity for these scalars is easy. In general, you need to write
out A = a + b and chase some details which are left to the reader.

Lemma 3.2.5 shows that || f||; = 0 if and only if f = Oa.e.(x). The triangle
inequality is also straightforward: if f,g € L'(y), then

I + gl =/|f+9!dl£§ /\f|+\g|du= 17+ Nl
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Linearity follows from linearity of the integral in LT, and is left to the reader.
Let f € L'(u) and choose 6 so that [ f = ¢| [ f|. Then

‘/f‘ :/ewf:Re/ewa/Reewf,

Write Ree ™ f = g1 — gp, where g; = Ree ™™ f Vv 0and g = —(Ree ¥ f) v 0.

Then
Og/Ree_wf:/gl—92§/91+92§/|f|-

Combining these two formulae, we get the desired inequality. |

We now arrive at the most important limit theorem in measure theory. With
this result and MCT, you can deal with most situations that arise.

3.3.3. LEBESGUE DOMINATED CONVERGENCE THEOREM. Suppose

that fn,g € L'(u), g > 0, such that lim f, = fa.e.(u) and |f,| < ga.e.(u) for
n—oo

n > 1. Then f € L' (1) and

/fdp:nlin;o/fndu.

PROOF. First assume that f,, are real valued. Then we apply Fatou’s Lemma 3.2.8
to the sequences g + f,, in L™ to get

/g+fdu§1iminf/g—|—fndu:/gdu+liminf/fndu
and
/g—fd,ugliminf/g—fnd,u:/gdu—limsup/fndu.

Since [ gdu < oo, it can be cancelled off and we obtain that

1imsup/fndu§ /fd,ugliminf/fndu.

It follows that | fdu = lim,_.o [ fn du. In particular, applying this to | f| and
| f| we obtain that

190 = [ \fldn = tim [ 15.0dn < [ gdu<oc.

So f € L'(u) and thus is integrable.
In general, split f as the sum of its real and imaginary parts, use the real result,
and then recombine. |
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b n

3.3.4. EXAMPLE. Consider lim ———55dr for 0 < a <b < oo
n—oo J, 14+ n*x

L So lim f,(z) = 0 forall z > 0. The
n—oo

n —
1+TL2272 - %“FTLQ}Z‘

Observe that f,(z) =

function h(t) =t + %xz attains its minimum at ¢ = x. Thusif 0 <z < 1,

Ful@) < 1 1 1
sup f(z) < sup —— = —— = —.
w1 o<t<1 h(t)  h(z) 2=
On the other hand, if z > 1, then
1 1 1
su ) < su = = .
WP S S TR T 12
1 .
5 f 0 <1
So if we set g(z) = 29”1 1 STS ,then 0 < f,, < g. The problem is
1422 if =z Z 1

that g & L'(0, co) since fol ﬁ dx = +oo. However if 0 < a < 1, then

00 1 00
/g(w)da::/zlxdaﬂ—/ Hlmzdx:%lnx
a a 1

Hence as long as a > 0, the Lebesgue dominated convergence theorem (LDCT)
applies. So lim,, o f; fndp = 0. However if a = 0,

: RN | 1
+tan~ (3:)’ =5lna +5 < oo.
a 1

b b, ~ b ~
/0 fn(z) dz :/0 mdfc = tan (n:n)‘o =tan" (nb).

So
b

b
lim [ fu(z)de = lim tan~'(nb) = — # / 0dx = 0.
n—00 2 0

n—0o0 0

Thus the domination condition by an integrable function is crucial.

3.4. The space L'(u)

For the purposes of this section, let £'(x) denote the vector space of all y-
integrable functions.

3.4.1. DEFINITION. Given (X,B,u), let N = {f € L'(u) : || f|li = 0} =
{f measurable : f = Oa.e.(u)}. Put an equivalence relation on L' () by f ~ g if
f =gae.(u);ie. if f —g € N. The normed vector space space L'(u) = L' /N
consists of the equivalence classes with the induced norm ||[f]||; = || f||:- By abuse
of notation, we will frequently write f € L' (1) when we mean [f].

3.4.2. THEOREM. L'(u) is a complete normed vector space (a Banach space).
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PROOF. It is easy to check that V' is a subspace of the vector space £! (1), so
that the quotient L' (1) = £' /N is a vector space. Notice that by Proposition 3.3.2,
f=gae.(n)ifandonlyif f —g € Nifand only if || f — g||; = 0. If [f] is an ele-
ment of L' () and f ~ f',then h = f'— f = Oa.e. Thus [ |f/|du = [|f]|dp. So
I[f]ll1 is well defined. The construction has quotiented out all non-zero elements
of zero norm, and thus the norm on L!(p) is positive definite. It is easily seen to
be positive homogeneous. The triangle inequality follows immediately from the
triangle inequality for £! (). Thus L' (x) is a normed vector space.

Now suppose that ([f,])n>1 is a Cauchy sequence in L'(u). Choose repre-
sentatives f, € [f,] so that we can evaluate them at points. For each k£ > 1,
there is an ny so that if m,n > ny, then || f,, — falli < 27%. In particular,

[ frrr = Frellt < 27 Letg = | fra| + Zkzl | frksr — Jnil- By the MCT,

lolli = [ gdi= [Vl Y [ 1y = il

E>1

= anlHl +Z ”fnk-H - fnkHI < Hmel +22_k < 00.

k>1 E>1

Hence g is integrable, and therefore is finite a.e.(u), say on X \ N for u(N) = 0.
It follows that the sum

@) = fn(@) + Y frr (2) = oy (@) = lim fo, (2)
E>1

converges absolutely on X \ N. We define f|ny = 0. Moreover | f| < g so that f is
integrable, and f = limy_,o fp, a.e.(11). Also

k—1
ol S Wl + D Wi = sl < 9.

i=1

Therefore | f — fp, | < 2g¢; and so by LDCT,
0=|If = flh = lim [[f = falh-
k—o0

That is, f,,, converges to f in L'(x). Finally a standard argument shows that the
whole Cauchy sequence ( f,,) converges to f in norm. [

3.5. Comparison with the Riemann Integral

We will do a speedy review of part of the Riemann integral theory. Given a
bounded real valued function f on a finite interval [a, b], we consider a partition
P={a=xzy <z <--- <xzy = b} of [a,b]. Define real numbers

Mj= sup f(z) and m;= inf f(z) for 1<j<n.

z;_1<z<z; rj1<zx<z;
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Then

Ip(z) = miX{a} +ijx(afj71,wﬂ < f < MiXq) —I—ZMJ'X(J;J;IJJ_] = up(x).
j=1 j=1

The upper and lower sums are
L(f,P) :ij(a:j —:Cj_l) and U(f,P) = ZM]'(.T]' —a;j_l).
j=1 J=1

If P and Q are two partitions, let P vV Q denote the partition using the points in
P U Q. Itis easy to show that

L(f,P) < L(f,PVQ) <U(f,PVQ) <U(f Q).
It follows that
sup L(f,P) < ing(f, Q).
P

A function f is Riemann integrable if for every € > 0, there is a partition P so
that

U(f,P) = L(f,P) = > _(M; —m;)(z; — xj-1) <e.
j=1
In this case, one defines

b
/ f(z)dx :==sup L(f,P) =infU(f, Q).
a P Q

If one defines the mesh of a partition as mesh(P) = max;<;<n £; — 1, then
forany € > 0, thereis a0 > 0 so that if mesh(P) < ¢, then U(f, P)—L(f,P) < e.
Hence we can take a nested sequence of partitions P; C P,, C Pp41 C ... with
mesh P,, — 0 and conclude that

b
[ #@)do= tim L(£,P,) = fim V(. P,

3.5.1. THEOREM. Every Riemann integrable function f on |a,b] is Lebesgue
b

integrable, and / fdm= / f(z)dx.
a

PROOF. Notice that a Riemann integrable function is approximated from above
and below by a special class of simple functions, the piecewise constant functions,
Ilp < f < up. Moreover the Lebesgue and Riemann integrals agree on these
piecewise constant functions. Take a nested sequence of partitions P, as above
with mesh PP,, — 0 and observe that

lpn S lp’rH»l S f S uPn+1 S upn'
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Define [(z) = limy, 00 Ip, () and u(x) = limy, o, up, (). Note that [ < f < w.
These functions are Lebesgue measurable. Moreover, lp, — Lp, > 0 and increase
to [ — lp,. Since lp, is integrable, the MCT shows that

/ldm:/lpldm—i— 1i_>m /l'pn—l'pldm

= lim [ Ip,dm = lim L(f,P,) /f

n—oo n—oo
b
Similarly, /udm = / f(z) dz. In particular, /u—l dm = 0. By Lemma 3.2.5,

u—1=0ae.(m). Therefore | = f =wa.e.(m), so that f is measurable and
b
/fdm:/udm:/f(a:)dx. [

3.5.2. REMARKS. There is one situation where the Riemann integral can do
something that the Lebesgue integral can’t. That is the improper Riemann integrals
in which a function which is not Riemann integrable and be integrated as a limit.
00 .-
. . sinz . .
The typical example is —— dx. The integrand extends to be continuous at
T

0
x = 0, so that is not an issue. In the Riemann theory, this integral is evaluated as

o
sin sinzx
/ ——dz = lim dx.
0

X r—o0 Jq T

This can be shown by a number of techniques to equal 7. The reason it is not
Lebesgue integrable is that this integral exists only as a conditional limit, and

sin
—— | dx = lim
rT—>00

So this function is nelther Lebesgue nor Riemann integrable. However if a function
f is Lebesgue integrable, then so is | f|.
Let’s examine this example in more detail.

00 o 0 r(ntl)m o0
sinx sin x

dr = dr = —1)"a,

/o v Z/n o= (1)

n=0 ™ n=0

sinx

‘dm——i-oo

0

where forn > 1,

(n+1)m | o 1 T 2
an:/ | sin 2| de < — sinxdr = —
n

x x nm Jo nm

and

(D7 sin 2| 1 T 2
anp = de > —— sinzdr = —.
nr z (n+1D)m Jo n
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It follows that a,, > ey +1)
Z;:O:O(—l)”an converges by the alternating series test. It also shows that

o0
sinz (ntD)m |sma:|
dv =) Z an.
0 n=09"m

™

> ap4 forn > 1; so a, — 0 monotonely. Therefore

: 2
Since Ay, > m

for n > 1, this series diverges by comparison with the harmonic
series.

The other place where an improper Riemann integral is requires is the integra-
tion of unbounded functions. The Riemann theory works only for bounded func-
tions. A function like f(z) = 7 for 0 < a < 1 has an improper Riemann integral
on [0, 1]. Since this function is positive and continuous with a finite integral, it is
Lebesgue integrable. It is possible again to construct a function with alternating

sign on (0, 1] that blows up near 0 so that the improper Riemann integral exists as

1 1
/0f(ar:)dac:;i_%/(E f(z)dx

1
but so that the absolute value is not integrable. An example is / — sin — dz, which
o T x

: . . * sinw .
after the change of variables u = é converts this to the integral / —— du which
1

U
we have already analyzed.

When you have to integrate specific functions, you will usually find yourself
falling back on the many techniques that have been developed for the Riemann in-
tegral. Almost all explicit functions that you will need to integrate will be Riemann
integrable or at least locally Riemann integrable.

The power of the Lebesgue integral lies in the limit theorems MCT and LDCT.
These are much stronger than anything available in the Riemann theory. Also we
obtain the completeness of L'(x) and many other related spaces that allow the
power of functional analysis to apply.

There is a nice characterization of Riemann integrable functions due to Lebesgue.

3.5.3. THEOREM. If f : [a,b] — R is a bounded function, then f is Riemann
integrable if and only if f is continuous except on a set of measure 0.
PROOF. Define functions

U(z)=inf sup f(y) and L(zx)=sup inf f(z2).
0>0y—z|<s 50 |2—w[<d

It is an easy exercise to show that f is continuous at  if and only if L(z) = U(x).
The quantity w(f,z) = U(xz) — L(x) is called the oscillation of f at x.
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Suppose that f is Riemann integrable. We use the notation from the proof of
Theorem 3.5.1. Choose an increasing family of partitions P,, with mesh(P,,) — 0,
and define lp, , !, up, and u as before. Let

A={z:l(@) #u@)} U, Pa

The set {z : [(z) # u(z)} has measure 0, and | J,~| Py, is countable. Therefore
m(A) = 0. Moreover

nlggo up, (z) —lp, () =u(z) — () =0 for =z € [a,b]\ A.

If z € [a,b] \ A, choose n so that up, () — Ip, (x) < €. Then there are adjacent
points z;—| < x; in P, so that z;_| < x < x;. Let § = min{x — z;_1,x; — x}.
Then since up, and Ip, are constant on (x;_1, z;] and are upper and lower bounds
for f, respectively, it follows that
Ulr) ~ L) < sup f(y) ~ F(2) < up, (@) ~ Ip, () <=

ly—=z|<d

|z—x|<6
Since ¢ > 0 is arbitrary, we have U(z) = L(z), and thus f is continuous on
[a,b] \ A, whichisa.e.(m).

Conversely suppose that f is continuous except on a set A of Lebesgue measure

0. Then U(x) = L(z) for x € [a,b] \ A. Note that A = |J,,~, A, where 4,, =
{z € [a,b] : U(z) — L(z) = w(f,z) > 27"}. The set A, is closed because its
complement is open: if w(f,z) < r, then there is a § > 0 so that

sup f(y) — f(z) <r. Soif|a’ —z|=d <, sup f(y) — f(z) <.
ly—z|<d ly—a'|<6—d
|z—a[ <0 |z—2'|<6—d

Thus w(f,z’) < r as well. Cover A,, with a countable family of open intervals
of total length at most 27", Then since A,, is compact, there is a finite subcover
Ii,...,I. Let B = [a,b] \ U}, I;. Foreach z € B, since U(x) — L(z) < 27",
there is an open inteval J, 3 x so that the oscillation over J is less than 27". The
collection {J, : x € B} is an open cover of the compact set B. Therefore there is
a finite subcover Jy, ..., Jy,.

Let P be the partition consisting of the endpoints of Iy, ..., L, Jo ..., Jz,
(together with a, b if necessary). Any of the intervals [z;_;, z;] contained in the
union (J]_, J,;; will have oscillation less than 2", meaning up, (z) —Ip, (z) <27"
on (z;—1,x;]. The remaining intervals are contained in [ J;" I, and thus have total
length at most 27". The only thing we can say is that up, (x) — Ip, () < 2| f|lco
on these intervals. Therefore we obtain the estimate

p m
U(f,Pa) = L(£,Pa) <2783 m(Je,) + 2 flloo Y m(Ls)
j=1 i=1

<27F(b—a+2||f]le)-

As n — o0, this converges to 0. Hence f is Riemann integrable. |
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3.6. Product Measures

3.6.1. DEFINITION. If X, for A € A are non-empty sets, then the product
space is

X=[]xXr={(xy) : 2r € X, A€ A}={f:A = Usea X : f(N) = 25 € X5}
AEA

The maps 7y : X — X, given by 7y (x) = z are the coordinate projections.
If (X, B)) are o-algebras, then the product o-algebra ([ [ cA X, @reaBr)

is the o-algebra of subsets of X generated by the sets {77;1(14) A€ By Ae AL

3.6.2. REMARK. When A = {I,...,n} is finite, there is no problem defining
the product space. In this case, the product o-algebra is generated by all of the
“cubes” A1 X ---x A, for A; € B;, 1 <1< n.

When A is infinite, the Axiom of Choice is often needed to guarantee that the
product space is non-empty. In this case, the product o-algebra is generated by
sets my ' (Ay) = Ay x [] peavr} Xu- The intersection of finitely many yields
a cube of the form Ay x -+ x Ay, X [[ e (r;1<i<n} Xu- One can also take
the intersection of countably many such slices, but if A is uncountable, the cubes
formed with proper subsets from each X, will generally not belong to the product
o-algebra. Even when A is countable, these infinite cubes many turn out to be
measure 0 and hence negligible.

The following proposition shows that in the familiar case of Borel sets on met-
ric spaces, and finite products, we get the desired result. The separability hypothesis
is crucial.

3.6.3. PROPOSITION. If (X;,d;) are separable metric spaces for 1 < i < n,
then

® Bor(X;) = Bor(H X;).
i=1

PROOF. The product space X =[]}, X; is also a metric space with the metric
d((x;), (y;)) = max{d;(z;,y;)}. With this (or any equivalent) metric, the coordi-
nate projections are continuous. Thus if U; is open in X, the set 7, ! (U;) is open
in X. These sets generate )", Bor(X;), and thus it is contained in Bor(X).

Conversely, since each X is separable, so is X. Therefore X is second count-
able. Indeed if {z; : j > 1} is a dense subset, then {b,(x;) : j > 1, r € Q4}
is a countable neighbourhood base for X. Now b,(z;) = [[;_, br(x;;), where
mi(xj) = z;,, belongs to Q);-, Bor(X;). As a o-algebra is closed under countable
unions and every open set in X is the union of those (countably many) sets in the



3.6 Product Measures 35

neighbourhood base that it contains, it follows that every open subset of X belongs
to @;" , Bor(X;). Thus Bor(X) is contained in ;" ; Bor(X;). [ |

3.6.4. COROLLARY.

Bor(R") ®Bor and Bor(C) = Bor(R) ® Bor(R).

Now let (X, B, u) and (Y, B’,v) be two measure spaces. Let A be the collec-
tion of all finite unions of disjoint rectangles of the form A x B for A € B and
B € B'. This is an algebra since it is closed under finite unions and complements.
Indeed, (A x B)* = A° XY U A x B¢ and

Alel U AzXBz AIXBl U (Az\Al)XBz U (A]\Az) (Bz\Bl).

Now define a set function

W(szlAi X Bz) = Zn:,u,(AZ v Bz
i=1

To apply Carathéodory’s Theorem, we need the following lemma.

3.6.5. LEMMA. 7 is a premeasure on A.

PROOF. We need to show thatif A x B = UizlAi X B;, then

m(A x B) = p(Aw(B) = u(A)v(B;) = > 7(A; x By).

i>1 i>1

y) =D Xa,()Xp,(y)

i>1
If we fix y € Y, we obtain a sum of non-negative measurable functions on X. By
the Monotone Convergence Theorem,

(A5 (y) = / Xa(x) dpx) Xp(y)
= Z/XA ) du(z) XB, (y ZM

i>1 i>1

Note that

These functions are non-negative measurable functions on Y, so a second applica-
tion of the MCT yields

H(A(B) = n(4) [ Xaly)dv(y)
= ZM(Ai)/XBi(y) du(y) =Y p(Ai)v(B;

i>1 i>1
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Hence 7 is a premeasure. |

Now we can apply Carathéodory’s Theorem via Theorem 1.4.2 to obtain the
following, called the product measure.

3.6.6. THEOREM. Let (X, B, pn) and (Y,B',v) be two measure spaces. There
is a complete measure (X XY, B B, uxv)on X XY suchthat B& B' D BB
and p x V(A X B) = u(A)v(B) forall A € Band B € B'.

We need some more refined information about the sets in B ® B’.

3.6.7. DEFINITION. Let A be the algebra of finite unions of rectangle in B® B’
as above. Define

As={E =[] A4 AicA}
i>1
and
AU6Z{G:ﬂEj:Ej€AJ}.

5>

3.6.8. LEMMA. IfE € B® B and i x v(E) < 00, then there is a set G € A,
suchthat E C G and p x v(G \ E) = 0.

PROOF. By definition of the outer measure 7* which defines ;z x v, we have
that

1 % v(E) :inf{z,u < v(A;): A; € Aand E C UAi}.
i>1 i>1
Thus we can choose Ej = ;5 4j; O Ein Ay so that u x v(Ej) < px V(E)—l—%.
Hence ;1 x v(E; \ F) < % Define G = (;5; Ej € Ays. Then E C G and
uxv(G\E)=0. [ |

3.7. Product Integration

An important result from the Riemann theory for integration in multiple vari-
ables is that integration over a nice region in R" is equal to an iterated integral in
which the integration is done one variable at a time. There is an important analogue
of this for general measures. It actually comes in two flavours.

3.7.1. FUBINI’S THEOREM. Let (X, B, u) and (Y,B',v) be complete mea-
sures. If f € L' (u x v), then



3.7 Product Integration 37

(1) () fo(y) = f(z,y) € L' (v) forae. z(p).
(i) f¥(x) = f(z,y) € L' (u) fora.e.y(v).

(2) @ | fuoly)dv=: F(z) € L'(p).

