PM 950 H^p Spaces

Assignment 1

Due Thursday October 5.

- 1. (a) Show that if $u \in h_p$ for $p \ge 1$, then $|u(z)| \le \left(\frac{1+|z|}{1-|z|}\right)^{1/p} ||u||_p$.
 - (b) Show that there is a universal constant $C_{1,p}$ so that if $f \in H^p$ for $p \ge 1$, then

$$|f'(z)| \le C_{1,p}(1-|z|)^{-1-1/p} ||f||_p$$

Hint: consider $g(z) = \frac{f(z) - f(z_0)}{z - z_0}$.

- (c) Generalize to find a similar estimate for the *n*th derivative of $f \in H^p$.
- 2. (a) Show that if $K \subset \mathbb{C}$ is compact and $v: K \to [-\infty, +\infty)$ is u.s.c., then there is a decreasing sequence u_n of continuous functions decreasing to v. **Hint:** $u_n(x) = \sup_{y \in K} v(y) n|x-y|$.
 - (b) Show that is v is subharmonic on a connected open set Ω and is not constantly $-\infty$, then for every $\overline{D_r(z_0)} \subset \Omega$,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} v(z_0 + re^{it}) \, dt > -\infty.$$

- (c) Show that if v_1 and v_2 are subharmonic on Ω , then so is max{ v_1, v_2 }.
- (d) Prove that if v is C^2 and $\Delta v \ge 0$ on Ω , then v is subharmonic.
- 3. (a) Rewrite the formula for the conjugate function of u = f * P for $f \in L^1$ as follows:

$$\tilde{u}(re^{i\theta}) = \frac{1}{2\pi} \int_0^{\pi} \left(\frac{4r \sin^2(t/2)}{(1-r)^2 + 4r \sin^2(t/2)} \right) \frac{f(\theta-t) - f(\theta+t)}{\tan(t/2)} dt.$$

Hence show that if $\frac{1}{2\pi} \int_0^{\pi} \left| \frac{f(\theta-t) - f(\theta+t)}{\tan(t/2)} \right| dt < \infty$, then \tilde{u} has a radial limit $\lim_{r \to 1^-} \tilde{u}(re^{i\theta}).$

- (b) Hence show that if f is C^1 on an arc $I \subset \mathbb{T}$, then for every compact arc $K \subset I$, $\tilde{u}(re^{i\theta})$ converges to $\frac{1}{2\pi} \int_0^{\pi} \frac{f(\theta-t)-f(\theta+t)}{\tan(t/2)} dt$ uniformly as $z \in \overline{\mathbb{D}}$ approaches $e^{i\theta} \in K$.
- (c) In particular, show that \tilde{u} extends to be continuous on $\mathbb{D} \cup I$.
- 4. Let K be a compact subset of \mathbb{T} of Lebesgue measure zero.
 - (a) Find a positive function $f \in L^1$ such that f is C^{∞} on $\mathbb{T} \setminus K$ and $\lim_{t \to t_0} f(t) = +\infty$ for every $t_0 \in K$.
 - (b) Define u = f * P and let \tilde{u} be its harmonic conjugate. Set $g(z) = \frac{u + i\tilde{u}}{1 + u + i\tilde{u}}$. Prove that $g \in \mathcal{A}(\mathbb{D})$ (i.e. g extends to be continuous on the closed disc $\overline{\mathbb{D}}$), that $g|_{K} = 1$ and |g| < 1 on $\overline{\mathbb{D}} \setminus K$.
 - (c) If $\mu \in M(\mathbb{T})$ is of analytic type, evaluate $\lim_{k\to\infty} \int g^k d\mu$ in two ways. Hence provide another proof of the F. and M. Riesz Theorem.
- 5. (a) Show that if $f \in H^p$ and w is an analytic function from \mathbb{D} into itself, then f(w(z)) belongs to H^p . **Hint:** use the least harmonic majorant.
 - (b) Show that $f(z) = (1 z)^{-1}$ is in H^p for 0 , but not <math>p = 1.
 - (c) Show that if f is analytic on \mathbb{D} and $\operatorname{Re} f(z) > 0$, then $f \in H^p$ for 0 .
 - (d) Generalize to analytic functions with values in a sector $S = \{z : \alpha < \arg f(z) < \beta\}$.