
PM 450 Solutions to Assignment 6

1. (a) Compute

‖f‖22 =
1

2π

∫ π

−π
(θ3 − π2θ)2 dθ =

1

2π

∫ π

−π
θ6 − 2π2θ4 + π4θ2 dθ

=
1

2π

(θ7
7
− 2π2θ5

5
+
π4θ3

3

)∣∣∣∣π
−π

=
8π6

105
.

Recall from Assignment 2 that f ∼
∞∑
n=1

(−1)n−16i

n3
(einθ − e−inθ). Therefore

‖f‖22 = ‖f̂‖22 =
∑
n6=0

36

n6
= 72

∞∑
n=1

1

n6
.

Equating these two and solving, we obtain
∞∑
n=1

1

n6
=

8π6

(72)(105)
=

π6

945
.

(b) Let g = 1
4θ

4 − π2

2 θ
2, so that g′ = f . As the series for f converges absolutely, it follows from

term by term integration that

g ∼ ĝ(0) +

∞∑
n=1

(−1)n−16

n4
(einθ + e−inθ).

We compute ĝ(0) =
−7π4

60
. Also

‖g‖22 =
1

2π

∫ π

−π
(14θ

4 − π2

2 θ
2)2 dθ =

1

32π

∫ π

−π
θ8 − 4π2θ6 + 4π4θ4 dθ

=
1

32π

(θ9
9
− 4π2θ7

7
+

4π4θ5

5

)∣∣∣∣π
−π

=
107π8

(16)(315)
.

Therefore

‖g‖22 = ‖ĝ‖22 =
49π8

3600
+
∑
n6=0

36

n8
=

49π8

3600
+ 72

∞∑
n=1

1

n8
.

Equating these two and solving, we obtain
∞∑
n=1

1

n8
=

107π8

(72)(16)(315)
− 49π8

3600
=

192π8

2734527
=

π8

9450
.



2. Solution 1. Check by direct computation that {1,
√

2 cosnθ : n ≥ 1} is an orthonormal set
L2(0, π). To see that it is a basis, observe that the algebraic span is the set of even trig.
polynomials. It is easy to see that the sum and product of even trig. polynomials are even trig.
polynomials; and thus this set is an algebra. (It follows that the product of two cosines can
be expressed as a sum of cosines, albeit in a somewhat complicated way.) Since cos θ separates
points of [0, π], the Stone-Weierstrass Theorem shows that this algebra is dense in C[0, π] in
the sup norm. Because ‖f‖2 ≤ ‖f‖∞, it follows that the L2-closure of this algebra equals the
L2-closure of C[0, π], which is all of L2(0, π). Therefore this set is an orthonormal basis.

Solution 2. Consider the map U of L2(0, π) into L2(−π, π) by Uf(θ) =

{
f(θ) if θ ∈ (0, π)

f(−θ) if θ ∈ (−π, 0)
.

Then it is clear that the range of U consists of all even functions. Moreover

〈Uf,Ug〉 =
1

2π

∫ π

−π
Uf(θ)Ug(θ) dθ =

1

π

∫ π

0
f(θ)g(θ) dθ = 〈f, g〉.

So U is a unitary map onto the subspace of even functions. This subspace is spanned by the
orthonormal set {1, (einθ + e−inθ)/

√
2 : n ≥ 1} = {1,

√
2 cosnθ : n ≥ 1}. Thus U−1 will carry

this set to an orthonormal basis of L2(0, π), namely {1,
√

2 cosnθ : n ≥ 1}.

Remark. We could instead have used odd functions. Then we would find that {
√

2 sinnθ : n ≥ 1}
is also an orthonormal basis for L2(0, π).

3. Compute f̂(n) =
1

2π

∫ π

−π
ei(a−n)θ dθ =

ei(a−n)θ

2πi(a− n)

∣∣∣∣π
−π

=
(−1)n

π(a− n)

eiaπ − e−iaπ

2i
=

(−1)n sin aπ

π(a− n)
.

Applying Parseval’s Theorem, we get

1 =
1

2π

∫ π

−π
|eiaθ|2 dθ = ‖f‖22 = ‖f̂‖22 =

1

π2

∞∑
n=∞

sin2 aπ

(a− n)2
.

Rearranging, this yields

∞∑
n=∞

1

(a− n)2
=

π2

sin2(aπ)
.

4. (a) Let f ∼
∑∞
−∞ ane

inθ. Since f is continuous and 2π-periodic, f̂ ′(0) =
1

2π

∫ π

−π
f ′(θ) dθ = 0.

Integration by parts or term by term integration can be used to show that f̂ ′(n) = inan for

n 6= 0 (and thus for all n). Thus we have (since a0 = f̂(0) = 0)

‖f ′‖22 = ‖f̂ ′‖22 =
∞∑

n=−∞
n2|an|2 ≥

∞∑
n=−∞

|an|2 = ‖f̂‖22 = ‖f‖22.

(b) Simllarly, we obtain that f̂ ′′(0) = 0 and f̂ ′′(n) = −n2an for n 6= 0 (and thus for all n).
Therefore by the Cauchy-Schwarz inequality,

‖f ′‖22 = ‖f̂ ′‖22 =

∞∑
n=−∞

n2|an|2 =

∞∑
n=−∞

an(n2ān) = |〈f, f ′′〉| ≤ ‖f‖2 ‖f ′′‖2.
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5. (a)
∣∣∣ ∫

X
fg −

∫
X
fng
∣∣∣ =

∣∣∣ ∫
X

(f − fn)g
∣∣∣ ≤ ‖f − fn‖p ‖g‖q by Hölder’s inequality. By hypothesis,

the RHS converges to 0, establishing that lim
n→∞

∫
X
fng =

∫
X
fg.