Y
Gy [ 1) du = Gl € L)
®) [ tawxr={ ([ fegpavt) duto)= [ ( [ s6e.0) duta))aviw,

3.7.2. TONELLI’S THEOREM. Let (X, B, u)and (Y,B',v) be complete mea-
sures, and suppose that . X v is o-finite. If f € L™ (u X v), then

(1) @ fa(y) = fz,y) € LT (v) fora.e.z(p).
(i) fY(z) = f(z,y) € LT (u) for ae.y(v).

2) (i) /Y foly) dv = F(z) € L* (1)
(i) /X fU(@) dp = Gy) € L*(w)

®) [ rdwew=[ ([ i) dut)= [ ( [ £o)du))avt)

3.7.3. REMARKS. (1) The hypothesis that u x v is o-finite in Tonelli’s Theorem
is critical, as an example will show. However it is not needed for Fubini’s Theorem

because when f € L!(u x v), we have that / |fldp x v = L < oo. It follows

that C,, = {(z,y) € X x Y : |f(z,y)| > 1} has pu x v(C,,) < nL. Thus the
restriction of uxvto C = {(z,y) € X xY : f(z,y) # 0} = U,», Cn is o-finite.

(2) Also the hypothesis that f € L'(u x v) or f € L (u x v) is also critical as
examples will show. The failure to check this condition leads to common misuses
of these theorems.

(3) Normal practice is to omit the parentheses and if there is no confusion, also
the variables, in multiple integrals. So we write

J[1avan o [ty dut) tor /X (/Y (. )dv(y) ) du(z).

IfE C X xY,define E, = {y €Y : (z,y) € E} forz € X; and let
EV={x e X :(z,y) € E}foryeY.
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3.7.4. LEMMA. If E € A,s5 and p x v(E) < oo, then g(x) = v(E;) is p-
measurable, g € L™ N L' (), and/gdu = pu x v(E). Similarly, h(y) = u(EY)

is v-measurable, h € L N L'(v), and / hdv = p x v(E).

B if A
PROOF. If E = Ax Bfor A € Band B € B/, then E, = hore
1%} it x¢ A
Therefore g(z) = v(B)X 4 is p-measurable and g > 0. Moreover,

/ gdn= [ v(B)adn = u(A0(B) = x (E) < ox.

Thus g € Lt N L' (p)

Next, if £ € Ao, we can write E' = (J;5; A; x B; for A; € B and B; € B'.
We can rewrite this is a disjoint union because A, x B, \ "' 4; x B; € A
and thus can be written as a finite disjoint union of rectangles, Wthh are clearly
also disjoint from U?;ll A; x B;. Proceeding recursively, E' can be rewritten as a
disjoint union E = | J;-,C; x D; for C; € Band D; € B'. Let g(x) = v(E,) and
gi(z) = v(C;)Xp,. Then g(x) = > ;- gi(x). Hence g is measurable, and thus
belongs to L™ (11). By the MCT, -

/gdu Z/gzdu ZuquxD) uXxv(E) <

i>1 i>1

Moreover, we now have g € L™ N L'(1).

Finally, suppose that £ = ﬂn>1 E, where E, D FE,; all lie in A, such
that 4 x v(E)) < oo and p x v(E,) | u x v(E). Let go(z) = v((E,).) and
g(x) = v(E;). Then

0<9g<0gnt1 <gn <91
and g(z) = inf g,, () = lim g,,(x). Hence g is u-measurable. It is dominated by g;
which is integrable, so g € L™ N L!(x). By the LDCT,

/gd,u: li_>m /gnd,u: lim ux v(E,) =uxv(E).

n—oo

The last equality follows by continuity from above since y x v(E}) < oo.
Similarly we can interchange the role of = and . |

3.7.5. LEMMA. IfE € B® B has u x v(E) =0, then v(E,) = 0a.e.(u) and
u(EY) =0ae.(v).

PROOF. By Lemma 3.6.8, there is a set G € A,s such that £ C G and p X
v(G) = 0. Therefore by the previous lemma, f(z) = v(G,) € LT N L'(u) and
J fdp = 0. Therefore f = Oa.e.(u). Now E, C G, and since v is a complete
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measure, g(z) = v(E;) = 0a.e.(u). It could happen that E, is not measurable on
a set of v-measure 0. A function which differs from a measurable function on a set
of measure 0 is also measurable.

Similarly we can interchange the role of x and y. |

3.7.6. COROLLARY. If E € BB and u x v(E) < oo, then E, is v-
measurable for a.e.(u) x € X, g(x) = v(E,) is pu-measurable, g € L™ N L' (p),

and /gd,u = u X v(E). Similarly, EY is u-measurable for a.e.(v) y € Y,

h(y) = u(EY) is v-measurable, h € L™ N L' (v), and / hdv = u x v(E).

PROOF. Find G € A,s sothat E C G and u x v(G \ E) = 0. Then by
Lemma 3.7.4, f(z) = v(G) € LT N L'Y(u), and /fd,u = pu x v(G). By

Lemma 3.7.5,0 < f — g = Oa.e.(u). The result follows.
Similarly we can interchange the role of x and y. |

Now we are ready to prove the theorems.

PROOF OF FUBINI’S THEOREM. The various integrals and iterated integrals
are linear operations, so we can write f € L'(u x v)as f = fi — o +ifs —ifs
where f; € LT N L' (1 x v) by letting f; = Re f V0, etc. So we may suppose that
f € LT N L'Y(u x v). There are simple functions ¢,, with 0 < ¢,, < @41 < f 50
that f = lim,,_, o, ¥, and each ¢, is supported on a set of finite measure (such as
the set C), in Remark 3.7.3(1)).

By Corollary 3.7.6 and linearity, Fubini’s Theorem is valid for simple functions
with finite measure support. By the MCT,

/fdu x v = lim /gpn dp x v = lim //gon(x,y)dl/(y) du(x).
The functions F,,(z) = / on(z,y)dr(y) are positive, measurable and monotone
Y

increasing to F'(x) = / f(z,y)dv(y). Hence this is a measurable function, and by
Y
MCT,

lim [ F,(z)du(z) = /XF(:E) du(x).

n—oo X
Thus
fduxv= [ [ vty duta).
XxY xJy
Interchanging the role of X and Y yields the other iterated integral. |

PROOF OF TONELLI’S THEOREM. Let f € L™ (uxwv). Since pux v is o-finite,
there are measurable sets C,, C C,41 with upxv(Cy,) < coand X xY = J,,~ Cn.
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Forn > 1, let f, = (f A n)Xc,, where (f A n)(x) = min{f(x),n}. Then
0< fn <nXg,,andso f, € LT N L'(p x v). Now by Fubini’s Theorem and
MCT, we have

/fdu Xv= nlgrgo/fn dp x v = lim /X/fn(x,y)dV(y) du(z).

The proof is completed as before. The functions F),( / fn(x,y)dv(y) are

positive, measurable and monotone increasing to F'(x) = [ f(x,y)dv(y). Hence
Y

this is a measurable function, and by MCT,

Jim [ Fu(@)du(o) = [ Pla)duta)

Thus
fuxv= [ [ fenivy) duo)
XxY xJy
Interchanging the role of X and Y yields the other iterated integral. |

There is a straightforward variant of these results when the measures are not
complete. The difference is that given measures (X, B, 1) and (Y, B/, v), we form
1 X v and restrict it to the o-algebra B ® B’. 1 will also call this j X v.

3.7.7. FUBINI-TONELLI THEOREM WITHOUT COMPLETENESS. Let
(X,B, ) and (Y,B',v) be measures with product (X x Y,B & B',u x v). If
f € LY(uxv) (orifu x vis o-finite and f € LT (u x v)), then
(1) () fe(y) = f(x,y) € L'(v) (or LT (v)) forall z € X
(i) fY(x) = f(x,y) € L' () (or Lt () forally € Y.

) () / foly) dv = F(z) € LM () (or L* (1))
(i) /X fY(x) dp = G(y) € L'(v) (or L* (1)

3) [ fducv= / /fxydv ) dn(z) //fxydu (x) ) ().

In Assignment 4, Q5, you showed that if £ € B ® B, then E, € B’ and
EY € Bforallz € X and y € Y. This extends to simple functions, so that (1i) and
(1ii) hold for simple functions. This extends to limits, and since every measurable
function is a limit of simple functions, we obtain (1i) and (1ii). The remainder of
the proof is identical to the proof in the complete case.

We now present a few counterexamples that show the limits of these theorems.
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3.7.8. EXAMPLE. Consider counting measure on (N, P(N), m.). Form the
product, which is (N2, P(N?), m, x m..), where m, x m,. is just counting measure
on N2, Consider

1 if n=m
flm,n) =< —1 if n=m+1
0 otherwise.
Think of this as an N by N array

1 -1 0 0 0

0 1 - 0

0 0 1 -1 0

0 0 1

The first iterated integral first sums the rows, each absolutely summable with total

//fmndmc n) dme(m —Z(men):ZO:O.

m>1  n>1 m>1

The second iterated integral first sums the columns, each absolutely summable.
However the first column sums to 1, the rest to O:

//fmndmc m) dme(n —Z(men)_HZo_l

n>1 m2>1 n>2

These measures are o-finite since N? is countable and points have measure 1.
Tonelli’s theorem is not applicable because f is not positive. More importantly, Fu-
bini’s theorem does not apply because f is not integrable. If it were, then | f| would

have a finite integral, but clearly / / |f] dme x me = Z Z |f(m,n)| = o0
m>1n>1

3.7.9. EXAMPLE. Consider Lebesgue measure (X = [0, 1], B, m) and counting
measure on (Y = [0,1],P([0, 1]),m.). We have ([0, 1]*, B ® P([0, 1]), m xm,)
as the product. Consider D = {(x,z) : « € [0, 1]}, and let f = Xp. Observe that

—1
D= ﬂujzk 2]k
k>14=1

is a measurable set. Consider the iterated integrals. When integrating f,(y) = 0,
with respect to counting measure, we get 1. Therefore

ALf(x’y)dmC(y)dm(x):/)(ldm($):l,
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When integrating f¥(x) = §, with respect to Lebesgue measure, we get 0. There-

o /Y /X F(a, ) dm(z) dm(y) = /Y 0dme(y) = 0.

What went wrong? Here f > 0 is measurable, so belongs to L™ (m x m.). The
problem is that m, on [0, 1] is not o-finite because [0, 1] is uncountable.

Finally let’s compute fdm x m.=m x m.(D). This is computed using

the outer measure obtained by covering D with a countable number of rectangles,
say D C |J;~, Ai x B; where A; are Lebesgue measurable. Note that this union
cannot cover D if for each i > 1, either m(A;) = 0 or B; is finite. Indeed if
m(A;) = 0fori € J; and B; is finite for ¢ € .J,, then

JAixBicAx[0,1] and |JA;xB;c[01]xB

i€J) 1€
where A = J;c;, Ai has m(A) = 0, and B = J;;, Bi is countable. But
their union omits A° x B¢, which contains (A U B)¢ x (A U B)¢ and so inter-
sects D. Therefore there is some i so that m(A4;,) > 0 and B;, is infinite, and
hence m.(B;,) = co. But then the premeasure of the rectangle is w(A;, X B;,) =
m(A;,)me(B;,) = oo. Since D is measurable, we have that m x m.(D) = co. So
neither iterated integral yields the value of the product integral even though both
exist.

3.7.10. EXAMPLE. Let X =Y = [0, 1] with Lebesgue measure. If we assume
the Continuum Hypothesis, there is a well-ordering < on [0, 1] with the property
that {yy € [0, 1] : y < x} is countable for all z. Let £ = {(z,y) : y < 2} C [0,1]%
Let f = Xpg. Clearly f > 0. Foreachz € [0,1], E, = {y € [0,1] : y < z} is
countable. And for eachy € [0,1], EY = {x € [0,1] : y < z} is the complement
of a countable set. In particular, these sets are Lebesgue measurable. So we can
evaluate the iterated integrals

//ffvydm ) dm(z /m () =0
//fwydm x) dm(y /mEy dme(y) = 1.

What went wrong? The measures are finite, and hence o-finite. If ' were mea-
surable, then its measure would be finite and so f would belong to L™ N L!(m?)
Then both Fubini’s Theorem and Tonelli’s Theorem would apply! It must be the
case that F is not measurable. This is in spite of the fact that £, and EY are Borel
for all x and y.

and

There is a variant of this example which avoids the Continuum Hypothesis,
but requires more detailed knowledge of ordinals. Let Q be the first uncountable
ordinal. This is a well-ordered uncountable set with respect to an order < with the
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property that {y € Q : y < z} is countable for all x € Q. The open sets in the
order topology are generated by {y € Q : y < z} and {y € Q : = < y} for
x € Q. Itis not hard to see that these sets are either countable of have countable
complement (co-countable). Moreover one can check that Bor(Q) consists or all
countable and co-countable sets. Put a measure 1 on (2, Bor(Q2)) by

0 if A is countable
n(A) = . . :
1 if A is co-countable.

This is a finite measure. Form the product space (Q2, Bor(Q?), 1 x p). Again we
set £ = {(z,y) € Q% :y <z} and f = X. We have the same contradiction. It
must be the case that E' is not a measurable set.

3.8. Lebesgue Measure on R"

Let (R, £, m) be Lebesgue measure on the real line. Then we can form m” =

mx---xmon (R, L®---® L) = (R",Bor(R")). This is the completion of a
Borel measure on R™ such that

m"(Ap x - x Ap) = Hm(AZ) for A; e L.
i=1

This is the unique complete measure with this property. Let £ denote the o-
algebra of Lebesgue measurable sets in R".

Even though m is a complete measure, the o-algebra £ ® L is not complete.
For example, if £ C R is not measurable and B C £ has m(B) = 0, then

ExBCRxB=|]J[n,n+1)xB.
nez

Since m?([n,n + 1) x B) = m(B) = 0, we have that m(R x B) = 0. Then since

m? is complete, m*(E x B) = 0 as well. This set does not belong to £ ® L.

Note that when there is no confusion, Lebesgue measure on R™ is commonly
written as m instead of m™. We will adopt this practice.

The first result is to show that certain regularity properties of Lebesgue measure
on the line transfer to m™.

3.8.1. PROPOSITION. Let E € L", and let £ > 0.
(1) There is an open set U O E such that m(U \ E) < ¢; and

m(E) =inf{m(U) : E C U, U open}.
(2) There is a closed set C C E so that m(E \ C) < &; and
m(E) =sup{m(K) : K C E, K compact}.
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(3) There is an F, set F and a G set G so that F C E C G and
m(E\F)=0=m(G\ E).

(4) If m(E) < oo, then there is a finite set of pairwise disjoint rectangles
Ry, ..., Ry whose sides are intervals so that m(EA U,f\il Ri) < e

PROOF. (1) First assume that F is bounded. The construction of m”" comes
from the outer measure on the algebra A of finite unions of disjoint rectangles.
Thus there is a countable union of (bounded) rectangles R; covering £ such that
Yois1m(R;) < m(E) + /2. For each i > 1, we can use Theorem 1.5.6 to
enclose the sides of R; in open sets with slight increase in measure to obtain an
open rectangle U; O R; with m(U;) < m(R;) +27'e. Then E C U = J;», U;
and B

m(U) < Zm(EZ) < Zm(RZ) + 27" e < m(E) 4.
i>1 i>1
Hence m(U \ F) < e.

Now if E' is unbounded, divide R" into countably many disjoint unit cubes
labeled C; for @ > 1. Then £ = (J,~, £ N C;. For each 4, find an open set
Ui D ENC;sothatm(U; \ (ENC;) <2 %. Then U = | J,, U; does the job.

The other parts of this proposition are left as an exercise. |

3.8.2. LEMMA. [f f is Lebesgue measurable, there is a G set G with m(G) = 0
so that fXqe is Borel measurable.

PROOF. Write f = fi — f> + if; — i f4 where f; are positive and measurable.
This reduces the problem to the case of a positive function f.

Let {r, : n > 1} be a dense subset of [0,00). Then E, = f~!([0,7,)) are
measurable. Select F, sets B,, and null sets V,, so that £, = B, U N,,. Then
N = {J,;>; Nn is a null set. Let G be a G5 set so that N C G and m(G) = 0.

Then (fXg<)~'([0,7,)) = E, UG = B, UG is Borel for all 7,. The countable
union of Borel sets is Borel, and thus fX e is Borel. |

As for Lebesgue measure on the line, Lebesgue measure on R" is translation
invariant. It also behaves well under a linear change of variables just as the Riemann
integral does. Let GL,, denote the group of invertible n X n real matrices. It is a
fact from linear algebra that every invertible matrix is the product of a number
of elementary matrices [1,§3.2, Corollary 3]. The elementary matrices have three
types: multiplying the ith row by a non-zero scalar ¢

Ri(xy,...,xiy...,xp) = (T1,. .., CT4,y ..., Ty),
adding a multiple of the jth row to the ith row fori # j, 1 < i,j <n

Aij(zr, .o iy, X)) = (X0, ., T+ €T, Ty, ),
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and interchanging two rows i, j fori #£ j, 1 <i,j <n

Sij(@1y oo Tiy o Ty Tp) = (X0, Ty Ty, Ty

3.8.3. THEOREM. Let m be Lebesgue measure on R™.
(1) m is translation invariant: m(E + x) = m(E) for E € L™ and x € R™.

(2) If T € GL,, and f is measurable, then f oT is measurable. If f € L'(m)
or L™ (m), then

/fdm:|detT|/fonm.

In particular, if E € L, then m(T(E)) = |detT|m(E).

(3) m is invariant under rotation: m(U(E)) = m(E) for E € L" and U
unitary.

PROOF. (1) Note that translation of a cube preserves the measure. Thus the
premeasure is translation invariant. It follows that the outer measure is translation
invariant, and hence so is m.

(2) If f is Borel measurable, then so is f o7  because 7' is continuous and hence
Borel by Corollary 2.1.3. If the result is true for invertible matrices S and 7', then

/fdm:|det5’]/f05dm
:]detSHdetT|/(foS)onm

= | det ST /foSTdm.

Hence it is true for their product. Therefore it suffices to establish the result for
elementary matrices.

Using either the Fubini or Tonelli Theorem, the integral is equal to the iterated
integral. For multiplying a row by a non-zero constant, the iterated integral reduces
to the one variable fact. Adding a multiple of one row to another, integrate first
with respect to x; and use translation invariance. Interchanging two coordinates
is equivalent to interchanging the order of integration, which results in no change,
again by the Fubini or Tonelli theorem.

For E Borel, apply the result to X g to get

m(E) :/XEdm: |detT—1/xEoT—1dm
= |detT|™! /XT(E) dm = |detT|"'m(T(E)).

The result for a Lebesgue measurable function f now follows because there is
a G5 set G so that fXge is Borel measurable. Now (fXge) o T = f o TXp-1ge-
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By the Borel result, m(T~!'(G)) = 0. So f o T = (fXge) o T a.e.(m). The result
follows.

(3) If U is unitary, then |det U| = 1. In particular every rotation is unitary; and
thus m is rotation invariant. |

3.9. Infinite Product Measures

We briefly mention the subject of infinite products. Suppose that we are given
probability measures (X, B;, 11;); i.e. pi(X;) = 1 for ¢ > 1. We wish to define a
measure i on ([ [;5; Xi, @~ Bi) so that

n
i>n i=1
forallm > 1 and A; € B;.

Let A denote the algebra of sets generated by the cylinders 7, Y(Ay) fori > 1
and A; € B;, where as usual 7; is the coordinate projection of X = Hi>] X, onto
X;. One can show as in section 3.6 that elements of .4 can be written as a finite
disjoint union of rectangles of the form

R(Ay,...,Ay) = A; x - x Ap X HXZ"
i>n
Define pu(R(Ay,...,Ay)) = [ pi(A;) and extend this to finite disjoint
unions by additivity. Note that we have already shown that there are measures
™) = iy - g on (TT1) X, @1y By) so that p(™ (A; x -+ x A,) = pu(R)
for all rectangles in Q);" | B; X [[;~,, Xi. If we let = X Xy, for
1 < m < n, we have that (™ = (™) x (™71 for 1 < m < n.

