Math 148 Assignment 2

Due 2:00 p.m. Friday, January 30 in the Math 148 dropbox.

1. Compute the following integrals:

(a)
$$\int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx$$

(b)
$$\int x^2 \sin^{-1}(x^3) dx$$

(a)
$$\int \frac{\sin^3 x}{\sqrt{\cos x}} dx$$
 (b) $\int x^2 \sin^{-1}(x^3) dx$ (c) $\int_0^{63} \frac{dt}{\sqrt{1+t} + \sqrt[3]{1+t}}$

2. Compute the following integrals:

(a)
$$\int_{1}^{2} (\log x)^{2} dx$$

(b)
$$\int e^{2x} \cos(3x) \, dx.$$

(a)
$$\int_{1}^{2} (\log x)^{2} dx$$
 (b) $\int e^{2x} \cos(3x) dx$. (c) $\int_{-1}^{1} x^{3} e^{x^{4}} \cos 2x dx$

3. Compute the following integrals:

(a)
$$\int \frac{5x^2 - 13x + 9}{x^3 - 3x^2 + 4} dx$$

(b)
$$\int_{-3}^{-2} \frac{x^2 + 8x + 10}{(x^2 + 6x + 10)^2} dx$$

(a)
$$\int \frac{5x^2 - 13x + 9}{x^3 - 3x^2 + 4} dx$$
 (b) $\int_{-3}^{-2} \frac{x^2 + 8x + 10}{(x^2 + 6x + 10)^2} dx$ (c) $\int_{-\pi/2}^{\pi/2} \frac{1}{5 + \sin x + 7\cos x} dx$.

(a) Compute a recursion formula for $I_m = \int x^a (\log x)^m dx$, $m \ge 0$ and $a \ne -1$. Hence obtain an explicit formula for I_3 .

(b) $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$ **Hint:** Substitute $u = \pi - x$ and combine the two integrals.

5. Suppose that f(x) is a C^2 function on \mathbb{R} such that $|f(x)| \leq A$ and $|f''(x)| \leq C$ for $x \in \mathbb{R}$. Prove that $|f'(x)| \leq \sqrt{2AC}$.

Hint: fix x_0 with $f'(x_0) = b \ge 0$. Get a lower bound for $f'(x_0 \pm h)$.

Use this to estimate $\int_{x_0-H}^{x_0+H} f'(x) dx$ for a good choice of H.

6. Suppose that f(0) = 0 and $0 < f'(x) \le 1$ for all $x \ge 0$. Show that

$$\int_0^x f(t)^3 dt \le \left(\int_0^x f(t) dt\right)^2 \quad \text{for all } x > 0.$$

When does equality hold?

Hint: differentiate, factor and differentiate again.