PM 450 Solutions to Assignment 6

1. (a) Compute

$$
\begin{aligned}
\|f\|_{2}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\theta^{3}-\pi^{2} \theta\right)^{2} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \theta^{6}-2 \pi^{2} \theta^{4}+\pi^{4} \theta^{2} d \theta \\
& =\left.\frac{1}{2 \pi}\left(\frac{\theta^{7}}{7}-\frac{2 \pi^{2} \theta^{5}}{5}+\frac{\pi^{4} \theta^{3}}{3}\right)\right|_{-\pi} ^{\pi}=\frac{8 \pi^{6}}{105} .
\end{aligned}
$$

Recall from Assignment 2 that $f \sim \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 6 i}{n^{3}}\left(e^{i n \theta}-e^{-i n \theta}\right)$. Therefore

$$
\|f\|_{2}^{2}=\|\hat{f}\|_{2}^{2}=\sum_{n \neq 0} \frac{36}{n^{6}}=72 \sum_{n=1}^{\infty} \frac{1}{n^{6}} .
$$

Equating these two and solving, we obtain

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{8 \pi^{6}}{(72)(105)}=\frac{\pi^{6}}{945} .
$$

(b) Let $g=\frac{1}{4} \theta^{4}-\frac{\pi^{2}}{2} \theta^{2}$, so that $g^{\prime}=f$. As the series for f converges absolutely, it follows from term by term integration that

$$
g \sim \hat{g}(0)+\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 6}{n^{4}}\left(e^{i n \theta}+e^{-i n \theta}\right) .
$$

We compute $\hat{g}(0)=\frac{-7 \pi^{4}}{60}$. Also

$$
\begin{aligned}
\|g\|_{2}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{4} \theta^{4}-\frac{\pi^{2}}{2} \theta^{2}\right)^{2} d \theta=\frac{1}{32 \pi} \int_{-\pi}^{\pi} \theta^{8}-4 \pi^{2} \theta^{6}+4 \pi^{4} \theta^{4} d \theta \\
& =\left.\frac{1}{32 \pi}\left(\frac{\theta^{9}}{9}-\frac{4 \pi^{2} \theta^{7}}{7}+\frac{4 \pi^{4} \theta^{5}}{5}\right)\right|_{-\pi} ^{\pi}=\frac{107 \pi^{8}}{(16)(315)}
\end{aligned}
$$

Therefore

$$
\|g\|_{2}^{2}=\|\hat{g}\|_{2}^{2}=\frac{49 \pi^{8}}{3600}+\sum_{n \neq 0} \frac{36}{n^{8}}=\frac{49 \pi^{8}}{3600}+72 \sum_{n=1}^{\infty} \frac{1}{n^{8}} .
$$

Equating these two and solving, we obtain

$$
\sum_{n=1}^{\infty} \frac{1}{n^{8}}=\frac{107 \pi^{8}}{(72)(16)(315)}-\frac{49 \pi^{8}}{3600}=\frac{192 \pi^{8}}{2^{7} 3^{4} 5^{2} 7}=\frac{\pi^{8}}{9450}
$$

2. Solution 1. Check by direct computation that $\{1, \sqrt{2} \cos n \theta: n \geq 1\}$ is an orthonormal set $\overline{L^{2}(0, \pi) \text {. To see that it is a basis, observe that the algebraic span is the set of even trig. }}$ polynomials. It is easy to see that the sum and product of even trig. polynomials are even trig. polynomials; and thus this set is an algebra. (It follows that the product of two cosines can be expressed as a sum of cosines, albeit in a somewhat complicated way.) Since $\cos \theta$ separates points of $[0, \pi]$, the Stone-Weierstrass Theorem shows that this algebra is dense in $\mathrm{C}[0, \pi]$ in the sup norm. Because $\|f\|_{2} \leq\|f\|_{\infty}$, it follows that the L^{2}-closure of this algebra equals the L^{2}-closure of $\mathrm{C}[0, \pi]$, which is all of $L^{2}(0, \pi)$. Therefore this set is an orthonormal basis.