3.9.1. THEOREM. y is a premeasure on A.

~ PROOF. It suffices to show that if R, R; for ¢ > 1 are rectangles and R =
Ui>1 R, then p(R) = 3.5 p1(R;). There is an integer my so that

Re ®Bj X H X; = Bmo),
Jj=1 J>mo

Then choose integers mg < m,, < my| sothat R; € B(™n) for 1 < i < n. Define
Fn, = R\ U, Ri. Observe that F;, € ANB"™), F; 5 F, D Fpyy O ... and
N,>1 Fn = @. Therefore

u(R) = ™ (R) =~ pl™ (Ry) + pl™ ) (Fr) =Y~ pu(Ri) + p(F)
=1 i=1
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Our result will follow if we show that lim,,, o () = 0.
Assuming that this is false, we have that u(F,,) > ¢ > Oforalln > 1. We will
produce a contradiction. Given F' € A and z; € X, for | < i < p, define

F(xy,...,zp) ={z € HXZ' Sz, .., xp, ) € FLL
i>p
Then define
Gipn = {z1 € Xy (B (21)) > e/2).
Note that

e < (B = [ I () dpr (o)

X1
S /
G in

Ldp (1) +/
Therefore N(l)(Gl,n) > 5. Now G, D Gy pny1 and hence u(ﬂnzl Glm) > 5.

5 €

5 dpr (1) < M(l)(GLn) + )

G

Choose a point a; € (51 G1,n- Then -

I,n

pml(F(ay)) > forall n>1.

N ™

Recursively we construct points a; € X; so that

€
pFm(F(ay, .. ag)) > o forall n>1.
Suppose that ay, . .., ax—1 have been defined with this property. Define

€
ka = {Il/‘k € X : H(k’mn](Fn(alv . -vak—laxk)) > 27]9}
Arguing as above,

€ —1,m
k-1 < p(*md(Fy(ars - ak)

_ / BTl (B (ar, . ap, o)) i ()
X

3

€
< / 1 dpg () +/ % dp(r) < W (Grp) + 2%
Gk:,n %

k,n

Therefore i, (), Gkn) > 5% Pick a point aj, € ()~ G- This does the job.

It follows that for all £ > 1 and n > 1, there is a point z so that (ar,...,ax,x)
is in F,,. In particular, there is a point y so that (ay, ..., apn,,,y) € F,. But F}, isa
union of cylinder sets of level no greater than m,,, and hence (ay, ..., am,,y) € F,
for all y € [[;s,,, Xi. Therefore a = (a1,az,a3,...) € (), Fn. Thisis a
contradiction since this intersection in empty.

It follows that lim,, o 1(F,) = 0 and hence p(R) = >, pu(R;). [

As an immediate consequence of Theorem 1.4.2, we obtain the desired mea-
sure.
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3.9.2. COROLLARY. There is a unique complete measure | = H,ui on
i>1

(H X, ® B@) so that

>1 i>1
,U,(Al X oo X An X HXZ) = HMZ(AZ)
i=1

>n

foralln > 1and A; € B;.

3.9.3. EXAMPLE. Fix 0 < p < 1. Take X; = 2 = {0, 1} and let y; be the
probability measure on (X;, P(X;)) such that 14;(0) = p and ;(1) = 1 — p. Then
X = Hi2  X; is homeomorphic to the Cantor set C. Let j,, denote the infinite
product measure [ [, 1.

Identify the Cantor ternary set with {z = (0.(2¢1)(2¢2)(2¢3)...)
e = (e1,€2,...) € X. The homeomorphism of X onto C'is given by

h(g) = (0.(221)(222)(2¢3) . ..)base3 for €= (e1,e2,€3,...) € X.

,} for

base

We obtain a Borel measure on C by setting v,(A) = p, (R~ (A)).

Let C), denote the subset of [0, 1] after n operations of removing the middle
thirds has been accomplished; so that there remain 2" intervals of length 37". With
this explicit homeomorphism, the rectangle R(zy, . . ., &, ) corresponds to one of the
intervals of C,, intersected with C. For example, R(0,0) = [0, 3] N C, R(0,1) =
[2,1]NC, R(1,0)=[3,5]NnCand R(1,1) = [, 1] N C.

Consider the analogue of the Cantor function which is defined on [0, 1] by
fp(z) = vp,(C'N[0,z]). Then f(0) = 0 and f,(1) = 1. Observe that this is a
monotone increasing function. Moreover on the middle third [%, %], it takes the
value p. Then on the interval [, 3], it takes the value p? and on [3, 5], it takes the
value p + p(1 — p). Indeed, at level n, we have defined f,(x) on [0, 1] \ int(C),). If
[a, b] is a component of C,, then the middle third is removed to form C),;; and

Ip(@) = fpla) + p(fp(b) — fp(a)) for a+ b_?a <z<a-+ @.

Notice that f,, takes all of the values p*(1 — p)"~* for0 < k <mnandn > 1.
These values are dense in [0, 1]. As for the usual Cantor function, it follows that f,
has no jump discontinuities. So f, is continuous.

The measure v, is the Lebesgue-Stieltjes measure for the function f,, by Theo-
rem 1.5.2. So v, is a probability measure supported on C. Since f, take the same
value at each endpoint of a removed interval, we see that v,(R \ C') = 0. The
continuity of f,, means that v, has no atoms.



CHAPTER 4

Differentiation and Signed
Measures

4.1. Differentiation

Question: Is there a measure theoretic analogue of the Fundamental Theorem
of Calculus? That is, to what extent is F'(z) = ¢+ f[ a,3] f dm differentiable on R?
What functions arise in this way?

We restrict our attention to real valued functions. In fact, splitting a function f
as a difference of two positive functions, we may suppose that f > 0; and so the
integral will be monotone increasing.

4.1.1. DEFINITION. The upper and lower derivative from left and right of a
real valued function f are defined as

D, f(w) = timsup LETI I p iy gy L2 = ()
h—0+ h h—0* h

Dy f(x) = limsup flo) -~ fz — b) D, f(z) = liminf f@) = flz=h)
h—0+ h h—0" h

Then f is differentiable at z if D, f(z) = D,.f(x) = D;f(z) = D,f(z) € R.

This definition is clearly equivalent to the familiar definition from calculus: a
function f is differentiable at x if and only if there is a finite limit

o) — fim LB D) = S@)

h—0 h

We require a technical definition. A singleton {a} and the empty set are con-
sidered to be degenerate intervals.

4.1.2. DEFINITION. If £ C R, a collection [J of non-degenerate intervals is
a Vitali cover if for every x € E and ¢ > 0, thereis I € J so that z € [ and
m(I) < e.

49
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4.1.3. VITALI COVERING LEMMA. If E C R has finite outer measure
(m*(E) < o0), J is a Vitali cover of E, and £ > 0, then there are disjoint intervals

Ii,....Iy € Jsuchthatm*(E\UéV:] I) <e.

PROOF. Fix anopen U D E withm(U) < co. Let J' ={I € J : 1 C U}.
This is also a Vitali cover since if z € E and § = dist(x,U¢), then any interval
I € J containing x of length less than § will belong to 7.

Recursively choose disjoint I, € J' so that m(I};) > ay/2 where

ar =sup{m(I): I € J’, Idisjoint from I},..., Ix_}.

Observe that m( s, Ix) = > psq m(Ix) < m(U) < oo. Thus ay, is a summable
sequence. So we may choose N so that > .. ym(I;) < £/5. We claim that
Iy, ..., IN works.

Let X = E\ U;VZIE Ifz e X,0:= dist(m,Uj.Vzlfj) > 0. Hence there is
some [ € J withz € I and m(I) < . So I is disjoint from Uévzl I;, and hence
m(I) < anii. Pick K > N sothat ax; < m(I) < ag. Then by construction,
I cannot be disjoint from U]K: 1 I;. Thus there is some k with NV < k < K so that
IyNI#@. Nowm(Iy) > ar/2 > ag/2 > m(I)/2. Hence

dist(x, midpoint of I,) < $m(I),) + m(I) < 3m(Iy).

Let Jj be the closed interval with the same midpoint as I but with m(J;) =
5m(Iy). Then x € Jy. Therefore X C J,- x Jk. If follows that

m*(X) <> m(Jp) =5 m(l) <e.

k>N k>N
This proves the claim. L

4.1.4. THEOREM. Let f : [a,b] — R be monotone increasing. Then f is con-
tinuous except on a countable set, and is differentiable except on a set of measure

b
0. The derivative ' is integrable, and/ f dm < f(b) — f(a).
a

PROOF. Define f(z) = f(a) forz < a and f(x) = f(b) for x > b. Since f is
monotone, for ¢ € [a, b], we have

fle7) = lim f(z) =sup f(z) < f(c) < f(c") = inf f(z) = lim f(z).

r—c r<c r>c z—ct

Thus f is continuous at ¢ unless it is a jump discontinuity, in which case the jump
has length j(c) = f(c¢")—f(c™). Clearly Y j(c) < f(b)—f(a) < cc. In particular
the number of points with jump at least § > 0 is at most 6~ (f(b) — f(a)) < oo.
It follows that the number of discontinuities is countable.

Clearly we have D, f(x) < D, f(z) and D,f(x) < D;f(z). We will show
that D, f(x) < D,(x)a.e. and D, f(z) < D,f(z)a.e. For u,v € Q with u < v,
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let
Euw={z:D.(z) <u<v<Df(z)} and E= U Ey.
u<veQ
To show that m*(E) = 0, it suffices to show that m*(E,, ) = 0 for all u < v.

Let m*(Ey,) = s and fix an ¢ > 0. Choose an open set U D E,, , with
mU) <s+e LetJ ={I =[z,2+h| CU: flx+h)— f(z) < uh}. By
definition of D, f(x), this contains arbitrarily small intervals [,z + h| for each
x € Fy . Thus J is a Vitali cover of F. By the Vitali Covering Lemma, we can
find I) = [z1,21 + hi],...,IN = [zn, 2N + hy] disjoint intervals in 7 so that
m*(Eyw \ U;V:1 I;) < . Therefore

N N
s—e< Y mI;) =Y hy <mU)<s+e,
j=1 i=1

and m*( uvﬁU )>s—5 Let

F=FE,,nN U($j,$j + hj)
j=1
Consider 7' ={I = [z —k,z] C V : f(z) — f(x — k) > vk}. As for J, one sees
that 7' is a Vitali cover of F'. Choose disjoint intervals J; = [y; — k;, y;] € J’ for
1 <i< M sothatm*(F\ UM, J;) < e. Therefore
M M

Y ki=> _m(Ji)>m*(F)—e>s—2e.

(xj,xj+ hj) = V.

E'Cz

Since the intervals J; are disjoint and are contained in Ujvzl I;, we have that

v(s —2e) <Zkv<2fyz— — ki)
i=1 =1

an

f(xj + hy) f(xj)<2uhj<u(s+e).
j=1

Letting ¢ — 0 yields vs g us, and thus s = 0. Hence m*(E, ,,) = 0. Therefore,
since m is complete, m(E) = 0. Consequently, D, f(x) < D,.f(z) on E, that is
a.e.

Similarly D, f(z) < D,f(x)a.e. Thus f'(z) exists except on a set of measure
0. Note however that the derivative might be +o0c. We will show soon that this also
happens only on a set of measure 0.

Define g,(z) = n(f(z + 1) — f(x)) on [a,b]. Monotone functions are Borel,
and thus are measurable. So g, is measurable and positive. Moreover

f(l’—l—%)—f(ﬂ?)_ /
210 _

lim g,(z) = lim

n—oo n—oo
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whenever f'(z) is defined, which is almost everywhere. Therefore f is measurable
and f’ > 0. We can apply Fatou’s Lemma to this sequence to get

b b b+ b
/ f’dmgliminf/ Jn dm = lim inf n/ fdm—n/ fdm
a n—oo a n—oo CL+% a

p+L at+L
= lim inf n/+n f(b)dm—n/ +nfdmﬁf(b)—f(a) < 00.
b a

n—o0

In particular, f” is integrable. This implies that f'(z) < oo a.e. [

4.1.5. EXAMPLE. Recall the Cantor ternary function. This is defined on [0, 1]
by f(0) = 0, f(1) = 1. Then f(z) = 3 for z € [},3], the (closure of) the

373
middle third removed in the construction of the Cantor set. Then we set f(z) = %
on [§,3] and f(z) = 3 on [{,3]. This repeats, on each middle third removed,

f is defined as the midpoint between the values defined at the endpoints of the
(larger) interval. Finally, for z € C, where C' is the Cantor set, we can define
f(z) = sup{f(y) : 0 <y < z, y ¢ C}. This evidently yields a monotone
increasing function. Moreover the values attained by f include all diadic rationals
27"k for 0 < k < 2™. So the range of f is dense in [0, 1]. In particular, f cannot
have any jump discontinuities. Therefore f is continuous.

Next observe that on each of the removed (open) intervals, (3, 3), (3, %) and
(3, g), etc., the function f is constant. Therefore it is differentiable with f’(z) = 0.
This occurs on [0, 1] \ C, and since m(C') = 0, we see that f” is defined and finite
almost everywhere. However

1
Llfﬂm:0<1:ﬂn—fmy

So it can certainly be the case that you cannot recover f from its derivative.

4.1.6. DEFINITION. A function f : [a,b] — R is bounded variation (belongs
to BV]a, b)) if

Vi) = sup{z lf(x)—f(zic)] tn > 1, a=xo<z1<.. .<xn:b} < 0.
i=1

4.1.7. THEOREM. A function f € BV|a,b] ifand only if f = g — h where g, h
are monotone increasing.



4.1 Differentiation 53

PROOF. If f = g — h where g, h are monotone increasing, then for a partition
a=x9<x1<...<Tp=D>,

n

Z‘f(ﬂfz)_f(ﬂfz—l)’ SZL@(%’)_ (zi-1) !+Z|h (i) = h(@i-1)|
=1

=1 =
— g(b) — gla) + h(B) — hie) = L.

SoVy(f) < L.

Conversely, if f € BV, define g(z) = V.*(f). Clearly this is an increasing
function of z since if a <z <y < b, VJ/(f) = VZ(f) + VI(f). Leth = g — f,
sothat f =g —h.Ifa < x <y <b, then

hy) — h(z) = VI (f) = (f(y) = f(2)) = |f(y) = f(@)| = (f(y) = f(z)) = 0.

So h is also monotone increasing. |

4.1.8. COROLLARY. If f € BV{a,b], then f is continuous except on a count-
able set, f'(x) exists a.e.(m) and [’ is m-integrable.

4.1.9. COROLLARY. If f € L'[a,b], then F(z / f dm is bounded varia-

tion.

PROOF. Write [ = f, — f_ where f, = fVvOand f_ = (—f) V0 are positive
integrable functions. Then g(z) = [ f+ dm and h(z) = [ f— dm are monotone
increasing. Hence f = g — h i 1s BV. |

4.1.10. DEFINITION. A function f : [a,b] — R is absolutely continuous (AC)
if for all ¢ > 0, there is a § > 0 so that whenever (x;, y;) are disjoint intervals in

[a, b] and 2?21 Y; — x; < 6, then 2?21 |f(yi) — f(xi)| <e.
4.1.11. EXAMPLE. The Cantor ternary function f is monotone, and thus BV.
However it is not absolutely continuous. If z;, y; for 1 < ¢ < 2" are the endpoints

of the intervals remaining after n stages of the construction of the Cantor set, then
because f is constant on the complements of these intervals, we have

Z|f yz xz - and Zyz_'fvz— %
Since (%)n — 0, f is not absolutely continuous.

4.1.12. PROPOSITION. Let f € L'(uu) and ¢ > 0. Then there is a § > 0 so
that whenever j1(A) < 6, / |f]dp < e.
A
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PROOF. Choose a simple function 0 < ¢ < |f|sothat [ pdu > [|f|du—5.
Since ¢ is simple, there is a constant M so that p < M. Set § = 5537. If u(A) <4,
then

/A]f]du</A<pdu+;§Mp,(A)+;<s. n

4.1.13. COROLLARY. If f € L'[a,b], then F(x) = / f dm is absolutely

continuous.

PROOF. Given ¢ > 0, let 0 be provided by Proposition 4.1.12. Then if (z;, y;)
are disjoint intervals in [a,b] and ;" | y; — x; < ¢, then

;|F(yz)—F(xz)|:;‘/:2fdm‘S/U \f|dm < e. n

?:1 [ffz 73/2‘]

4.1.14. LEMMA. If f is absolutely continuous on [a,b], then it has bounded
variation.

PROOF. Take ¢ = 1, and find § > 0. Split [a,b] = U}_,[a;-1,a;] where
aj —aj_1 < 60 forl < j <p. If [aj_i,qa;] contains disjoint intervals (z;,y;) for
1 <i<n,then) !  y;—x; <a;—aj_; <d.Hence Y ;" | |f(y:) — flzi)| < 1.
Taking the supremum yields V7, (f) < 1. Thus V(f) = . Vol (f)<p.-M

x
4.1.15. LEMMA. If f € L'[a,b] and F(z) = / f dm is monotone increasing,
then f > Oa.e. ¢
PROOF. Let E = {z : f(z) < 0} and E, = {z : f(z) < —1}forn > 1.
Then if m(E) > 0, there is some n so that m(E,) > 0. Let ¢ = m(E,)/2n;

and choose § > 0 using Proposition 4.1.12. Select an open set U O Ej, so that
m(U \ E,) < 0. Write U = ;5 (2, ;). Then

0< 3" Flu) = Fla) = [ fam

i>1
E
:/ fdm+/ fdm < _m{En) +e<0.
n U\En,
This contradiction shows that m(E) = 0, or that f > Oa.e. [ |

The following consequence is immediate.
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4.1.16. COROLLARY. Let f € L'[a,b] and F(x) = / fdm. If F =0, then
f=0ae. ¢

The main result here is the following result of Lebesgue, his substitute for the
Fundamental Theorem of Calculus, which answers the first part of the question
posed at the beginning of this section.

4.1.17. LEBESGUE DIFFERENTIATION THEOREM. Let f € L'[a,b] and
F(z) = c+/ fdm. Then F'(z) = f(z)ae.

PROOF. Since F'is BV by Corollary 4.1.9, Corollary 4.1.8 shows that F” exists
a.e. and the derivative is integrable. Extend f by setting f(z) = 0 for z > b; so that
F(z) = F(b) for z > b. Let gn(z) = n(F(x + 1) — F(z)). Then g, converges

pointwise a.e. to F”.

a+1

Case 1 |f| < M. Then gy (z) :n/ " fdm. So

X

z+%
]gn(as)lgn/ Mdx = M.

X

Thus [gn| < MX{,p), which is integrable. By the LDCT and the fact that F' is
continuous, for ¢ € [a, bl

& C (&
/ F'dm = lim [ g,dm = lim n/ Flz+ 1) - F(z)da
a n—o0 a n—oo a

1

C+; a"‘%
= lim n/ F(:r)dx—n/ F(z)dx

n—oo
(&

=F(c)—F(a)= [ fdm.

a

C
Therefore / (F' — f)dm = 0forall ¢ € [a,b]. By Corollary 4.1.16, F' = fa.e.
a

Case2 f > 0. Let f,, = f Anforn > 1. Then f, is bounded and case 1
applies. Observe that

F(m):/:fndm—i-/axf—fndm.

Because the second term is monotone increasing,

(@)= fla)+ 3 [ £ fadm > fu(o)ac,



56 Differentiation and Signed Measures

Consequently, F'(z) > lim,,—,~ fn(z) = f(x)a.e. For ¢ € [a, b],

/:F’(x)dm<F /fdm</ Fla

Therefore/ F'(z) — f(z)dm = O for all ¢ € [a,b]. Hence F' = fa.e. by

a
Corollary 4.1.16.
Case 3. Write f = f, — f_ where fy € LT N L'(m). Then by case 2, we
obtain that F/ = f, — f_ = fa.e. [ |

Next we wish to characterize which functions are integrals. We first need an-
other lemma.

4.1.18. LEMMA. If f € C|a,b] is absolutely continuous and ' = Oa.e., then
f is constant.

PROOF. Fix ¢ € (a,b]. Lete > 0. Obtain 6 > 0 from the definition of absolute
continuity. Set F = {x € (a,c) : f'(x) = 0}. So m([a,c| \ E) = 0. Define

J ={[z,x+h]:x € E, h>0, [r,x+h] C (a,c)and |f(z+h)— f(z)| < eh}.

This collection is a Vitali cover of E because for each x, all sufficiently small h
work. Therefore there are disjoint intervals [y, ..., I, in J so that

m([a, ]\ U Ij) = m(E\ U IJ) <6
j=1 j=1

Write I; = (aj, b;) ordered so that
a<ar<b<ap<bh<--<a, <b, <c.

Then

(&) = F@)] < 3 170;) ~ Fay)
j=1
+ (1f(a)-f |+Z|fag+1 (b)] + 1£(6) = (b))

n
< Ze]bj —ajl+e<(c—a+1)e.
j=1
The second term in parentheses is at most £ by absolute continuity since the total

length of the intervals is less than §. Now & > 0 was arbitrary, and therefore
f(¢) = f(a); whence f is constant. |
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4.1.19. THEOREM. Let F : [a,b] — R. The following are equivalent:

(1) Thereisan f € L'(a,b) so that F(x) = c+/ fdm.

a

(2) F is absolutely continuous.