(b) Since f ∈ Lp(T) for p < ∞, we know that the Cesàro means σn(f) converge to f in the
Lp(T) norm. By (a), we have

1

2π

∫
T
fg = lim

n→∞

1

2π

∫
T
σn(f)g = lim

n→∞

1

2π

∫
T

n∑
k=−n

(1− |k|
n+1)f̂(k)eikθg

= lim
n→∞

n∑
k=−n

(1− |k|
n+1)f̂(k)

1

2π

∫
T
eikθg = lim

n→∞

n∑
k=−n

(
1− |k|

n+1

)
f̂(k)ĝ(−k).

Remark: if f ∈ L∞(T), this formula is still valid, but one must use the Cesàro means of g
in the proof.

6. Let gn(θ) = g(nθ). We first need to compute the Fourier coefficients of gn. Then for 0 < |k| < n,

ĝn(k) =
1

2π

∫ π

−π
g(nθ)e−ikθ dθ =

1

2π

∫ π

−π
g(n(θ + 2π

n ))e−ikθ dθ

=
1

2π

∫ π

−π
g(nt)e−ik(t−2π/n) dθ = ei2kπ/nĝn(k).

It follows that ĝn(k) = 0. Therefore

lim
n→∞

1

2π

∫ π

−π
g(nθ)e−ikθ dθ = lim

n→∞
ĝn(k) = 0 for all k 6= 0.

On the other hand, using the 2π-periodicity if g,

ĝn(0) =
1

2π

∫ π

−π
g(nθ) dθ =

1

2πn

∫ nπ

−nπ
g(t) dt =

n

2πn

∫ π

−π
g(t) dt = ĝ(0).

Alternate proof. For k 6∈ nZ, using the 2π-periodicity of g,

ĝn(k) =
1

2π

∫ 2π

0
g(nθ)e−ikt dθ =

1

2πn

∫ −2nπ
0

g(t)e−ikt/n dt

=

n−1∑
p=0

1

2πn

∫ (2p+2)π

2pπ
g(t)e−ikt/n dt =

1

2πn

∫ 2π

0
g(t)

n−1∑
p=0

e−ik/n(t+2pπ) dt

=
1

2πn

∫ 2π

0
g(t)e−ikt/n

n−1∑
p=0

e−ik2pπ/n dt =
1

2πn

∫ 2π

0
g(t)e−ikt/n

(e−ik2nπ/n − 1

e−ik2π/n − 1

)
dt = 0

Therefore, if h(θ) =

N∑
k=−N

ake
ikθ is a trig. polynomial, and n > N ,

1

2π

∫ π

−π
h(θ)g(nθ) dθ =

N∑
k=−N

ak
1

2π

∫ π

−π
eikθg(nθ) dθ = a0ĝ(0) = ĥ(0)ĝ(0).
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For a general f ∈ Lp(T), pick a trig. polynomial h with ‖f − h‖p < ε and ĥ(0) = f̂(0). Use
Hölder’s inequality to estimate∣∣∣ 1

2π

∫ π

−π
f(θ)g(nθ) dθ − 1

2π

∫ π

−π
h(θ)g(nθ) dθ

∣∣∣ ≤ 1

2π

∫ π

−π
|f(θ)− h(θ)||g(nθ)| dθ

≤ ‖f − h‖p ‖gn‖q < ε‖g‖q.
Therefore for n > deg h, we have∣∣∣ 1

2π

∫ π

−π
f(θ)g(nθ) dθ − f̂(0)ĝ(0)

∣∣∣ < ε‖g‖q.

As ε > 0 is arbitrary, , we obtain

lim
n→∞

1

2π

∫ π

−π
f(θ)g(nθ) dθ = f̂(0)ĝ(0).

7. (a) Observe that (3) implies (2) is trivial. The implication (2) implies (1) is an immediate
consequence of the Uniform Boundedness Principle. We will prove that (1) implies (3).
Let C = supn≥1 ‖Sp,n‖. Fix f ∈ Lp(T). For ε > 0, pick a trig. polynomial g such that
‖f − g‖ < ε. Then Sp,n(g) = g for n ≥ deg g. Therefore for n ≥ deg g,

‖Sp,nf − f‖p ≤ ‖Sp,nS(f − g)‖p + ‖Sp,ng − g‖p + ‖g − f‖p ≤ (C + 1)ε.

It follows that Sp,nf converges to f in the Lp(T) norm.

(b) For f ∈ L1(T),
‖S1,nf‖ = ‖f ∗Dn‖ ≤ ‖f‖1 ‖Dn‖1;

so that ‖S1,n‖ ≤ ‖Dn‖1. On the other hand, if Km is the Féjer kernel, then ‖Km‖1 = 1.
We have

lim
m→∞

S1,nKm = lim
m→∞

Km ∗Dn = lim
m→∞

σm(Dn) = Dn.

It follows that
‖S1,n‖ ≥ lim

m→∞
‖σm(Dn)‖1 = ‖Dn‖1.

Hence ‖S1,n‖ = ‖Dn‖1. This is unbounded as n→∞, and therefore by (a), we deduce that
there is some function f ∈ L1(T) such that ‖S1,n(f)‖ is unbounded, and therefore diverges.
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