Solution 2. Consider the map U of $L^{2}(0, \pi)$ into $L^{2}(-\pi, \pi)$ by $U f(\theta)=\left\{\begin{array}{ll}f(\theta) & \text { if } \theta \in(0, \pi) \\ f(-\theta) & \text { if } \theta \in(-\pi, 0)\end{array}\right.$. Then it is clear that the range of U consists of all even functions. Moreover

$$
\langle U f, U g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} U f(\theta) \overline{U g(\theta)} d \theta=\frac{1}{\pi} \int_{0}^{\pi} f(\theta) \overline{g(\theta)} d \theta=\langle f, g\rangle .
$$

So U is a unitary map onto the subspace of even functions. This subspace is spanned by the orthonormal set $\left\{1,\left(e^{i n \theta}+e^{-i n \theta}\right) / \sqrt{2}: n \geq 1\right\}=\{1, \sqrt{2} \cos n \theta: n \geq 1\}$. Thus U^{-1} will carry this set to an orthonormal basis of $L^{2}(0, \pi)$, namely $\{1, \sqrt{2} \cos n \theta: n \geq 1\}$.
Remark. We could instead have used odd functions. Then we would find that $\{\sqrt{2} \sin n \theta: n \geq 1\}$ is also an orthonormal basis for $L^{2}(0, \pi)$.
3. Compute $\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(a-n) \theta} d \theta=\left.\frac{e^{i(a-n) \theta}}{2 \pi i(a-n)}\right|_{-\pi} ^{\pi}=\frac{(-1)^{n}}{\pi(a-n)} \frac{e^{i a \pi}-e^{-i a \pi}}{2 i}=\frac{(-1)^{n} \sin a \pi}{\pi(a-n)}$.

Applying Parseval's Theorem, we get

$$
1=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|e^{i a \theta}\right|^{2} d \theta=\|f\|_{2}^{2}=\|\hat{f}\|_{2}^{2}=\frac{1}{\pi^{2}} \sum_{n=\infty}^{\infty} \frac{\sin ^{2} a \pi}{(a-n)^{2}}
$$

Rearranging, this yields $\sum_{n=\infty}^{\infty} \frac{1}{(a-n)^{2}}=\frac{\pi^{2}}{\sin ^{2}(a \pi)}$.
4. (a) Let $f \sim \sum_{-\infty}^{\infty} a_{n} e^{i n \theta}$. Since f is continuous and 2π-periodic, $\widehat{f^{\prime}}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(\theta) d \theta=0$. Integration by parts or term by term integration can be used to show that $\widehat{f}^{\prime}(n)=i n a_{n}$ for $n \neq 0$ (and thus for all n). Thus we have (since $a_{0}=\hat{f}(0)=0$)

$$
\left\|f^{\prime}\right\|_{2}^{2}=\left\|\widehat{f}^{\prime}\right\|_{2}^{2}=\sum_{n=-\infty}^{\infty} n^{2}\left|a_{n}\right|^{2} \geq \sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}=\|\hat{f}\|_{2}^{2}=\|f\|_{2}^{2}
$$

(b) Simllarly, we obtain that $\widehat{f^{\prime \prime}}(0)=0$ and $\widehat{f^{\prime \prime}}(n)=-n^{2} a_{n}$ for $n \neq 0$ (and thus for all n). Therefore by the Cauchy-Schwarz inequality,

$$
\left\|f^{\prime}\right\|_{2}^{2}=\left\|\widehat{f^{\prime}}\right\|_{2}^{2}=\sum_{n=-\infty}^{\infty} n^{2}\left|a_{n}\right|^{2}=\sum_{n=-\infty}^{\infty} a_{n}\left(n^{2} \bar{a}_{n}\right)=\left|\left\langle f, f^{\prime \prime}\right\rangle\right| \leq\|f\|_{2}\left\|f^{\prime \prime}\right\|_{2}
$$