(3) Fis differentiable a.e., F' € L'(a,b) and F(x) = F(a) + / F'dm.

PROOF. Lebesgue’s Differentiation Theorem shows that (1) implies (3). Clearly
(3) implies (1). Lemma 4.1.9 shows that integrals are AC, so (1) implies (2). If (2)
holds, then F' is BV by Lemma 4.1.14; and thus by Corollary 4.1.8, F’ exists a.e.
and belongs to L!(m). Let

G(z) = F(a) + /m F'dm.

Then Lebesgue’s Differentiation Theorem shows that G’ = F’a.e. Both F' and G
are absolutely continuous, and (G — F')’ = Oa.e. Therefore Lemma 4.1.18 shows
that G — F' is constant; and G(a) = F'(a). So (3) holds. [

4.2. Signed Measures

4.2.1. DEFINITION. A signed measure on (X,B)isamapv : B — RU{*oo}
such that v(@) = 0, v takes at most one of the values +oc0, and v is countably
additive, meaning that if F; are disjoint sets in 3, then I/(UZZ] E;) = dis1 V(ED).

4.2.2. REMARK. The definition implies that if ‘I/(UZ>1EZ)‘ < o0, then the
series y .~ v(E;) converges absolutely. One argument would be that the union is
independent of order, and thus the sum should be independent of the order as well.
But unconditionally convergent sequences of real numbers converge absolutely. An
alternative argument, which is better, is that if the sum converges only conditionally,
then the sum of the positive terms diverges, as does the sum of the negative terms.
But then if J = {i : v(E;) > 0}, we have that v ({J;, E) = >..c, v(Ei) = 400
and V(UigJEi) = _i¢s V(E;) = —oc. This is not permitted for signed measures
because we cannot make sense of v(EUF) = v(E) + v(F) is v(E) = 400 and
V(F) = —o0.

4.2.3. EXAMPLES.

(1) Let f € Lj(p) and define v(E) = [} f dp. In this case, neither oo arises as
a value. The absolute convergence over countably many disjoint sets follows from
the LDCT.
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(2)Let f € L (p) and g € LT N L'(p). Define v(E) = [, f — gdp. If f is not
integrable, then v(X) = [ fdu—||glli = +oc. If E = |J,», E; and Jg fdp < o,
then countable additivity follows as in (1). B

4.2.4. DEFINITION. A null set for a signed measure v is a measurable set F
such that v(F') = O forall F' C E, F' € B. A positive set (or negative set) for v is
a measurable set F such that v(F') > 0 (or < 0)forall F C E, F € B.

4.2.5. HAHN DECOMPOSITION THEOREM. Let v be a signed measure on
(X, B). Then there are sets P, N € B so that X = PUN, P is a positive set, and
N is a negative set. If X = P'UN' is another decomposition into positive and
negative sets, then PAP' is a null set.

4.2.6. LEMMA. If0 < v(F) < oo, then there is a positive set A C E with
v(A) > 0.

PROOF. If F contains a set of negative measure, choose a set By C F in B so
that

v(Bi) <max{ —1,1inf{v(B): B C E, B € B}}.

Recursively choose B;,, C E'\ U;:ll B; with
- n—1
v(Bp) <max{ — 1,3inf{v(B): BC E\[J, | Bi, B € B}}.
1=

Either this terminates because A = E \ U?:lBi is a positive set, or there is an
infinite sequence. In this case, let A = E'\ | J;~, B;. Now by countable additivity,

v(E) =v(A) + Z v(B;).
i>1
Since |v(E)| < oo, this series converges absolutely. Therefore
v(A) =v(E) - Y v(Bi) < .
i>1

Moreover this shows that v(A) > v(E) > 0.
The convergence also shows that v(B;) — 0. If B C A had v(B) < 0, then
v(B) < 2v(B,,) for some n. But this contradicts the fact that

- n—1
inf{v(B): BC E\ Ui:1 B;, B € B}} > 2u(B,).

Hence if B C A, then v(B) > 0. Thus A is a positive set. [

4.2.7. LEMMA. If A, are positive sets, so is A :=J,,~, An.
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PROOF. If BC Aand B € B,let B, = BN (An \ U?:_ll AZ-) forn > 1. Then
the B, are pairwise disjoint sets in B such that B = Un21Bn. Since each A, is
positive, v(B;,) > 0. Therefore v(B) =, -, v(B,) > 0. [

PROOF OF THE HAHN DECOMPOSITION. We may suppose that v does not
take the value +oo (by considering —v instead if necessary). Let

m = sup{v(A) : Ais positive}.
Choose positive sets A,, with v(A4,) — m. Set P = |J,,~, An. By Lemma 4.2.7,

P is a positive set. Moreover v(P) = v(A,) + v(P \ A,) > v(A,) forall n > 1,
and hence v(P) = m. Since v does not take the value +o00, we see that m < oo.

Let N = P¢. Claim: N is negative. If it isn’t, there is a subset £ C N such
that v(E) > 0. By Lemma 4.2.6, E contains a positive set A with (A) > 0. Then
PUA is positive with v(P) + v(A) > m. This contradicts the definition of m.
Hence N must be negative.

Uniqueness. Suppose that X = P'UN’ is a second decomposition of X into
a positive and negative set. Then A = P\ P’ = N’ \ N is both positive and
negative, and hence is a null set. Similarly B = P’ \ P = N \ N’ is a null set.
Thus PAP’ = AU B is a null set. [

4.2.8. DEFINITION. Two signed measures (i, v on (X, B) are mutually singular
(1 L v) if there is a decomposition X = AUB such that A is v-null and B is j-
null.

4.2.9. JORDAN DECOMPOSITION THEOREM. [f v is a signed measure
on (X, B), there there is a unique pair of mutually singular (positive) measures v
and v_ suchthatv = vy — v_.

PROOF. Let X = PUN be the Hahn decomposition for v. Define v, (A) =
v(ANP)and v_(A) = —v(ANN). Then by construction, 4 and v_ are positive
measures supported on disjoint sets, so they are mutually singular,and v = vy —v_.

For uniqueness, suppose that g | p_ and v = py — p—. Let X = P'UN’
such that P is p_-null and N’ is p-null. Then P’ is a positive set for v and N’
is a negative set. By the uniqueness of the Hahn decomposition, PA P’ is a v-null
set. For any set A € B,

pi(A)=v(ANP)=v(ANP)=v,.(A).
So py = vy. Similarly p_ = v_. |

4.2.10. DEFINITION. The absolute value of a signed measure with Jordan de-
composition v = vy —v_is |v| = vy +v_.
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Note that a set A € B is v-null if and only if |v|(A) = 0.

4.3. Decomposing Measures

4.3.1. DEFINITION. A signed measure v is absolutely continuous with respect
to a (positive) measure p (v < p) if A € B and pu(A) = 0 implies that v(A) = 0.

Since any measurable subset of A is also a u-null set, A must be v-null. This
is equivalent to saying that |v|(A) = 0. So v < p if and only if || < p.

4.3.2. RADON-NIKODYM THEOREM. Let i and v be o-finite measures on
(X, B). Suppose that v < 1. Then thereis an f € L so that v(E) = / f du for
E

E € B. Also f is uniquely determined a.e.(11).

PROOF. First we assume that p(X) < oo and v(X) < oo. Foreach r € Q,
v — ru has a Hahn decomposition (P, N;). Also, let Py = X and Ny = @.
Define f(z) = sup{r > 0:z € P,}. Thenfort > 0, f~'(t,00] = U, P> is
measurable. So f € LT.

If < sin QT, then P is a positive set for ¥ — sy and thus is positive for
v—ru = (v—su)+ (s—r)u. Since N, is a negative set for v — ru, we have
(N N Py) = 0. Therefore u(Ny N Uyspcqr Ps) = 0. Hence f|y, < rae.(u).
Thus (£~ (r, o)) < p(Py).

Since P, is positive for v — ru, ru(P,) < v(P,). Hence

u(Pr) <v(Br)/r < v(X)/r.

This goes to 0 as 7 — oo, and thus u(f~!(c0)) < lim, e (Py) = 0. Therefore

f < ooae.(p).
Let £ € B. Fix N. Define Ex, = F N Px N Nin) for k > 0; and let
N N

Esw = E\Uiso Erx = EN(), Pr. Then p(Es) = 0 and so v(Fy) = 0 as well.
Observe that

Thus
£ u(Ey) < v(EBy) < B u(Ey).

Also % < flx) < % fora.e.x € Ei. So %XEk < fXg, < %XE,( Integrating
yields

Ni(ER) < : fdv < BLu(Ey).
k
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Summing over k£ € N, we obtain that

w(E
S (B < X v(B) = v(B) < Y EbuE) = 3 e + 1.
k>0 k>0

E>0 k>0
And similarly

ZN”Ek’ <Z fdu—/fdyggk;\}],u(Ek): ]@M(Ek)—{—ung)

k>0 k>0

Therefore

pu(E)
F)— dv| < .
)V( ) /f Y= N
However N is arbitrary, and hence v(FE) = / fdv.

Suppose that f,g € L' such that v/( / fdu = / gdu for E € B.

Define A = {z : f(z) > g(z)} and 4,, = {z : f(z) > g(z) + 1}. If (A) > 0,
then p(Ay,) > 0 for some n. But then

v = [ fanz [ g bdu= [ gdus fu(an > vian)

Hence f < ga.e.(u). Similarly g < fa.e.(u), sothat f = ga.e.(u).

For the general case, use the fact that i and v are o-finite to chop X up into a
disjoint union of countable many pieces X, so that u(X,,) < oo and v(X,,) < oo
for each n > 1. Then apply the previous argument on each piece, and combine. H

4.3.3. EXAMPLE. On ([0, 1],Bor(]0, 1])), consider Lebesgue measure m and
counting measure m.. Then m < m, but there is no function f € LT so that

m(E) = fdm.. But m. is not o-finite, and this shows the necessity of this

E
condition in the Radon-Nikodym Theorem.
Next we deduce the corresponding results for signed measures.

4.3.4. COROLLARY. Ifv is a signed measure on (X, B), there is a measurable
function f with |f| = 1 so that v(E) = / fd|v|.

E
If in addition, and i are o-finite measures on (X,B) and v < p, there
is a measurable function g = gy — g— with at least one of g. integrable so that

Vv(E) = /E gdp.

PROOF. Let X = PUN be the Hahn decomposition for v. Define f(z) = 1
on P and f(xz) = —1 on N. Then we have that v = v, —v_ and |v| = v} + v_
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and v (E) =v(ENP). So

/Efd|u| :/Empldqu~|—/EmN—1dy — v (E) — v_(E) = v(E).

If |v| < p are o-finite, then by the Radon-Nikodym theorem, there is a mea-
surable function h € LT so that |v|(E) = / hdp. Then
E

V(E):/ hdu—/ hd,u:/fhd,u.
ENP ENN E

Soletg = fh = hXp — hXny =: g+ — g—. Then in particular, one of v(P) and
v(N) is finite, which means that one of g is integrable. [

The Radon-Nikodym Theorem is usually combined with the following decom-
position result.

4.3.5. LEBESGUE DECOMPOSITION THEOREM. Let v, u be two o-finite
measures on (X, B). Then there is a unique decomposition v = v, + Vs so that
v L pandvs L p.

PROOF. Let A = p + v. This is also a o-finite measure on (X, B). Clearly
u < Aand v < A. By the Radon-Nikodym Theorem, there are functions f,g €
LT so that

,u(E):/fd)\ and V:/gdA for E e B.
E E

Let A = f71(0,00] and B = f~1(0). Set vo(E) = v(E N A) and vg(E) =
v(E N B). Clearly v = v, + v,. Also vs L p since it is supported on B, which
is a p-null set. If u(F) = 0, then fXr = Oa.e.()\); and hence A(E N A) = 0.
Therefore v,(E) = v(E N A) = 0. Thus v, < p.

Uniqueness. Suppose that v = v/, 41/, is another decomposition so that v/, < p
and v, L u. Then there is a set A’ € B so that v/.(A’) = 0 and u(B’) = 0, where
B’ = A’“. Thus

w(BUB')=0 and vs(ANA)=v(ANnA)=0.
Now if E C BU B/, then u(E) = 0 and so v,(E) = v/ (F) = 0; and so v4(E) =
V.(E) = v(E). On the other hand, if E C AN A’, then v5(E) = V(FE) .

=0
S
Combining, we deduce that v, = v;. Hence v, = v, as well. [ |

We finish this section with a discussion of measures taking complex values.
These measures are not allowed to take infinite values.

4.3.6. DEFINITION. A complex measure on (X,B) isamapv : B — C
such that (@) = 0 that is countably additive: If £ = (J;5 i, then v(E) =
>_i>1 V() and this series converges absolutely.
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4.3.7. REMARK. Asin Remark 4.2.2, when E = Ui>1EZ~, countable additivity
together with the fact that every set has a finite measure forces absolute convergence
of the series D, v(E;).

Note that Re v and Im v are finite signed measures. Thus there are positive
finite measures v; for 1 < ¢ < 4sothatRev = v — vy and Imv = v3 — v4. Hence
Vv =uv — 1+ 13 — il

4.3.8. EXAMPLE. The main example (and essentially the only example) is ob-
tained as follows: let y be a measure and let f € L'(u). Define v(E) = [, f dp.
You can readily check that this is a complex measure. We will write dv = fdu

d
and wo_ f in this case.
dp

The second statement of the following result is also sometimes called the Radon-
Nikodym Theorem.

4.3.9. THEOREM. Ifv is a complex measure on (X, B), there is a unique finite
measure || = la.e.(|v|) so that dv = hd|v|.
Moreover if 1 is a o-finite measure on (X, B), then v decomposes as v, + vs where
ve = fdufor f € L' (1) and v is supported on a p-null set.

PROOF. With the notation as in the discussion preceding the proposition, let
u=v;+1v2+v3+ v Then Rerv < pand Imyv < p. By the Radon-Nikodym
Theorem, there are f, g € L'(u) so that dRev = fdp and dImv = g dy. Hence

v(E) = /Ef + igdu. Define |v|(E) = /E]f + ig|dp and h = sign(f + ig).

Then |h| = la.e.(Jv|) and v(F) = / hdlv|. Also |[v|(X) = ||f +igll1 < oo;s0
E

|v| is finite. Uniqueness is left as an exercise.

Now if y is a o-finite, the Lebesgue deomposition for |v| yields |v| = |v|q+]|v|s
where d|v|, = fdu for f € Lt N L'(u) and |v|, is supported on a g-null set A.
Then dv = hd|v| = hd|v|o,+ hd|v|s = hf du+ hd|v|s. Thus dv, = hf dp < p
and hf € L'(u) and dvs = hd|v| is supported on the p-null set A. |

Finally, we can integrate with respect to complex measures. If dv = hd|v| is a
complex measure and f € L!(|v|), then we define

/fdz/ —/fhd\u|

It is easy to check that this is linear. It is advisable to convert to integrals with
respect to positive measures when taking limits.




CHAPTER 5

LP spaces

5.1. L? as a Banach space
5.1.1. DEFINITION. Let (X, B, 1) be a measure space. For 1 < p < oo, let
“LP(p)” = {f measurable, complex valued : || f||} = / | P dp < oo}

Set
N = {f measurable, complex valued : f = Oa.e.(u)}

and define LP(p1) = “LP(p)” /N with the norm [|[f]]|, = || f]],-

“L*°(p)” = {f measurable, complex valued : || f|lcc = esssup|f| < oo} where
esssup | f| = sup{t > 0 : p({x : [f(2)| >t} > O} Set L*(u) = “L>(n)"/N
with norm |[[f][|cc = | f{]oo-

By convention, we write elements of LP(u) as f, where the equivalence class is
understood.

Note that “LP” is a linear space because if f,g € LP(u), then \f € LP(u) with
A llp = A1 £l for A € C; and

[f + 9" < (2max{]|f],|g[})” < 2°(If1” + |g[")-

whence ||f + g7 < 2(||fllp + |lgllp) < oo. Notice that N is a subspace of
“LP(p)”, so that LP(u) is also a vector space. Moreover, if f is measurable, then
|5 = JIffPdp = 0 if and only if f = Oa.e.(u) if and only if f € N. In
particular, || - ||, is only a seminorm on “LP(u)”. However, for f € LP(u), we
have || f||, = 0if and only if f = 0. To verify that || - ||, is a norm on LP(u), we
need to verify the triangle inequality, which means eliminating the annoying 2 in
the inequality above.

A function belongs to “L°°(u)” if it agrees with a bounded function a.e.(u).
The triangle inequality is very easy here. It is also very easy for L'(u) (see sec-
tion 3.4).

5.1.2. MINKOWSKI’S INEQUALITY. Let (X, B, 1) be a measure space. For
1 < p < o, the triangle inequality is valid for LP (). Equality holds only when f
and g lie in a 1-dimensional subspace.

64
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PROOF. Let f,g € LP(u). We may suppose that neither is 0, as that case is
trivial. Define A = ||f||, and B = ||g||,, and set fy = f/A and go = g/B; so

[ follp =1 = ligoll,-

Consider () = 2P on [0, o). Note that ¢ (x) = p(p—1)2P~2 > 0 on (0, c0),
and thus () is a strictly convex function, meaning that for all 21, x, € [0, c0) and
0<t<,

p(ter + (1 = t)w2) <tp(er) + (1 = t)p(22),

with equality only when 1 = z; or £ = O or t = 1. That is every chord between
distinct points on the curve y = p(x) lies strictly above the curve.
Hence for any x € X,

P p B p
(gl @]+ o glon@))” < sl h@IP + o lon(z)
with equality only when | fo(z)| = |go(z)|. Also

(@) +lg(a)| B
A+BV<> 9@ < =g A+BU(M+A+BM(M

with equality only when sign(f(x)) = sign(g(x)). Integrate the pth power:

1
W/|f(w)+9(:v)|pdu<A+B/|fo Pd:U+A+B/ lgo(@)|P dys

o ol +

yZ—
A+B A+B||90”

Multiplying through by (A + B)? and take the pth root to get

1f +glly < (A+B) = [fllp + llgllp-

For equality, we require that | fo(x)| = |go(z)| a.e. and sign(f(x)) = sign(g(x)) a.e.
This implies that fy = goa.e.(u), so g = Bf/A;i.e., g is a scalar multiple of f. H

Now that we have established that LP(u) is a normed space, we will show
that it is complete, and so is a Banach space. This extends the result for L'(u),
Theorem 3.4.2. This is another important piece of evidence that this is the right
context for integration.

5.1.3. RIESZ-FISCHER THEOREM. Let (X, B, i) be a measure space. For
1 < p < oo, LP(u) is complete.

PROOF. Suppose that (f;,)n>1 is a Cauchy sequence in LP (). Select a subse-
quence (n;)j>1 50 that || f; — fm |l < 277 for all m > n;. Define

k—1
hy, = ’fm’ + Zl |fn]-+1_fnj| and h = kh%nc}o hy,.
]:
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Note that 0 < hy, < hg41. By the triangle inequality,
=1
rklly < 1 fonllp + > 277 <l furllp + 1.
j=1
Since h% are increasing to h?, the MCT shows that ||h|l, < ||fn, ||, + 1 when

p < 00. For p = 00, |||l < || fn,llp + 1 follows directly. So h € LP(u), and in
particular, h(z) < coa.e.(u).

Note that f,,, = fn, + Z?;ll( Jnj—fn;)- Let
S = ot 3o Unger= ) = Jim fo.
Jj=1
This series converges absolutely whenever h(x) < oo, and so is defined a.e.(u).

Morcover || < h, so f € LV (11). Also |f — fu [? < (Yo [fu, = Fuy)? < 7
when p < co. Thus by the LDCT,

dim (11 = fullp = fim [1f = ful?dn = [ fim |f = fo]? du=o
—00 k—oo k—oo

When p = oo, ||f — fu.lleo < ijk [ fr; = frjlleo < 2=k Therefore frn
converges to f in LP(u). Since (fy)n>1 is Cauchy, in fact f, — f in LP(u). So
LP () is complete. [

5.1.4. EXAMPLES.
(1) L?(0,1) = L?((0, 1), m). Here Lebesgue measure, m, is a probability measure
on(0,1).Ifl <p<r<ooand f € L"(0,1), then

T =/\f|”dm g/ 1dm+/ I dm <14 ] < o
[fI<1 [fI>1

Thus f € LP(0,1). So L'(0,1) D> LP(0,1) D L"(0,1) D L>(0,1). These
subspaces are not closed in the larger spaces. In the next section, we will improve
the norm inequality. We also write LP(R) for LP((R,m)).

