Math 148 Assignment 2
Due 2:00 p.m. Friday, January 30 in the Math 148 dropbox.

1. Compute the following integrals:

 (a) \(\int \frac{\sin^3 x}{\sqrt{\cos x}} \, dx \)
 (b) \(\int x^2 \sin^{-1}(x^3) \, dx \)
 (c) \(\int_0^{63} \frac{dt}{\sqrt{1 + t + \sqrt{1 + t}}} \)

2. Compute the following integrals:

 (a) \(\int_1^2 (\log x)^2 \, dx \)
 (b) \(\int e^{2x} \cos(3x) \, dx \)
 (c) \(\int_{-1}^{1} x^3 e^x \cos 2x \, dx \)

3. Compute the following integrals:

 (a) \(\int \frac{5x^2 - 13x + 9}{x^3 - 3x^2 + 4} \, dx \)
 (b) \(\int_{-3}^{-2} \frac{x^2 + 8x + 10}{(x^2 + 6x + 10)^2} \, dx \)
 (c) \(\int_{-\pi/2}^{\pi/2} \frac{1}{5 + \sin x + 7 \cos x} \, dx \)

4. (a) Compute a recursion formula for \(I_m = \int x^a (\log x)^m \, dx \), \(m \geq 0 \) and \(a \neq -1 \).

 Hence obtain an explicit formula for \(I_3 \).

 (b) \(\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx \)
 \textbf{Hint:} Substitute \(u = \pi - x \) and combine the two integrals.

5. Suppose that \(f(x) \) is a \(C^2 \) function on \(\mathbb{R} \) such that \(|f(x)| \leq A \) and \(|f''(x)| \leq C \) for \(x \in \mathbb{R} \).

 Prove that \(|f'(x)| \leq \sqrt{2AC} \).

 \textbf{Hint:} fix \(x_0 \) with \(f'(x_0) = b \geq 0 \). Get a lower bound for \(f'(x_0 \pm h) \).

 Use this to estimate \(\int_{x_0-H}^{x_0+H} f'(x) \, dx \) for a good choice of \(H \).

6. Suppose that \(f(0) = 0 \) and \(0 < f'(x) \leq 1 \) for all \(x \geq 0 \). Show that

 \[\int_0^x f(t)^3 \, dt \leq \left(\int_0^x f(t) \, dt \right)^2 \] \text{ for all } x > 0.

 When does equality hold?

 \textbf{Hint:} differentiate, factor and differentiate again.