(2) Consider (N, P(N), m.). Then
LP(N,mC) = lp = {(ai)i21 : ”(al)Hp = (Z |ai|p)1/p < OO}
i>1

for p < oo, and L>®° (N, m.) = [ = {(ai)izl (@) |loo = SUp;> la;| < oo}. If
1 <p<r<ooand(a;) € I, then

)l = lasl” =Y lail? [as]"

i>1 i>1
< (D lasl?) sup lail P < [[(a) B [ (aa) 1577 = |I(ai)lp-
i>1

Thus ||(a;)||» < ||(a;)||p- In particular, I C P C " C ™.
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(3) Let 1 be the measure on (N, P(N)) given by pu(A) = ocois A # @ and p(@) =
0. Then LP(pu) = {0} if 1 < p < oo and L>(u) = I°°. You need sets of non-zero
finite measure to get interesting functions in LP(p).

5.1.5. PROPOSITION. Let (X, B, 1) be a measure and let 1 < p < oo. Then
the simple functions of finite support (¢ = Y | a;Xa,, where u(A;) < oo) are
dense in LP (). For p = 00, the set of all simple functions is dense in L (p).

PROOF. Fix f € LP(u) for p < oo. Choose simple functions ¢,, so that

[onl <lpnn| <[f] and  f(z) = lim ¢ (z).
n—0o0
Then |¢, [P < |f|P is integrable, so ¢,, € LP(u). In particular, each set A; in the
definition of ¢y, for which a; # 0 must have finite measure. Also since |f — ¢, | <
If] + len| < 2|f], we have |f — ¢, |P < 2P| f|P. Therefore by the LDCT,

T 17 = eully = tim [ 17— gulde = [ tim 1 — o e =0,

So ¢y, converge to f in LP(u).
When p = oo, suppose that [|f|lc = N < oo. Forn > 1, and (j,k) €
[-nN,nNJ?, let Aj), = {z : L <Re f(z) < Lk < m f(z) < ELL} These

"n’n
nN j+ik <ﬂ

are measurable sets, and p, = > 0y v o Xa,, satisfies [ f — oo < ¥E
So the simple functions are dense. If ;1(A) = oo, then X 4 is not the limit of simple

functions with finite support. |

Recall that if X is a topological space, then C.(X) denotes the space of con-
tinuous functions on X with compact support (i.e. {z : f(x) # 0} is compact).

5.1.6. COROLLARY. If1 < p < oo, then C.(R) is dense in LP(R). This is
false for p = oo.

PROOF. Let f € LP(R) and let ¢ > 0. Use Proposition 5.1.5 to find a simple
function of finite support ¢ with || f — ||, < €/2. Write ¢ = > | a;X 4,, where
w(A;) < oo. Let L = sup|a;|. By the regularity of Lebesgue measure (Theo-
rem 1.5.6), there are compact sets K; so that K; C A; and m(4; \ K;) < z51.
Choose disjoint open sets U; D K so that m(U; \ K;) < 77 and Uj is compact.

. dist(z,U¢
Foreach 1 < ¢ < n, let h; = dist($7Ki§+dist2$7U_c).

function which vanishes off of U;, has h;(x) = 1 on K, and takes values in [0, 1].
Then X 4, — h; vanishes on K; and on U N Af; so

Note that this is a continuous

€ € €
— hlP < m(4;\ K; i\ A4;) < = :
X4, Hp < m(Ai \ Ki) +m(Ui \ A4) < 4nL + 4dnl,  2nL
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Hence h = )" | a;h; belongs to C.(R) and

n
€ £
o=l <3 laslca, =il < by = 5.
1=
Thus || f — hll, <e.
Clearly the constant function 1 is not a limit in L°°(R) of functions of compact
support. So this fails for p = oc. |

5.2. Duality for Normed Vector Spaces

In this section, we recall some basic facts about linear functionals on normed
vector spaces.

5.2.1. DEFINITION. Let (V|| - ||) be a normed vector space over F € {R, C}.
Let £(V,F) denote the vector space of linear maps of V' into the scalars, linear
functionals, and let V* denote the dual space of V consisting of all continuous
linear functionals.

5.2.2. PROPOSITION. Let (V,|| - ||) be a normed vector space over F, and let
w € L(V,F). The following are equivalent:

(1) @ is continuous.

(2) llell == sup{le(v)| : [Jo] <1} < oc.

(3) ¢ is continuous as v = 0.

PROOF. (2) = (1). Ifu # v € V, set w = =2 and note that

Mol
lp(u) — )] = |p(u —v)| = |p(w)| lu—v| < |lell|u— o]

Hence ¢ is Lipschitz, and in particular is continuous.

(1) = (3) is trivial.

(3) = (2). Assume that (2) fails. Then there are vectors v, € V with ||v,|| =
1 and |@(vy)| > n% Thus Lo, — 0 while [p(1v,)] > n diverges. So ¢ is
discontinuous at 0. The result follows. |

5.2.3. THEOREM. Let (V.| - ||) be a normed vector space. Then (V*,|| - ||) is
a Banach space.

PROOF. First we show that || - || is a norm. Clearly ||¢|| = 0 if and only if
¢o(v) = 0 forall v € V with ||v]| < 1. This forces ¢ = 0 by linearity. Also if
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A € F, then

Al = sup |Ap(v)| = |A] sup [p(v)] = | [lel]
[oll<1 [oll<1

For the triangle inequality, take ¢, 1) € V*.

le+ 9l = sup [@(v) +¢(v)] < sup [o(v)]+ sup [¢(v)| = [[e]l + [[¥]]
loll<1 o<1 [oll<t

To establish completeness, let (¢, ),>1 be a Cauchy sequence in V*. For each
v eV, |om(v)—en(v)| < |lom—enll [|v]. It follows that (¢, (v)),>1 is a Cauchy
sequence in . Thus we may define ¢(v) = limy,—,o0 ¢ (v). Then

pAutpo) = lim on(Autpv) = Hm App(u)+pen(v) = Ap(w) +pe(v).

Therefore ¢ is linear. Now let € > 0 and select IV so that if m,n > N, then
| om — @nll < €. In particular, if ||v|| < 1, we have |, (v) — ¢n(v)| < €. Holding
m fixed and letting n — oo, we obtain that |¢,,(v) — ¢(v)| < e. Taking the
supremum over all v with |[v]| < 1 yields ||¢, — ¢|| < ¢ when m > N. In
particular, ||¢|| < ||@m| + |lYm — @] < 0050 p € V*. Moreover we have shown
that lim,, 00 om = @ in (V*,]| - ||). So V* is complete. [

5.3. Duality for L”

In this section, we determine the Banach space dual of the spaces LP(u) for
1 < p < oo0. We need another import inequality.

5.3.1. LEMMA. Ifa,b€ (0,00) and 0 <t < 1, then
a'd't <ta+ (1 —t)b

with equality only when a = bort =0or 1.

PROOF. This is just the AMGM inequality. The function f(x) = e” is strictly
convex. So e!*t1=08 < e 4 (1 — t)eP, with equality only when v = Sort = 0
or 1. Take a = e and b = ¢” and the result follows. |

5.3.2. HOLDER’S INEQUALITY. Let (X,B, 1) be a measure space. Let
1 < p < oo and define q so that % —i—é =1 Iff € LP(u) and g € Li(u) , then

fg € L'(u) and

gl < 1Flp llgllg-
Equality holds if and only if | f|P and |g|? are collinear.

PROOF. We may suppose that f, g are non-zero since the inequality is trivial
if fg = Oa.e.(u). Let fo = |f|/A where A = ||f||, and go = |g|/B where
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B = ||g|lq- Apply Lemma 5.3.1to a = fo(z)? and b = go(z)? with t = % and
1—-1t= é. Then

|/ (x)g(x)] 1 1 1 1
LVl = < = Py 9= _"_ Py q.
1B Jo(@)go(z) < pfo(f) + qgo(fﬂ) pAp|f($)| + qu|g($)|
Integrate to get
Ifglli o 1 ! 11
< p qa_ _ — = 1.

Hence || fglli < AB = [/, llgllg-
Equality holds in the first inequality only when fo(z)? = go(z)9. For it to hold
for the integral, this identity must hold a.e.(x). Hence |g|? = % |fIPae.(u). [

For more elementary reasons, if f € L'(u) and g € L>(u), we have that
fg € L'(p) and [ fgll < [I£1l1 lglloo-

5.3.3. EXAMPLE. We return to Example 5.1.4(1). Suppose that y is a probabil-
ity measure. If 1 < p < r < ooand f € L"(u), choose s so that Z + 1 = 1. Note

that | f|P € L"/P(1). Then
LIS = (1A, < el

Hence || f{l, < [|f]l:-
More generally if (X)) < oo, the same computation yields

1 1
1l < ILIP LA = w2 1f e = ()27 (1 f]lr-
When every point has measure 1, you get the [P spaces, where the inequalities
are reversed. See Example 5.1.4(2).
For the spaces LP(RR), there is no containment between LP(R) and L" (R) when

p#T

[1ls = (1117

r/p

We now get to the main result of this section.

5.3.4. THEOREM (Riesz). Ler (X, B, i) be a o-finite measure. Suppose that
1 < p < oo, and let q satisfy %4—% = 1, where ¢ = cowhenp = 1. Then LP(u)* =

L4(p) via the isometric pairing LI(p) > g — ®4, where O4(f) = /fg dpu.

5.3.5. LEMMA. Suppose that p is o-finite, | < p < oo and g € L(u). Then
[Pl = llgllq-

PROOF. First suppose that 1 < p < oco. By Holder’s inequality

2D =| [ odu] <153l < 151, ol
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Hence ||@g|| = supjs <i [Pg(f)] < llgllq- On the other hand, if g # 0, let
7 ol sign(g) g1

We will use that p(¢—1) = pq(1— 7) = q. Then |f|P =

1 .
gl lgllg”
So gl
g
11 = dp=1.
b gl
Therefore
lg|?™ 151gn 1
112 @y(1) = [ SE g = s [ laltdi= gl
lgllg™ lgllg

Forp =1, take g € L (). As above, [@y(f)] S/Ifl 19lloo dpv = 1£111 llgllco-

Conversely, givene > 0,let A = {z : |g(z)| > ||g|lcc —€}. Then p(A) > 0. Since
u is o-finite, there is a measurable subset £ C A with 0 < p(FE) < oo. Let

sign(g
= B, Then 1 = 1and @) = iy [ ol doe > gl — . Thus
1@y ]| = [[glloc- u

5.3.6. LEMMA. Suppose that ji is o-finite, | < p < oo and g is a measurable
function such that

)/gog d,u’ < M|lpll,  forall ¢ simple, finite support.
Then g € L) and ||g||q < M.

PROOF. First take 1 < p < o0, so that ¢ < oo. Suppose first that g is real
valued. Choose simple functions v, so that || < [Vn+1] < |g| and ¢, — g.
Since p is o-finite, we can write X = (J,,~; X, where X,, C X, 11 and pu(X,,) <
oo for all n. Then ¢,, = 1, Xx,, are simple functions with finite support such that
lon] < |on+1| < |g| and ¢, — g. Analogous to the previous lemma, define

P |n |7 " sign(g)
n — -1 :
lonld

Note that sign(g) take only the values +1,0 and so f, is a simple function of finite
support. As in the previous lemma, || f,,||, = 1. Therefore

qg—1
M > sup ‘ /fngdu) ‘ [ ‘?'
n>1 n>1 llonll

|onl?
> sup| [ L2 ] = sup gl = gl
n>1 llenllg n>1

The last equality follows from the MCT.
Now for complex valued g, note that Re g and Im g satisfy the hypotheses of the
lemma. Thus they both belong to L9 (), and hence g € L9(u). So by Lemma 5.3.5,
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|®y]l = ||gllq- Proposition 5.1.5 shows that simple functions of finite support are
dense in L” (1), and hence the optimal constant M/ must be ||®,||; so ||g||; < M.
For p = 1, we need to show that ||g|.c < M. If this fails, then for some
N > M, {z : |g(z)|] > N} has positive measure. Hence there is a § € R
so that A = {x : Ree?g(x) > M} has positive measure. Let E C A have
positive and finite measure. Define f = ¢*u(E)~'Xg. Then ||f|; = 1 and
M >Re [ fgdu > M. This is a contradiction, and hence ||g||o < M. [

PROOF OF THEOREM 5.3.4. First assume that y(X) < co. Let ® € LP(p)*.
Define v(F) = ®(Xg) for E € B. Note that v(@) = $(0) = 0. Also if £ =
U;>1 Ei is a disjoint union of sets in B, then

n
HXE - Z XE;
i=1

Since @ is continuous,

v(E) = ®(Xp) = lim ®( > xg) =Y v(E).

i=1 i>1

g: 'M(Ui>nEi) —+0 asn — oo.

Therefore v is countably additive, and thus is a complex measure. Moreover if
w(E) =0, then Xg = Oa.e.(u) and hence v(E) = ®(0) = 0. Thus v < p.
By the Radon-Nikodym Theorem 4.3.2, there is a measurable g € L'(1) so

that v(F) = / gdp. If o = > | a;Xg, is a simple function (with finite support),
E
then

®(p) = aiv(E;) = /wdv: /wgdu-
=1
Thus
| [ eadu| = 20 <121 ]

By Lemma 5.3.6, g € L9(y), and so @, is a continuous functional on LP (1) which
agrees with @ on all simple functions of finite support. Such functions are dense
in LP(u) by Proposition 5.1.5. So by continuity, & = &,. By Lemma 5.3.5,
|®|| = [|@gll = ||lgllq- Moreover this shows that g is unique, because distinct
LP () functions yield distinct functionals.

Now consider when p(X) = co. We can write X = |J,,~,; X, where X,, C
Xp+1 and p(X,,) < co. We can restrict @ to LP(X,,, ulx,,) (since this is a closed
subspace of LP(yu1)). Call it ®,,. The first part of the proof shows that thee is a
unique g, € LP(X,,, ui|x,, ) so that ®,, = @, and ||g,|q < ||P||. Let g = U,,>1 9n
be the unique measurable function such that g|x, = g,. The various functions
must match up a.e.(u) because of uniqueness. By the MCT,

= 1 < .
lally = tim flgally < @]
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So @ and @, agree on the dense subspace |J,,~; LP(Xn, p1|x,,) and they are con-
tinuous functionals; and so ® = &®,. Again by Lemma 5.3.5, | ®|| = ||g]|4- [

5.3.7. REMARK. In fact, o-finiteness is not needed to obtain LP(u)* = L7(u)
provided that 1 < p < oo. See Folland’s book for the details.

However it is critical to establish that L'(u)* = L°°(u). In Example 5.1.4
(3), each point in N has p({n}) = oo and so L'(u) = {0} while L>=(u) = .
However L!(u)* = {0}.

A more subtle example is to take (R, P(R),m.). Let B be the o-algebra of
countable and co-countable subsets of R. Let i1 = me|s. Any function in L'(m..)
has countable support, and thus is B-measurable. Therefore L'(u) = L'(m.).
However changing the measure has a dramatic effect on the L> spaces. The
space L>°(m.) = [°°(R) is the space of all bounded functions on R. However
for a function to be B-measurable, it must be constant on a co-countable set. In
fact, L'(pn)* = L'(m.)* = L®(m.) = I*°(R). One way to see this is that if
® € L'(p)*, we can define g(r) = ®(X,). Then |g(r)| < [|®]|, so that g is a
bounded function; and so g € L°(m,.). Moreover, if f € L'(u), then there is a
countable (or finite) collection of real numbers {r,, : n > 1} and scalars «, so that
[ =2n>1anX{p,y- Moreover || f[l; = >, 5 [an]; whence this series converges
absolutely. Therefore by continuity,

o(f) = Z anq)(X{rn}) = Z ang(n).
n>1 n>1

Moreover this same computation shows that any element of L°°(m,) determines a
distinct continuous functional on L' (p).



CHAPTER 6

Some Topology

This is a brief introduction skewed to certain things needed in the next section.
This is not intended as a comprehensive introduction to point set topology. A good
general reference is Willard’s book [3].

6.1. Topological spaces

6.1.1. DEFINITION. A fopology 7 on a set X is a collection of subsets such
that

(1) @, X eT.

(2) F{Ux: A€ A} C 7, then|Jycp U € 7.

(3) IfUy,...,U, € 7, then(,_, U; € 7.
The elements U € 1 are called open sets.

6.1.2. EXAMPLES.
(1) If (X, d) is a metric space, then U is open if for every x € U, there is anr > 0
so that the open ball b, (x) C U.

(2) If X is any set, the discrete topology has 74 = P(X), the collection of all
subsets of X.

(3) If X is any set, the trivial topology has T = {@&, X }.

(4) If (X, <) is a totally ordered set, the intervals (a,b) = {x € X : a < x < b},
(—o0,b) ={zr € X : x < b} and (a,00) = {x € X : & > a} are open, and the
topology consists of arbitrary unions of such intervals.

(5) If (X, 7) is a topology and Y C X, the induced topology on Y is 7|y =
{UNY U e}

6.1.3. DEFINITION. A set F' C X is closed if F'° is open. If A C X, the
closure of Ais A= ({F : ACF, F closed}. A point in A is called a limit point
of A.

If A C X, then a € A is an interior point of A if there exists U € 7 with
acUCA. If AC X, the interior of Ais A°orintA=|J{U e 7:U C A}.

74
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If x € X, a neighbourhood of x is a set N such that x € N°.
6.1.4. PROPOSITION.

Finite unions and arbitrary intersections of closed sets are closed.
A is the smallest closed set containing A.
€ Aifand only ifevery U € T withx € U has ANU # 2.

x
A = A s the complement of the interior of A°.

PROOF. Since open sets are closed under arbitrary unions and finite intersec-
tions, the collection of closed sets is closed under arbitrary intersections and finite
unions. Hence the intersection of all closed sets F' O A is closed, and is thus the
smallest closed set containing A. Now = € A if and only if = € F for every closed
F D Aifandonly if z ¢ U if U is open and disjoint from A. Finally

X\A=|J{ver:Und=g}=(J{Uer:UcA}=4" N

6.1.5. DEFINITION. If o and 7 are two topologies on X, we say that o is a
weaker topology than 7, and 7 is a stronger topology than o, if o C 7.

6.1.6. PROPOSITION. If S C P(X), then there is a weakest topology T con-
taining S. It consists of arbitrary unions of sets which are intersections of finitely
many elements of S.

PROOF. Clearly if 7 D S is a topology, then it contains all intersections of
finitely many elements of S, and arbitrary unions of these sets. The intersection of
no sets is X by convention, and & is the union of no sets, so they both belong to
7. This collection is clearly closed under arbitrary unions. To check that it is stable
under intersection, observe that if A, ; and Bg ; are in S, then

U AaiN---NAgn, N U Bgi NN Bsm,

acA BeB

= U Aa71ﬁ-nﬂAamaﬂBﬁ}lﬂ-“ﬂBQ’mB.
a€cA, BeEB

Hence this collection is a topology. By construction, this is the weakest topology
containing S. |

6.1.7. DEFINITION. Say that S C P(X) is a base for a topology T if every
open set U € T is the union of elements of S. Also S is a subbase for a topology 7
if the collection of finite intersections of elements of .S is a base for 7.
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6.1.8. EXAMPLES.

(1) If (X, d) is a metric space, then {b;/,,(z) : € X, n > 1} is a base for the
topology.

(2) {(r,s) : r < s € Q} is a base for the topology of R.

(3) Let C[0, 1] denote the space of continuous functions on [0, 1]. For each z €
[0,1],a € Candr > 0,letU(x,a,r) ={f € C[0,1] : f(z) € br(a)}. Let T be the
topology generated by these sets. This is the topology of pointwise convergence.
An open neighbourhood of f must contain a set of the form

{g € C[0,1] : |g(z;) — f(z:)] <rforl <i<n}

forzy,...,z, €[0,1] and r > 0.

6.1.9. DEFINITION. A set A isdensein X if X = A. X is separable if it has a
countable dense subset. X is first countable if for each € X, there is a countable
family {U;} C 7 with z € U; which forms a countable base of neighbourhoods
of x; i.e., if x € V is open, then there is some ¢ so that U; C V. X is second
countable if there is a countable family of open sets which is a base for 7.

6.1.10. EXAMPLES.

(1) If (X, d) is a metric space and # € X, then {b;/,(x) : n > 1} is a countable
base of neighbourhoods of x. If X is separable, and {z; : i > 1} is dense in X,
then {bl/n(azi) > 1, n > 1} is a base for 7. Indeed, suppose that x € U is
open. Pick r > 0 so that b,(z) C U and z; so that d(z,x;) < 1/n < r/2. Then
T € by/p(z;) C U. So X is second countable. In particular, compact metric spaces
are separable and so second countable.

(2) Consider the discrete topology 74 on a set X. Since the topology is generated
by {{m} rxe X }, X is always first countable. However it is second countable if
and only if X is countable if and only if X is separable.

6.2. Continuity

6.2.1. DEFINITION. A function f : (X,7) — (Y,0) between topological
spaces is continuous if for all V' C Y open, the set f~! (V) is open in X. Say that
f is a homeomorphism if f is a bijection such that both f and f~! are continuous.

6.2.2. EXAMPLES.

(1) The identity map (X, discrete) 1, (X,7) 2, (X, trivial) is a continuous
bijection, however in both cases f~! will be discontinuous provided that 7 satisfies
{o,X} 7S PX).



6.2 Continuity 77

(2) A function f : (X, trivial) — R is continuous only if it is constant, while
every function f : (X, discrete) — R is continuous. On the other hand, a function
f R — (X,discrete) is continuous only if it is constant, while every function
f R — (X, trivial) is continuous.

() f:(—1,1) = Rby f(z) = tan %5 is a homeomorphism.

(4) Let X = {0,1}. Let 7 = {@,{0}, X }. Then {1} is closed, but {0} is not, and
{0} = X.If f : X — Ris continuous, then f is constant.

(5)Let X =[0,1) U {a,b}. Let the open sets in 7 be U C [0, 1) which are open in
the usual metric on [0, 1) together with sets U U (r, 1) U {a}, U U (r,1) U {b} and
UU(r,1)U{a,b} for r < 1. Here the points {a} and {b} are closed because the
complement is open. However if a € U and b € V are open sets, then U NV D
(r,1) for some r < 1. That means that you cannot separate a and b from one
another by open sets. If f : X — R is continuous, then f(a) = f(b).

6.2.3. DEFINITION. Let C®(X) and C%(X) or C®(X,R) denote the normed
vector space of bounded continuous functions from X into C and R, respectively,
with norm || f||cc = supy | f(z)|. Similarly, C(X) and Cr(X) or C(X,R) denote
the vector space of continuous functions from X into C and R, respectively.

6.2.4. DEFINITION. A topological space is Hausdorff if for all x,y € X two
distinct points, there are open sets U > x and V 2 ysothat U NV = &.

6.2.5. PROPOSITION. If C*(X) separates points of X, i.e., for x # y in
X, there is a continuous function f € C®(X) so that f(z) # f(y), then X is
Hausdorff.

PROOF. If f(z) = aand f(y) = Sand r = |a — 3|/2 > 0, then x € U =
f'(br(a))andy € V = (b (8)) and U NV = @. m

Consider the Examples 6.2.2 (4) and (5) in light of this proposition.
Recall that f,, € C*(X) converge uniformly to a function f if || f — fn|lco — O.
The following standard result for metric spaces extends easily.

6.2.6. PROPOSITION. The uniform limit f of a sequence f, € C*(X) is con-
tinuous.

PROOF. Let U be open in C and let z € f~!(U). Then there is an r > 0 so
that b, (f(z)) € U. Choose n so large that || f — fu|lcc < r/3. Thenz € V =
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I (br/3(fn())) is open. If y € V, then | f,,(y) — fu(x)| < 7/3, 50
|f(y) = F@) < () = fa)] + [fu(y) = fa(@)] + [fu(2) = f2)]
<If = Fallow + 5+ 1F = Fallso <1

Hence f(y) € b.(f(z)) C U. Thus V C f~1(U). So f is continuous. [ |

The norm || f ||~ makes C®(X) into a normed vector space. In view of Propo-
sition 6.2.5, the following is most interesting when X is Hausdorfft.

6.2.7. THEOREM. For any topological space, C°(X) is complete.

PROOF. Let (f,)n>1 be a Cauchy sequence in C?(X). If ¢ > 0, there is an
N so thatif N < m < n, then ||f, — fiml|loc < e. In particular, for z € X, the
sequence (fn(z)), -, is Cauchy in C. So we may define f(x) = limy, o0 fn()
pointwise. However for m > N,

F() = fn@)| = lim | fa(@) = fn(a)] < e

Hence ||f — fm|lco < e. So convergence is uniform. By Proposition 6.2.6, f
is continuous. Also ||f|lec = limy so0 || fallooc < 00, and so f lies in C?(X).
Therefore C*(X) is complete. |

6.3. Compactness

6.3.1. DEFINITION. An open cover of aset A C X is a collection of open sets
{Ux : X € A} such that A C |, Ux. A set A is compact if every open cover has a
finite subcover, i.e., a finite subset U),, ..., U, suchthat A C U?:] U,,.

6.3.2. EXAMPLE. In 6.2.2 (4), the point {0} is compact but not closed.

6.3.3. PROPOSITION. If X is compact and A C X is closed, then A is com-
pact.

If X is Hausdorffand A C X is compact, then A is closed. Moreover, if x & A,
there are disjoint open sets U D AandV > x.

PROOF. If U = {U), : A € A} is an open cover of A, then U/ U { A} is an open
cover of X. By compactness, it has a finite subcover U, ,...,U), , A°. Hence
Uy, ..., Uy, covers A; whence A is compact.

Suppose that X is Hausdorff and A C X is compact, and let z € A€. For each
a € A, there are open sets a € U, and x € V, so that U, NV, = &. Clearly
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{U, : a € A} is an open cover of A. By compactness, there is a finite subcover
Uas--,Uq,. Let V =", Vg, Then z € V is open, and

VﬂACOVﬂUai:Q.

i=1

Hence z ¢ A. So A is closed. Moreover A C U = I Up,andUNV = 2. W

6.3.4. DEFINITION. A family {A) : A € A} of subsets of X has the finite
intersection property (FIP) if whenever \j,..., A\, are finitely many elements of
A, then (| Ay, # 2.

6.3.5. PROPOSITION. A fopological space X is compact if and only if every
family F = {Ay : X\ € A} of closed sets with FIP has non-empty intersection

NF =N\ Axr # 2.

PROOF. Suppose that X is compact and F has FIP. Define open sets Uy = AS.
IfNF = @, then Uy = (NF)* = X. SoU = {Uy : X\ € A}isan
open cover of X. By compactness, there is a finite subcover Uy, ..., U,,. Hence
Ny A, = (UL, Uy,)© = @, contradicting FIP. Therefore (| F # @.

Conversely, suppose that i/ = {Uy : A € A} is an open cover of X. Define
closed sets Ay = U§. If there is no finite subcover, then (', Ay, = (U, Uy,)" #
@; and thus F = {Ax : A € A} has FIP. But then (| F # @. Therefore
UpUx = (ﬂ F )C # X, contradicting the fact that ¢/ is an open cover. Hence
F does not have FIP, so there is a finite set Ay,, ..., Ay, such that ' | Ay, = @.
Hence I, Uy, = (N, A»,) = X. Therefore X is compact. [ |

6.3.6. PROPOSITION. If f : (X,7) — (Y,0) is continuous and A C X is
compact, then f(A) is compact.

PROOF. Let {V)\ : A € A} is an open cover of f(A) in Y. Define Uy =
f~Y(V}). These are open sets by continuity, and they cover A. Thus there is a
finite subcover Uy, ..., Uy, . Thensince V) D f(U)), it follows that V,, ..., V3,
covers f(A). Hence f(A) is compact. [

The following important consequence follows directly.

6.3.7. EXTREME VALUE THEOREM. If (X, ) is compact and f € C(X),
then | f| attains it maximum. In particular, || f||oo < 0.

6.3.8. DEFINITION. If (X, 7)) are topological spaces for A\ € A, we define
the product space to be X = [[, X\ = {(z)) : zx € X,} with the weakest
topology T which makes the coordinate projections my : X — X by my\(z) = z)
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continuous. That is, the sets 7 ' (U) = IT,ea\pny Xu x U are open and form a
subbase for the topology.

6.3.9. REMARKS.
(1) The product topology 7 consist of arbitrary unions of finite intersections of the
subbase. Soif A\1,..., A\, € Aand U; € T7y,, then the sets of the form

Uy x---xU,x H X,
peEA\{ i, 1<i<n}

form a base for the topology.

(2) If A is finite, this is a familiar construction in the metric space case. Indeed, if
(X, d;) are metric spaces for 1 < i < n, then

D((z1,---,zn), (Y1, - yn)) = max {d;(z;,y;) 1 1 <i<n}

is a metric on the product, and the metric topology coincides with the product
topology.

(3) When A is infinite, it often requires the Axiom of Choice to be able to say that
X is non-empty.

6.3.10. THEOREM. If X; are compact for 1 < i < n, then X =[], X; is
compact.

PROOF. It suffices to show that X XY is compact if both X and Y are compact,
as the result follows by finitely many repetitions. Let W = {W), : A € A} be an
open cover of X x Y. For each (z,y) € X x Y, there is a A(x, y) so that (x,y) €
W(z,y)- Hence this set contains a basic open set Wy ) D Upy X Viy 3 (7,y)
for open sets U, , in X and V, , in Y. Fixy € Y. The sets {U,, : ¢ € X} isan
open cover of X. Select a finite subcover Uz?’y, cee Uzgwy. Then Ur;f’,y X iny’y
for 1 < i < m, covers X x {y}. Let V, = N2, Vyv - This is open, contains
y, and Upy \, x Vo, for 1 < i < ny covers X x V. Now {V, 1y € Y} is an

z},y
open cover of Y. Let V,,,...,V,,  be a finite subcover. Then the finite collection
{lei‘.!j’yj X V;z;j’yj 1 < <ny, 1 <j < m}covers X x Y. Therefore
{W)\(xiyj7yj) t1<i<ny,, 1 <j<m}covers X x Y. |

6.3.11. REMARK. An infinite product of compact spaces is also compact. This
is known as Tychonoft’s Theorem. It turns out to be equivalent to the Axiom of
Choice. We usually prove it in the functional analysis course.
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6.4. Separation Properties

There is a whole hierarchy of separation properties to classify how nice a topo-
logical space is.

6.4.1. DEFINITION. A topological space is Tj if x # y € X, then there is an
open set containing one of these points, but not the other.

A topological space is 17 if points are closed.

A topological space is T if it is Hausdorff.

A topological space is 73 if it is 77 and regular: given a closed set A and a point
x & A, there are disjoint open sets U D Aand V' > x.

A topological space is T3 5 or Tychonoff if it is T} and completely regular: given a
closed set A and a point x ¢ A, there is a continuous function f : X — [0, 1] so
that f(z) = 1 and f|A = 0.

A topological space is Ty if it is T} and normal: given disjoint closed sets A, B,
there are disjoint open sets U D Aand V D B.

6.4.2. REMARKS.
(1) The Tj property is very weak. Example 6.2.2(4) is Ty but not 77.

(2) T is also a very weak property. It implies Ty since if x # y, the set {z}¢ is
an open set containing y but not x. To be 77 it is enough to find open sets U > z
withy ¢ U and V > y with x € V. (Exercise.) Example 6.2.2(5) is 77 but not
Hausdorff. Points are closed in Hausdorff spaces, so 75 implies 77.

(3) The trivial topology is regular because there are no points which are disjoint
from a non-empty closed set. But throwing in the 7' condition makes a 73 space
Hausdorff because you can take your closed set to be {y}.

(4) Completely regular spaces are regular, because if x ¢ A and A is closed, let
f + X — [0,1] be a continuous function with f(z) = 1 and f|4 = 0. Then
U={y: fly) >1/2}and V = {y : f(x) < 1/2} are disjoint open sets with
x € Uand A C V. Again we need to add the T property to exclude examples like
the trivial topology.

(5) The T property ensures that Ty spaces are Hausdorff. A metric space (X, d) is
normal. If A and B are disjoint closed sets, let U = {z : d(z, A) < d(z, B)} and
V ={z:d(z,A) > d(z, B)}. It is easy to check that these are disjoint open sets.

6.4.3. PROPOSITION. Compact Hausdorff spaces are normal.

PROOF. Let A, B be disjoint closed subsets of a compact Hausdorff space X.
Then A and B are compact by Proposition 6.3.3. Moreover since X is Hausdorff,
that same Proposition shows that for each point x € B, there are disjoint open sets
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Uy, D Aand V, > z. The collection {V, : = € B} is an open cover of B. Let
Vars- - Va, be afinite subcover. Set V' = J!" | V,, and U = (", Uy,. These are
disjoint open sets with A C U and B C V. [

Now we prove that T spaces have lots of continuous functions.

6.4.4. URYSOHN’S LEMMA. Let X be a normal topological space, and let A
and B be disjoint closed sets. Then there is a continuous function f : X — [0, 1]
such that f|4 = 0and f|p = 1.

PROOF. Normality implies the following property: if A is closed and W is
open and A C W, then there is an open set U such that A C U C U C W. To see
this, take B = W€, Use normality to find disjoint open sets U D Aand V D B.
ThenU C V¢ C W.

Start with Uy = B°. Find an open U}, so that A C Uy, C Uy, C Uy
Repeating this procedure recursively, we find open sets Uy, jo» for 1 < k < 2™ and
n > 1 so that

A CUpjn CUgjpn CUggegyypn for 1 <k <27

Let D = {k/2" : 1 < k <2" n > 1}. Define f(z) = inf{r € D : x € U, } if
x€Uyand fl[p=1.Clearly 0 < f < land f|4 = 0.
Claim: f is continuous. Note that

£71([0,1) = U U, isopenfort e [0,1].
r<t,reD

Also for0 <t < 1,since t < r < s forr, s € D implies that U, C Uy,

f_l([()?t]) = ﬂ f_l([()u 7’)) = ﬂ U’r - m 77"
r>t,reD r>t,reD r>t,reD
This is closed, and therefore f~'((¢,1]) = ([, rep Ur)* is open. Hence,
f7((s,t)) is open for s < t, and so f is continuous. [

6.4.5. REMARK. If (X,d) is a metric space and A and B are disjoint closed
sets, define
d(xz, A
f@) = )
d(z,A) + d(z, B)
This satisfies the conclusion of Urysohn’s Lemma.

6.4.6. COROLLARY. If X is a Ty space, then it is Tychonoff (15 s).

6.4.7. COROLLARY. If X is a compact Hausdorff space, C(X) separates
points.
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Urysohn’s Lemma implies the following significant strengthening.

6.4.8. TIETZE’S EXTENSION THEOREM. Let X be a normal topological
space, and let A C X be a closed set. If f : A — [a,b] is continuous, there is a
continuous function F' : X — [a,b] such that F|4 = f

PROOF. After scaling, we may assume that the range is [—1,1]. Let 4} =
f_ (-1 —f]) and B; = f~!([3,1]). By Urysohn’s Lemma, there is a function

X — [-1 3 3] sothat gi|a, = éandgl\gl = Thenf1 f—gila hasrange
1n[ %, 3]. Repeat the process, setting A, = f;° ([ - ])andB2 =f; ([9, 2.
and finding g : X — [— 979]w1thgz|A2 %a dgz|B2

Then f, = fi — g2| 4 has range in [—(%)2, (%) ] Recurswely we obtain func-
tions g, : X — [-2-37",2-3""]sothat f,, = f — > | gn|a has range in
[=(3)".(5)")- Letg = 32, gn- Then g|4 = f and

lgloe < 3 lgnlloo = 3237 = 1. .

n>1 n>1

6.4.9. DEFINITION. A Hausdorff space X is locally compact (LCH) if every
point has a compact neighbourhood; i.e. for x € X, there is a compact set K with
x €int K.

6.4.10. PROPOSITION. Locally compact Hausdorff spaces are regular.

PROOF. Let A be a closed set in a LCH space X, and z ¢ A. Let K be a
compact neighbourhood of z. Then A N K is compact. So by Proposition 6.3.3,
there are disjoint opensets U > xand V D ANK. Then W =UnNint K C K\V
is an open neighbourhood of x and W C K \ V C A°. Hence WD Ais open
and disjoint from W. Therefore X is regular. |

6.4.11. DEFINITION. If f : X — C, the support of [ is
supp(f) = {z : f(z) # 0}.

If X is LCH, C.(X) denotes the space of continuous C-valued functions with com-
pact support. Let Co(X) be the closure of C..(X) in (C*(X), ] - [loo)-

There is a weaker version of Urysohn’s Lemma valid for LCH spaces.

6.4.12. PROPOSITION. Locally compact Hausdorff spaces are completely reg-
ular. Moreover, if X is LCH, A C X is closed, B C X is compactand ANB = &,
then thereis f € Co(X)with0 < f <1, fla=0and f|p = 1.
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PROOF. Arguing as in the previous proof, for each x € B, there is a compact
neighbourhood W, > z which is disjoint from A. We can take W, = int W,.. Then
{Wy : = € B} is an open cover. Let Wy, ,..., W, be a finite subcover. Then
W = |J, Wy, is open containing B and W = |J_, W, is compact and disjoint
from A.

Let C = W \ W. Then B and C are disjoint closed sets in the compact
Hausdorff space W. By Urysohn’s Lemma, there is a continuous function f :
W — [0,1] with f|g = 1 and f|c = 0. Extend f to a function on X by setting
flype = 0. Now A C W¢, and thus f|4 = 0. To see that f is continuous, note
that if @ > 0, f~!(a,b) is open in W, and hence open in X. If a < 0 < b, then
D = f~([b,0) is closed in W, and thus f~!(a,b) = D¢ is open in X. Since
supp(f) € W, we have f € C.(X). [ |

There is also a weaker version of Tzietze’s Theorem valid for LCH spaces.

6.4.13. COROLLARY. Suppose that X is LCH, A C X is closed, B C X is
compact, AN B = @ and g € C(B). Then there is an f € C.(X) with f|4 =0
and f|p = g, and || f|loc = [|9l/co-

PROOF. The setup is the same as the previous proof. Define f|B = ¢ and
flc = 0, and extend this to a continuous function on W using Tietze’s Theorem.
Then extend f to all of X by setting f|y = 0. This is continuous with compact
support as in the previous proof. |

6.4.14. DEFINITION. If U is open, say f < U for a continuous function f if
0 < f < 1andsuppf C U. Suppose thatif = {U) : X\ € A} is an open cover of
K C X. Then a partition of unity for K relative to U is a collection of functions
gx < Uy which is locally finite, i.e., for each x € X, {\ : g\(x) # 0} is finite, and
Yoagn(x)=1forallz € K.

6.4.15. PROPOSITION. Let X be LCH, and let K C X be compact. Suppose
thatU = {Uy,...,Uy} is an open cover of K. Then there are g; < U; in C.(X)
which is a partition of unity for K relative to U.

PROOF. For each x € K, there is some U; > z. Pick a compact neighbour-
hood with € C, C U;. Now {intC, : x € K} is an open cover with finite
subcover Cy,,...,Cy, . Let K; = (J{Cy; : Cp; C U;}. Then K; C U; and
K c U, K; =: C is compact . Let W be an open neighbourhood of C' with W
compact. By Urysohn’s lemma, there are functions h; so that Xg, < h; < U;NW.
Let g; = hi/ Y 7 hi. u
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6.5. Nets*

Sequences are not sufficient for dealing with convergence in general topolog-
ical spaces, including many that arise in normal contexts. The replacement is the
notion of a net, which you can think of as a very wide and very long generalized
sequence. This optional section is not required in the next chapter.

We will need to call on the Axiom of Choice frequently. Recall that this is the
assumption that whenever { Ay : A € A} is a collection of non-empty sets, there is
a selection (choice function) ¢ : A — (J, A, so that p(\) € A forall A € A.

6.5.1. DEFINITION. A partial order on a set A is a relation < satisfying

(1) X < Afor A € A (reflexive)
(2) A < pand g < X\ implies that A = u (antisymmetric)
(3) A < pand p < vimplies that A < v (transitive).

Then (A, <) is called a poset. A poset is upward directed if for A1, A, € A, there
isapu € Asothat \; < pand Ay < p.

6.5.2. DEFINITION. A netin X is an upward directed poset A with a function
j A — X,say xx = j(A). We usually write the net as (z))a. A net (z))a
converges to z in (X, 1) if for every open set U > z, there is A\g € A so that
x) € U for every A > X\g. We write limp x) = x.

A subnet (y)r of (x))a is given by a cofinal function ¢ : I' — A so that
Yy = Ty(~)» Where we say that ¢ is cofinal if for all A € A, there is a o € I so that
() > Aforall v > 5. It is convenient if ¢ is monotone, meaning that vy, < 7,
implies that ©(y1) < (72). But this is not necessary.

We present a detailed example to explain why nets are needed, and how to use
them.

6.5.3. EXAMPLE. Let X = Ny xNj. Declare that U C X is openif (0,0) ¢ U;
and that a set U > (0,0) is open if {m : 7, ' (m) N U is cofinite in No} is cofinite
in Ny. It is easy to verify that this defines a topology.

(a) X is Hausdorff because {(m,n)} is openif m+n > 1 and {(m,n)}¢ is an
open neighbourhood of (0, 0).

(b) (0,0) € X \ {(0,0)} because every open set U > (0,0) intersects X \
{(0,0)}.

(c) However no sequence xx = (my,ng) in X \ {(0,0)} converges to (0,0).
There are two cases. If {my, : k > 1} is bounded, pick mg so that my = my infin-
itely often. The set U = {(m,n) : m # mo} U {(0,0)} is an open neighbourhood
of (0,0), and the sequence is not eventually in U. Otherwise, there is a sequence
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k; — oo so that my, < my,,, fori > 1. Then U = X \ {x, : 4 > 1} is an open
neighbourhood of (0, 0), and the sequence is not eventually in U.

(d) There is a net in X \ {(0,0)} converging to (0,0). Let A = {U € 7 :
(0,0) € U} where U < V if U D V. (We say that A is ordered by containment.)
This is directed because U,V < U N V. Order X \ {(0,0)} by

(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),....

Define xy to be the least element in this list which belongs to U. (This avoids any
issues with the Axiom of Choice.) Then (z¢) converges to (0,0) because given an
open neighbourhood U > (0,0), we have xyy € V' C U whenever U < V.

(e) The sequence (0, 1), (1,0),(0,2),(1,1),(2,0),(0,3),(1,2), (2,1), ... has
a subnet converging to (0,0). Let A be the net just constructed. Define p(U) = xy/
considered as an element in this sequence. To see that this map is cofinal, let
(mo, no) be in this sequence, and set Ny = mg + np. Let

Up=X\{(m,n): 1 <m+n < Ny}

Then if Uy < U, it follows that x;; = (m,n) with m +n > Ny and thus ¢(U)
follows (mg, no) in the sequence. Therefore this is a subnet of the sequence which
converges to (0, 0).

Now we show that nets replace sequences in some familiar results.

6.5.4. PROPOSITION. Let A C X. Then x € A if and only if there is a net
(ax)a in A such that limp ay = x.

PROOF. Suppose that z € A. By Proposition 6.1.4(3), every open neighbour-
hood U of z intersects A. Let O(x) be the open neighbourhoods of z ordered by
containment. By the Axiom of Choice, we can pick a point a;; € A N U for each
U € O(x). The net (ayr)o(,) converges to x by construction.

Conversely, suppose that (a))a is a net in A such that limy a) = x. Then for
any neighbourhood U of z, there is a A so that a) € U. In particular, AN U # @.
Hence by Proposition 6.1.4(3), z € A. |

6.5.5. THEOREM. Let f : (X,7) — (Y,0). Then f is continuous if and only if
whenever (x))a is a net in X converging to x, it follows that f(x) = limy f(x)).

PROOF. Suppose that f is continuous, and let (x))a be a net in X converging
to 2. Let V be an open neighbourhood of f(z). Then U = f~!(V) is an open
neighbourhood of z. By convergence, there is a A\g € A so that x) € U for all
A > Xo. Hence f(z)) € f(U) C V forall A > Xg. That means that f(x) =
limp f(z)).
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Conversely, suppose f is not continuous. Thus there is an open set V' C YV
such that U = f~!(V) is not open. Then U¢ N U contains a point z. By Proposi-
tion 6.5.4, there is a net ()4 in U€ with limit . Therefore f(zy) € f(U¢) C V©.
Since V¢ is closed, any limit point of this net must remain in V¢ by Proposi-
tion 6.5.4. Therefore it cannot converge to f(x) which lies in V. So f(z) #

limp f(2y). n

6.5.6. THEOREM. A topological space X is compact if and only if every net in
X has a convergent subnet.

PROOF. Suppose that every net in X has a convergent subnet. Consider a
collection F = {C,, : o € A} of closed sets with the FIP. Let

A ={F C A: F is finite, non-empty }

ordered by inclusion, i.e., F' < G if FF C G. This is an upward directed poset:
F,F < Fy UF,. Foreach F' € A, use the Axiom of Choice to select a point
2 € [\yer Ca- This is possible since the finite intersection is non-empty. Then
(xp)a is anetin X. Let (y,)r be a subnet with limit z; where ¢ : I' — A and
Yy = Ty(y). Forany a € A, there is a 7, € I so that v > ~, implies that
() > {a}. Hence y, € C, for all ¥ > ~,. Since C, is closed, the limit point
x € Cy. This holds for all « € A. Therefore x € (| F. By Proposition 6.3.5, it
follows that X is compact.

Conversely suppose that X is compact. Let (z))a be a net in X. For each
X € A, define Cy\ = {x, : p>A}. Then F = {C) : A € A} is a collection of
non-empty closed sets. It has FIP because if \j,..., A, € A, the upward directed
property ensures that there is some Ao € A so that \; < )g for 1 < ¢ < n. Hence
Ni; Cx, D C\, # @. By Proposition 6.3.5, there is a point z € (), Ch.

Now we build a subnet with limit x. Let O(x) be the set of all open neigh-
bourhoods of z. Let I' = A x O(x) with order (\,U) < (u, V) if A < p and
UDV. Let Sy ={p € A:p>Xandz, € U}. This set is non-empty
because z € C\ NU = {z, : p > A} N U; and thus by Proposition 6.5.4, z,, € U
for some p1 > A. Use the Axiom of Choice to select 1 = (A, U) € Sy for
each (\,U) € T. The map ¢ : I' — A is cofinal because if Ay € A, then every
(A U) > (Mo, X) will have (A, U) = > X > Ao. So yn v = Ty(nv) defines a
subnet (y.)r of (zx)a.

Finally we claim that limry, ;) = . Indeed, let U € O(x) be any open
neighbourhood of z. Fix some Ao € A. Whenever (\,V) > (Xo,U), we have
yx,v € V C U. Thus this net converges to . |



CHAPTER 7

Functionals on C.(X) and Cj(X)

7.1. Radon measures

Let X be a locally compact Hausdorff space. Let C.(X) denote the space of
continuous functions with compact support (i.e. {x : f(z) # 0} is compact). Let
Co(X) be the space of all continuous functions vanishing at infinity, meaning that
{z :|f(z)| > €} is compact for all € > 0. Both spaces are endowed with the sup
norm || f||cc = sup |f(x)|. It is easy to see that Cp(X) = CC(X)H'”w. When X is
compact, C.(X) = Cy(X) = C(X).

7.1.1. DEFINITION. A Borel measure y is outer regular on E € Bor(X) if
w(E) =inf{u(U) : E C U open}
and inner regular on E if
pu(E) = sup{u(K) : E D K compact}.

We call i a regular measure if it is both inner and outer regular on all Borel sets.
A Borel measure p is a Radon measure if u(K) < oo for all compact sets K, it is
outer regular on all Borel sets and inner regular on open sets.

7.1.2. REMARKS.

(1) Some books define a Radon measure to be a regular measure which takes finite
values on all compact sets. This is somewhat less general (so we would require an
additional hypothesis such as o-compactness), and does not simplify the proof of
the main result.

(2) If u(F) < oo, then i is regular on E if and only if for £ > 0, there is an open
set U and a compact set K sothat K C E C U and u(U \ K) < e.

(3) There are compact Hausdorff spaces which support finite Borel measures which
are not regular. See the exercises in [2].

7.1.3. PROPOSITION. If X is LCH, j is a Radon measure on X and E €
Bor(X) is o-finite, then  is regular on E.

88
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PROOF. Let £ € Bor(X) such that u(E) < oo, and let ¢ > 0. By outer
regularity, there is an open U D E with u(U \ E) < /2. Then there is an open
set V O U \ E with (V') < /2. Since p is inner regular on U, there is a compact
L cUwithu(U\ L) <e/2. Then K = L\ Viscompactand K CU\V C E.
Finally,

WE\K) <p(U\K) <p(U\L)+p(V) <e.
Thus p is regular on E.

If E is a o-finite set, write £ = Ui> B where p(FE;) < oo. Find compact
sets K, C E, with u(E, \ K,,) < 27"¢. Then Cp, = '_, K,, are compact. Set
K =U,>; Kn. Then K C Fand u(E\ K) < > <, u(E, \ K,,) < e. By
continuity from below, we get limy, o 14(Cp) = p(K) > pu(E) — €. Therefore p
is regular on E. n

The following immediate corollary covers many cases of interest.

7.1.4. COROLLARY. Every o-finite Radon measure is regular.
In particular, if X is o-compact (i.e. a countable union of compact sets) and p
is a Radon measure on X, then (i is regular.

7.1.5. COROLLARY. If X is a separable, locally compact metric space and [
is a Radon measure on X, then (i is regular.

PROOF. We show that X is o-compact. A separable metric space is second
countable (see Example 6.1.10(1)). Indeed, if {x; : ¢ > 1} is a dense subset, then

T ={br(z;):i>1,7€Q"}

is a countable base for the topology. For each x;, local compactness implies that
there is some 7; > 0 so that b, (x;) is compact. Then

%:{br(lEi):iZl,T‘EQ—i_,Tgri}

is also a base for the topology. Hence
X = Jor (@) = | Jbr (1)
To To

is the union of countably many compact sets. The result now follows from Corol-
lary 7.1.4. |

7.1.6. PROPOSITION. If X is a separable, locally compact metric space and
is a finite Borel measure on X, then p is regular and hence Radon.

PROOF. Let S be the collection of all Borel sets on which y is regular. The
proof of Corollary 7.1.5 shows that X is o-compact. Write X = Un21 K,, where
K, are compact. If C is closed, then the sets C,, = C' N |J;"_, K; are compact, and
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Cyn C Cpg1 C U,>q Cn = C. By continuity from below, 1(C') = limy, o0 11(Ch,).
So p is inner regular on closed sets.

As X is a metric space, a closed set C'is a G5 (let U,, = {z : d(z,C) < %})
Since p is finite, continuity from above shows that if C = (-, U, and U, D
Uni1, then p(C) = lim,, o0 #(Uy,). Thus pis regularon C.

Next we claim S is closed under complements. Let A € S. By Remark 7.1.2(2),
for ¢ > 0, there is a compact set K and open set U with K € A C U and
w(U\ K) < e. Therefore U¢ C A° C K¢ and u(K°\ U®) = (U \ K) < €. The
set U¢ is closed but not necessarily compact. Since U¢ € S, there is a compact set
L c U¢sothat u(U°\ L) < & — p(K°\ U®). Thus u(K°\ L) < . Therefore
is regular on A°.

Now we show that S is closed under countable unions. Let A; € S fori > 1,
and let A = (J;~, Ai. Given € > 0, find compact sets K; and open sets U; so that

K; C A; C U;and u(U; \ K;) < 27 %. Set

Cn:LnJKZ-, C:UKi and U:UUZ-.
i=1

i>1 i>1
Then C,, C A C U, each C,, is compact, and U is open. Therefore
lim p(U\Cp) =p(UN\C) <Y u(Ui\Ki) <) 27'e=e.
i>1 i>1

The first step uses continuity from above, which requires the finiteness of p.
Hence S is a o-algebra. As S contains all closed sets, it contains all Borel sets.
So w is regular and finite, whence Radon. |

7.2. Positive functionals on C.(X)

7.2.1. DEFINITION. A positive linear fiunctional ¢ on C.(X) or Cp(X) is a
linear functional such that o(f) > 0if f > 0.

7.2.2. PROPOSITION. Let X be a locally compact Hausdorff space; and let
be a Borel measure on X which is finite on compact sets.

(1) ®,(f) = /f du determines a positive linear functional on C.(X).

(2) ®,, is continuous with respect to the sup norm (i.e. |®,(f)| < C||f|l~
for f € Cu(X)) if and only if M = sup{u(K) : K is compact} < oo.
Moreover ||®,|| = M.

(3) In particular, if p is Radon, then ®,, is continuous if and only if || || :=
u(X) < oo
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PROOF. If f € C.(X) with || f|lcc < 1 and supp(f) C K, where K is com-
pact, then

@0 =| [ £an] < [ 1710 i),

So this is a linear functional which is norm continuous on the subspace of functions
supported on K. Clearly it takes positive functions to positive values.

By Proposition 6.4.12, given a compact set K, there is a function h € C.(X)
so that X < h < 1. Hence ||®,|| > ®,(h) > pu(K). Taking the supremum over
all compact K shows that | @, | > M = sup{u(K) : K is compact}. Therefore if
®,, is continuous with respect to the sup norm, then M < oco. Conversely, if M is
finite and f € C.(X) with || f]|c < 1, then K = supp f is compact. Thus

@0 < [ 1fldu< [ du= k) <1

Hence ||®,| = M.
If 4 is Radon, then it is inner regular on X; so u(X) = M. Thus &, is
continuous if and only if ||u|| ;= p(X) < occ. [ |

7.2.3. PROPOSITION. Let X be a LCH space. Suppose that o is a positive
linear functional on C.(X). If K C X is compact, then there is a constant Cg so
that |o(f)| < Ck || flles for all f € Ce(X) with supp(f) C K.

A positive linear functional on Cy(X) is continuous, i.e. there is a C' < 00 so

that |(f)| < C|| flloo for all f € Co(X).

PROOF. As in the previous proof, there is a function h € C.(X) such that
Xrx < h < Xg, for some compact set L. Let f € C.(X) with supp(f) C K
with || f]lcc < 1. First suppose that f is real valued. Then —h < f < h, so
0 < f+h < 2h. By positivity, 0 < ¢(f)+¢(h) < 2¢(h); whence [¢(f)| < p(h).
If f takes arbitrary complex values, let o(f) = €?|¢(f)|. Replace f by e~ f
so that we may suppose that p(f) > 0. Write f = Re f + i¢Im f. Since real
functions are sent to real values, 0 < ¢(f) = ¢(Re f) + ip(Im f) implies that
©(f) = ¢(Re f). Hence |p(f)| < ¢(h). So Cx = ¢(h) is the desired constant.

Now suppose that ¢ is defined on Cp(X). Let

M =sup{p(f):0< f <1, feCyX)}

If M = oo, we can choose f,, € Co(X) with 0 < f,, < 1 and ¢(f,) > 2". Define
f=>s1 27% f,.,.. This converges uniformly, and so lies Co(X). By positivity,

p p
o(f) = supp( D> 27" fn) =sup Y 27 "p(fn) > supp = oo.

p>1 n—1 p=l 7 p>1

This is impossible, and thus M < oo. We now argue as in the first paragraph to
deduce that [o(f)[ < @(|f]) < M| f[loo for f in Co(X). u
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For convenience of notation, given U C X is open, we will write f < U if
feC(X),0< f <1andsupp(f) C U. Also recall that C.(X,R) is a lattice,
and we write f V g = max{f, g} and f A g = min{f, g}.

7.2.4. RIESZ-MARKOV THEOREM. Let ¢ be a positive linear functional on
C.(X) for a LCH space X. Then there is a unique Radon measure 11 on X so that

=,

PROOF. For U C X open, define
p(U) = sup{e(f): f < U}.

Use this to define an outer measure p* given by
pr(E) =inf{> " p(U;) : E c | J Ui, Ui open}.
i>1 i>1
Let i denote the complete measure on the o-algebra of ;1*-measurable sets.
Claim 1: p*(U) = p(U) for U open. Since U C U, we have u*(U) < p(U).
Suppose that U C |J;~, U; for U; open. Take f < U. Then K = supp(f) is a
compact subset of U, and hence K C U; U --- U U, for some n. By Proposi-

tion 6.4.15, there is a partition of unity g; € C.(X) with g; < U; N U such that
Xk <3019 <U.Then f =>"" fgiand fg; < U; N U. Therefore

o(f) = ZSO(fgi) < ZP(Ui)'
i1 i1

Taking the supremum over f < U, we see that p(U) < > 22, p(Uj;).

This means that there is no advantage to using more than one open set to cover
E. Thatis, if E C |J;~, Ui = U for U; open, then p(U) < ., p(U;). Therefore
p*(E) = inf{p(U) : E C U, U open}. N

Claim 2: an open set U is p1*-measurable, i.e., u*(E) = p*(ENU)+p*(E\U)
for all sets £ C X. Recall that u*(E) < p*(ENU) + p*(£\ U) is always valid.
Thus is is enough to prove the reverse inequality when p*(E) < oo.

First let E be open with *(E) < oo. Lete > 0. Then for some f < ENU,

p(ENU)=p(ENU) <e(f)+e
Let K = supp(f). Then p*(E\U) < p*(E\ K) = p(E\ K) < ¢(g) + € for
some g < E'\ K. Since f, g have disjoint supports, f + g < Xg. Therefore
p(ENU)+p"(E\U) <o(f +g)+2 < p(E) + 2.

Lettinge — 0, we get u*(ENU) + p*(E \ U) < pu*(U), and thus equality holds.
Now let E be arbitrary with p*(E) < oco. Fore > 0, pick E C V with V open
so that p(V') < pu*(E) + €. Then

p(ENU)+p (E\NU) <p*(VOU) +p"(VAU) = p*(V) < " (E) +e.
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Let € — 0 to get the non-trivial inequality. Thus U is p*-measurable.
Therefore fi is defined on the o-algebra generated by all open sets, namely
Bor(X). Let i be the Borel measure obtained by restricting fi to Bor(X).

Claim 3: ;; is Radon. First y is outer regular since for £ € Bor(X),
w(E) = p*(F) =inf{u(U) : E C U, U open}.

If K is compact, there is an open set W O K with L = W compact. By
Urysohn’s Lemma, there is a function f with Xx < f < W. Thus

u(K) < p(W) < Cp < oo,

where C7, is the constant from Proposition 7.2.3. By outer regularity, we can choose
an open W D K so that u(W) < pu(K) + €. If f is chosen with Xxg < f < W,
then o(f) < u(W) < uw(K) +e.

On the other hand, suppose f € C.(X) such that X < f. Lete > 0, and
set V. ={x: f(x) > 1 —¢}. Then K C V, and V is open. Let g < V so
that p(g) > (V) —e > pu(K) — e. Observe that (1 — ¢)g < f; and hence
o(f) > (1 —¢e)(u(K) —e). Letting € — 0 yields ¢(f) > p(K). Combining these
two results shows that

p(K) = inf{o(f) : Xk < f, | e Ce(X)}-
Now if U is open, we have that
u(U) = sup{e(f) : f < U}.

Suppose that < p(U). Choose g < U with ¢(g) > r. Set K = supp(g), which
is a compact subset of U. By Urysohn’s Lemma, there is an h € C.(X) with
Xi < h < U. By the previous paragraph, there is an f € C.(X) with Xx < f
and o(f) < u(K) +e.SoXxg < h A f < U. Therefore

r<e(g) <ph A f) <e(f) <p(K) —e.
Hence p(K) > r — e. It follows that

p(U) = sup{u(K) : K C U, K compact}.
Thus p is inner regular on open sets. Consequently p is Radon.

Claim 4: ¢ = &,,. By linearity, it suffices to verify this for 0 < f < 1. Given
N e N, lett; = « for0 < i < N. Define

fiz((f\/ti_l)/\ti)—ti_l and Klz{xf(x)ztz} for 1<i:< N,

and Ko = supp(f). Then +-Xr, < f; < +Xk,_, for1 <i< Nand f = SN fi
Integrating, we obtain

(D) < @) < oulKi).
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We also obtain ﬁu(Kl) < o(f;). If K;—; C U for U open, then N f; < U and so
¢(fi) < 2u(U). But  is outer regular, and hence ¢( f;) < 3;/(K;—1). Therefore

(K0) < i) < o(Kii).

N#
Now sum both of these inequalities from 1 to /N, we obtain
1 N 1 N—-1
N > ulI) < @u(fi), o(f) < N > u().
i=1 i=0

Hence

‘(b”(f) _ SO(f)} < 1(Ko) ]—VM(KN) < M(]f\?o)‘

Since N was arbitrary, we obtain ®,(f) = ¢(f).

Claim S: uniqueness. Suppose that v is a Radon measure such that ®, = .
Then if U is open and f < U, then ¢(f) = ®,(f) < v(U). On the other hand,
since v is inner regular on U, if » < v(U), there is a compact K C U with
v(K) > r. Take some f € C.(X) with X < f < U and observe that ¢(f) =
®,(f) > v(K) > r. Therefore

v(U) = sup{e(f) : f < U} = u(U).

Both measures are outer regular, and therefore they agree on all Borel sets. |

7.2.5. COROLLARY. Let X be a LCH space. Suppose that ¢ is a positive linear
functional on Cy(X). Then there is a unique finite Radon measure on X so that

o =D,

PROOF. The restriction of ¢ to C.(X) is positive. Thus by the Riesz-Markov
Theorem, there is a unique Radon measure ;. on X so that ¢ = @, on C.(X). By
Proposition 7.2.3, ¢ is continuous and thus ¢ = ®,, on Cy(X ), and moreover

uw(X) =sup{p(f):0< f<1, feCe(X)} <C <o

So w is a finite measure. |

7.3. Linear functionals on Cj(X)

To discuss the continuous linear functionals on Cy(X'), we need complex Borel
measures. Since they are finite measures, things simplify somewhat. A complex
measure p is called regular if || is regular.
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7.3.1. PROPOSITION. Let X be a LCH space. Let ji be a complex Borel mea-
sureon X. Then ®,,(f) = / f du defines a continuous linear functional on Co(X)
such that ||y, || < [l == |u[(X). If pis regular, then ||, || = ||pl].

PROOF. If f € Cp(X),

@, =| [ | < [ 1f1dlul <17l

Thus ||, < ||l

Suppose that y is regular. By the Radon-Nikodym Theorem, there is a Borel
function h so that |h| = 1 and p = h|u|. Given € > 0, chop the unit circle T into
disjoint arcs Iy, ..., I, of length at most € and midpoints ¢;. Set F; = h*I(Ij).
By regularity, find compact K; C Ej so that |u|(E; \ K;) < ¢/n. Find disjoint
open sets U; O K. By Urysohn’s Lemma, there are functions f; € C.(X) with
Xi; < fi = Uj. Let f =37, (jfj. Then || f|loc = 1 and

lll = @] =| [~ du| < [ 7= 1] dlu

sz/ o= G dll + 3 20ul(B; \ K;)
- K. -

J=17" J=1

< Slul +2

< 5l £.

Letting ¢ — 0 yields ||| = ||x]]. [ |

7.3.2. COROLLARY. If v are regular complex Borel measures on a LCH
space X, then @, = ®,, if and only if p = v.

7.3.3. DEFINITION. If X is a LCH space, let M (X) be the vector space of all
complex regular Borel measures on X with norm ||u|| = |p](X).

7.3.4. RIESZ REPRESENTATION THEOREM. Let X be a LCH space. Then
Co(X)* is isometrically isomorphic to M (X) via the pairing 1 — ®,,.

PROOEF. Proposition 7.3.1 shows that the map from M (X) into Cp(X)* is an
isometric linear map. On the other hand, Corollary 7.2.5 of the Riesz-Markov
Theorem shows that every positive linear functional on Cy(X) is @, for a finite
positive regular Borel measure p. The result will follow if the linear span of the
positive linear functional on Cy(X) is all of Cp(X)*.

We call a linear functional self-adjoint if o(f) € R for f € Cp(X,R). Let

¢ € Co(X)*. Define 3(f) = ¢(f). SetRep = %(g@ + @) and Imp = i((p — Q).
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Then if f € Co(X,R) is real valued,

Reo)(f) = 2 er (/)
Similarly Im ¢ takes real values on Cyp(X,R). So Re ¢ and Im ¢ are self-adjoint.
Note that these functionals are not real valued on Cyp(X). Observe that p = Re p+
iIm . So Cg¥)* is spanned by the self-adjoint linear functionals.

Claim: if ¢ is self-adjoint, there are positive linear functionals i, > on
Co(X) such that ¢ = ¢ — 5. This is an analogue of the Jordan decomposition
theorem. If f > 0, define

o1(f) =sup{p(g) : 0< g < f}.

Then 0 < ¢1(f) < supocy<y @l lgll = Nl [f]l. Also for ¢ > 0, ¢i(tf) =

tor(f).
Additivity: suppose that fj > 0 and f> > 0in Cp(X). If 0 < g; < f;, then

0 <gi+g2 < fi+ f2. Hence o1 (f1+ f2) > ¢(g1) + ©(g2). Taking the supremum
over all choices of g; yields ¢1(f1 + f2) > ¢1(f1) + ¢1(f2). On the other hand, if
0<g<fi+ fa,letgr =gA fiand

Pp=9—91= {O ifg(z) < fi()

=Reyp(f) € R.

9(z) — filz) < folz)  ifg(x) > fi(z).

S0 0 < g» < fo. Thus (g) = @(g1) + ¢(92) < @1(f1) + ¢1(f2). Taking the
supremum over 0 < g < f] + f> yields the reverse inequality : ¢(f1 + f2) <
©1(f1) + @1(f2) Therefore @1 (fi + f2) = ©1(f1) + ¢1(f2).

Now we extend ¢ to Co(X). If f € Cp(X), we write f = Re f +ilm f =
fi—fo+ifs —ify where fy =Re f VO, fr =—RefVO, f; =ImfVO0and
fa=—1Im f V0. Define p1(f) = ¢1(f1) — p1(f2) +ip1(f3) —ip1(fa). Itis left
to the reader to verify that ¢ is linear. Once that it checked, it is clear that ¢ is a
continuous positive linear functional. Set > = ¢ — ¢. Then if f > 0,

©2(f) = sup{p(g) —@(f) :0<g < f} > o(f) —w(f) =0.

So ¢, is also a positive linear functional; and ¢ = ¢ — 2.

We have shown that the linear span of the positive linear functionals is all of
Co(X)*. Therefore by the Riesz-Markov theorem for Cp(X ), each is given as in-
tegration against a finite Radon measure, hence regular. Thus the whole functional
is given by integration against a regular complex Borel measure. |



CHAPTER 8

A Taste of Probability*

This chapter is purely for interest. I expect to give one lecture on some of this, but
it won’t be tested. This chapter closely follows Folland’s book [2].

8.1. The language of probability

While the basic theorems of probability theory often coincide with the analysts
view of measure theory, the vocabulary is completely different. This chart explains
the correspondence for some familiar notions.

Analyst’s term Probabalist’s term
measure space (X, B, 1) sample space (Q, B, P) and P(Q) = 1.
o-algebra o-field

measurable set event

real measurable function random variable X
integral [ f du expectation E(X)

p({z: f(z) < a}) P(X <a)

| fllp < o0 X has a finite pth moment
almost everywhere (a.e.) almost surely (a.s.)

Borel probability measure on R distribution

charcteristic function X 4 indicator function 1 4

In analysis, we say that a sequence f,, of measurable functions on (X, 3, 1)
converges in measure to f if for all € > 0,

Tim (s |f(x) — fale)] > €}) =0,

In probability theory, this is called convergence in probability.
If X is a random variable, F'(X) is the expected value or mean. The standard
deviation (which is finite if X € L?(P))is

o(X) = \/E((X — B(X))?) = |X — E(X)|

If ¢ : (Q,B) — (&,B') is a measurable map, define P, on (Q',B’) by
P,(B) = P(p'(B)). For example, if X : Q — R is a random variable, the

97
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distribution function of X is
F(t) = P(X <t) = Px((—00,1]).

Moreover Px = dF = up is the Lebesgue-Stieltjes measure of F. A family
of random variables { X }aca are identically distributed if Px, = Px, for all
a, B € A. The joint distribution of (X1, ..., Xp) is Px, .. x,) Where we consider
(X1,...,Xpn) 1 Q> R™

Many properties of random variables can be recovered from their distributions.

8.1.1. PROPOSITION. Ifp: (Q,B) — (&, B') is measurable and f : Q' — R
is measurable with respect to P, then

/Q,fdP :/Qfogde.

PROOF. Let f = X 4. Then

/, XadP, = P,(A) = P(¢™'(A))

:/X@I(A)dP:/XAOQOdP~
Q Q

Thus the result is true for simple functions. It extends to all positive measurable
functions by the MCT. Then it extends to all integrable functions by the LDCT. W

8.1.2. EXAMPLES.
(1) B(X /XdP A&M&'
2) 0*(X) = E((X — B(X))?) = /R(t—E(X))2dPX.

R2

8.2. Independence

8.2.1. DEFINITION. Events {A; : i € I} are independent if wheneveriy, ..., iy
in I are distinct, then

k
P(A;n---n4) =[] P4s,).
s=1

Random variables { X : i € I} are independent if for every choice of Borel sets B;,
the collection {X; ' (B;) : i € I} is independent. That is, whenever i1, . .., i € T
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are distinct,
k k k k k

Pixy oo (1] Bi) = POV X B0) =[] Pas) = [T P (1] B:)-
s=1

s=1 s=1 s=1 s=1

In other words, P(x,  x, )= 15, Px...

8.2.2. EXAMPLE. It is not sufficient to check independence for pairs of vari-
ables. Let X = {1,2,3,4}, P(i) = 1, and 4; = {2,3}, A, = {1,3} and
Az = {1,2}. You can check that P(4;) = 1 and P(A; N A;) = 1 fori # j, but
P(Al mAzﬂA3) =0.

8.2.3. PROPOSITION. Let X,Y be independent integrable random variables.
Then E(XY) = E(X)E(Y).

PROOF. Compute
E(XY) = /Sth(va)(S,t) = // st dPx dPy

:/sdPX(s) /thy(t) — B(X) B(Y). -

8.2.4. PROPOSITION. Let {X;; : 1 < j < J;; 1 < i < n} be inde-
pendent random variables. If f; : R’ — R are Borel for 1 < i < n, and
Yi=fi(Xi1,...,Xi,), then{Y1,...,Y,} are independent.

PROOF. Let X; = (X;1,...,X;.7,). Then Y;"'(B) = X, "' (f,(B)). Thus if
Y =(Y,...,Y,)and X = (X1,...,X,),

YoUB o Bo) = (X717 (B) = XN ([ 471 (B)-
Therefore

PY ' By x -+ xBy)) = PX(Hfi_l(Bi))

n Ji n
- H (HPXi,j)(Hfz_l(Bz))
=1 j=1 i=1
Ji
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= H PXi(f;l(Bi)) = H Py, (B;).
i=1 '
So {Y1,...,Y,} are independent. [

8.2.5. COROLLARY. If{X;} are independent variables in L*(P), then
n
X1+ Xn) =) 07 (X)),
=1

PROOF. Let Y; = X; — E(X;); so E(Y;) = 0. Then {Y;} are independent, so
E(Y;Y;) = E(Y;) E(Y;) = 0 for ¢ # j. Therefore

2K+ + Xy) = E((ixi —E(XZ-)>2) _ E((i}g)z)

=Y BOP) + Y EM) E(Y;) =Y o(Xy).
i—1 =1

i#j |

8.3. The Law of Large Numbers

The following easy lemma is surprisingly useful.

8.3.1. LEMMA (Chebychev’s Inequality). If X > 0 is a random variable and
a > 0, then P(X > a) < E(X)/a.

PROOF. E(X) = /OothX(t) > /OoadPX(t) — aP(X > a). n
0 a

8.3.2. COROLLARY. Let X be a random variable such that 0(X) < oo (i.e.
X € L*(P)). Thenforb >0, P(|X — B(X)| > b) < o?(X) /0%

PROOF. Let Y = (X — E(X))? s0 E(Y) = 0(X). Hence by Chebychev’s
inequality, P(|X — E(X)| > b) = P(Y > b*) < E(Y)/t? = 02(X) /V*. u
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8.3.3. WEAK LAW OF LARGE NUMBERS. Let {X;};>| be independent
L? random variables. Denote E(X;) = p; and 0*(X;) = o2 fori > 1. If

n
lim # >~ 07 =0, then for any £ > 0,
i=1

n—oo

n—00

n
lim P(|2> X — | > ) =0.
i=1
n
Thatis, lim 1 3~ X; — p; = 0 in probability.
n—oo i

PROOF. Let S,, = % (X; — wi); so E(S,) = 0 and by Corollary 8.2.5,

1

02(Sn) = 5 30 0X(Xi — ps) = 5 >y o7 Hence by Corollary 8.3.2,

n
=1

P(|S,| > €) < 0*(Sn)/e* = 0.

That is, .S,, converges to 0 in probability. |

8.3.4. BOREL-CANTELLI LEMMA. Let {A,},>1 be events in a probability
space. Define B = limsup Ay, := (>, (Unzkz Ap).

@ If >, P(An) < oo, then P(B) = 0.

(b) If{An} are independent and - P(A,) = oo, then P(B) = 1.

PROOF. (a) P(B) < P(U,>1 An) < Yok P(An) = 0.

® 1P A =P 4) =] PAs)

n>k n>k n>k

= H 1 - P(An) < H e_P(A”) = e_znzk P(An) _ 0.

n>k n>k
Thus P(B) = 1. n

8.3.5. KOLMOGOROV’S INEQUALITY. Let X|,...,X, be independent
random variables with E(X;) = 0 and 0*(X;) = o?. Then for a > 0,

1 <&,
Plggs i+ Xz S 53 o
1=
PROOF. Let S = X + -+ + Xj. Let A = { max{|Si],...,|S,|} > a} and
A ={ISjl <a, 1<j <k, |Sk| >a}.SoA=J,_, A
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Since X; are independent and mean 0,
n n
Y ol =0 X1+ + Xy) = B(S3) > E(Saxa) = > E(SiXa,).
j k=1

Also note that S;X 4, depends only on X, ..., X} and S, — S), depends only on
Xk, - .., Xn. Hence these are independent quantities, so that

E((SkXa,)(Sn — Sk)) = BE(SkXa ) E(Xp1 + -+ Xpn) = 0.
Therefore
B(S2X4,) = E((SpXa, + (Sn — Sk)Xa,)?)
= E(SiXa,) + 2E((SkXa,)(Sn — Sk)) + E((Sn — Sk)*Xa,))
> E(SiXa,) > a*P(Ay).

Consequently,

n

E(S%XA,C) < ZU%.

a*P(A) =) a*P(4) <
k=1 k=1 =1

Thus P(A) < 5370 o7 u

8.3.6. LEMMA. Let {X; : i > 1} be independent random variables with
E(X;) = 0and 0*(X;) = o?. If> i1 o} < oo, then P( > s Xi converges) = 1.

PROOF. Let S, = X1+ -4+ Xp. S0 S,k —Sn = Xnyp1+- -+ Xy Given
d > 0, choose N so that ) . Uiz < 4. Thenif ¢ > 0 and n > N, Kolmogorov’s
inequality yields -

n+m
P(lg}Cax |Snik — S| > €) <— Z;la
i=n

Letting m — oo, we get

P(maX|Sn+k—S |>5)<—Za <3 5

>n

Choose § = 27% and ¢ = 27/ and obtain an integer n; so that

Aj= {rlglg{c |Snj+k — Sny| =277}

has P(A;) < 277. By the Borel-Cantelli Lemma, since > i1 P(45) < oo, we
have P(ﬂk>1 Ujsk A;) = 0. Hence P(UZ>1 Nj>i AC) = 1. Therefore as., T
belongs to ﬂ ; Aj for some i, meaning that maxy>; |Sn,+k — Sn,;| < 277 for
4 > i. This means that Sp(x) is Cauchy and thus converges with probability 1. W
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8.3.7. LEMMA. If(a;)i>1 is a sequence of real numbers and ) ;- | % converges,
then lim LS La; =0.

PROOF. Let b, = % and S,, = > b;. Let L = lim, o Sy. Then L =

limy,— 00 % Z?:_ol S;. Compute

1 n 1 n 1 n o n
nzlalznzl:zbl:nZZbk
i= i=

1=1 k=i

n n—1
:%an—si,lzsn—%z:sk%o. .
1=1 k=0

8.3.8. THEOREM (Kolmogorov). Let {X; : i > 1} be independent random
variables with E(X;) = p; and 0*(X;) = o2. IfY i1 iizaiz < 00, then

n—oo "

n
lim (> X — p) =0as.
i=1

PROOF. Let ¥; = +(X; — a;). Then E(Y;) = 0, 0*(Y;) = %o? and {Y;}
are independent. By hypothesis, o2(Y;) < oo. Hence by Lemma 8.3.6,
P(3 ;> Yi converges} = 1. Therefore by Lemma 8.3.7, with a; = P(X;),

n
im 1 ) = —
P(Jim 3 %= ) =0) =1 .
=

8.3.9. STRONG LAW OF LARGE NUMBERS. Let {X;}i>1 be independent,
identically distributed random variables.

(@) If X; are in L' with E(X;) = p, then
. 1 _ _
P(lim 5(Xi+-+Xn) = p) = 1.
(b) If X; are not in LY, then
P(limsup 1[X; + -+ + X,,| = 00) = 1.

n—oo

PROOF. (a) By replacing X,, by X,, — u, we may suppose that £(X,,) = 0.
Let A = Py, , which is independent of n. Then || X,,||; = E(|X,|) = / |t| dX\ and
R
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/td)\ E(X,) =0.LetY, = X, X{|x,|<n} @and Z, = X;, — Y. Then
R

Y P(Zy#0)=> P(IXn|>n) = Z/_n/d)\

n>1 n>1 n>1

= [Cumans [ an= < .
—0oQ —0o0
By the Borel-Cantelli Lemma, P(Z,, # 0 infinitely often) = 0. Therefore

n
P(1> " zi—0)=1
i=1

Now 02(Y,,) = E(Y}?) = / t? d). Hence by the MCT,

n

Y Lo, Z/_ da= /_Oo (Z#X[_antzdk

n>1
forn—1 < [t| < n, wehave Y, 51 2 X[_pp(t) = Y, 72 < = and thus
[e.e]
g/ 2/t dA < oo,
—0oQ

Therefore by Kolmogorov’s Theorem, P(lim,, o 2 > | 'Y; = 0) = 1. Conse-
quently,

n n
1 — m L - _
P(Jim 52 X% =0) = P( fim » ZY 0 P(fim 53 Zi=0)=1.
=1 1=
(b) In this case, for any C' > 0,

ZP | X > Cn) = Z/X{t|>0n}d)\>/ ’ | — 1dA = +o0.

n>1 n>1
By the Borel-Cantelli Lemma, P(|X,,| > Cn infinitely often) = 1. But then
{!X1+"‘+Xn—1| ’X1+"‘+Xn|}>7

max infinitely often a.s.

n—1 ’ n

Therefore limsup,,_,., 1|X; + -+ + X,| = ccoas. [ ]
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dense, 76
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discrete topology, 74
distribution function of X, 98
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Egorov’s Theorem, 19
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Fatou’s Lemma, 25

finite, 3

finite intersection property, 79
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Fubini’s Theorem, 36
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Holder’s Inequality, 69
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Hausdorff, 77

homeomorphism, 76

identically distributed, 98
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integrable, 26

integral, 21

interior, 74

interior point, 74

joint distribution, 98
Jordan DecompositionTheorem, 59

Kolmogorov’s Inequality, 101
Kolmogorov’s Theorem, 103

converge uniformly, 77 Lebesgue Decomposition Theorem, 62
convergence in probability, 97 Lebesgue Differentiation Theorem, 55
converges in measure, 97 Lebesgue Dominated Convergence Theorem,

coordinate projections, 34 27

countable base of neighbourhoods of z, 76 limit point, 74
countably additive, 3 linear functionals, 68
Counting measure, 4 locally compact, 83
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lower derivative, 49
Lusin’s Theorem, 20

measurable, 16

measure, 3

Minkowski’s inequality, 64
Monotone Convergence Theorem, 24
monotonicity, 3

mutually singular, 59

neighbourhood, 75
net, 85

normal, 81

null set, 58

open cover, 78
open sets, 74
oscillation, 32
outer measure, 6
outer regular, 88

partial order, 85
partition of unity, 84
point mass, 4

poset, 85

positive linear fiunctional, 90
positive set, 58
premeasure, 8
probability measure, 3
product o-algebra, 34
product measure, 36
product space, 34, 79

Radon measure, 88
Radon-Nikodym Theorem, 60
random variable, 97

regular, 81, 94

regular measure, 88

Riemann integrable, 30

Riesz Representation Theorem, 95
Riesz-Fischer Theorem, 65
Riesz-Markov Theorem, 92

second countable, 76

self-adjoint, 95

semi-finite, 3

separable, 76

separation properties, 81

signed measure, 57

simple function, 18

standard deviation, 97

Strong Law of Large Numbers, 103
stronger topology, 75

Index

subadditivity, 4
subbase, 75
subnet, 85
support, 83

Tietze’s Extension Theorem, 83
Tonelli’s Theorem, 37
topology, 74

trivial topology, 74

Tychonoft, 81

upper derivative, 49
upward directed, 85
Urysohn’s Lemma, 82

vanishing at infinity, 88
Vitali cover, 49
Vitali Covering Lemma, 49

Weak Law of Large Numbers, 101
weaker topology, 75
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