5. (a) $\left|\int_{X} f g-\int_{X} f_{n} g\right|=\left|\int_{X}\left(f-f_{n}\right) g\right| \leq\left\|f-f_{n}\right\|_{p}\|g\|_{q}$ by Hölder's inequality. By hypothesis, the RHS converges to 0 , establishing that $\lim _{n \rightarrow \infty} \int_{X} f_{n} g=\int_{X} f g$.
(b) Since $f \in L^{p}(\mathbb{T})$ for $p<\infty$, we know that the Cesàro means $\sigma_{n}(f)$ converge to f in the $L^{p}(\mathbb{T})$ norm. By (a), we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{\mathbb{T}} f g & =\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{\mathbb{T}} \sigma_{n}(f) g=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{\mathbb{T}} \sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \hat{f}(k) e^{i k \theta} g \\
& =\lim _{n \rightarrow \infty} \sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \hat{f}(k) \frac{1}{2 \pi} \int_{\mathbb{T}} e^{i k \theta} g=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) \hat{f}(k) \hat{g}(-k) .
\end{aligned}
$$

Remark: if $f \in L^{\infty}(\mathbb{T})$, this formula is still valid, but one must use the Cesàro means of g in the proof.
6. Let $g_{n}(\theta)=g(n \theta)$. We first need to compute the Fourier coefficients of g_{n}. Then for $0<|k|<n$,

$$
\begin{aligned}
\widehat{g_{n}}(k) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(n \theta) e^{-i k \theta} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g\left(n\left(\theta+\frac{2 \pi}{n}\right)\right) e^{-i k \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(n t) e^{-i k(t-2 \pi / n)} d \theta=e^{i 2 k \pi / n} \widehat{g_{n}}(k) .
\end{aligned}
$$

It follows that $\widehat{g_{n}}(k)=0$. Therefore

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(n \theta) e^{-i k \theta} d \theta=\lim _{n \rightarrow \infty} \widehat{g_{n}}(k)=0 \quad \text { for all } \quad k \neq 0 .
$$

On the other hand, using the 2π-periodicity if g,

$$
\widehat{g_{n}}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(n \theta) d \theta=\frac{1}{2 \pi n} \int_{-n \pi}^{n \pi} g(t) d t=\frac{n}{2 \pi n} \int_{-\pi}^{\pi} g(t) d t=\hat{g}(0) .
$$

Alternate proof. For $k \notin n \mathbb{Z}$, using the 2π-periodicity of g,

$$
\begin{aligned}
\widehat{g_{n}}(k) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} g(n \theta) e^{-i k t} d \theta=\frac{1}{2 \pi n} \int_{0}^{-2 n \pi} g(t) e^{-i k t / n} d t \\
& =\sum_{p=0}^{n-1} \frac{1}{2 \pi n} \int_{2 p \pi}^{(2 p+2) \pi} g(t) e^{-i k t / n} d t=\frac{1}{2 \pi n} \int_{0}^{2^{\pi}} g(t) \sum_{p=0}^{n-1} e^{-i k / n(t+2 p \pi)} d t \\
& =\frac{1}{2 \pi n} \int_{0}^{2^{\pi}} g(t) e^{-i k t / n} \sum_{p=0}^{n-1} e^{-i k 2 p \pi / n} d t=\frac{1}{2 \pi n} \int_{0}^{2^{\pi}} g(t) e^{-i k t / n}\left(\frac{e^{-i k 2 n \pi / n}-1}{e^{-i k 2 \pi / n}-1}\right) d t=0
\end{aligned}
$$

Therefore, if $h(\theta)=\sum_{k=-N}^{N} a_{k} e^{i k \theta}$ is a trig. polynomial, and $n>N$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(\theta) g(n \theta) d \theta=\sum_{k=-N}^{N} a_{k} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta} g(n \theta) d \theta=a_{0} \hat{g}(0)=\hat{h}(0) \hat{g}(0) .
$$

For a general $f \in L^{p}(\mathbb{T})$, pick a trig. polynomial h with $\|f-h\|_{p}<\varepsilon$ and $\hat{h}(0)=\hat{f}(0)$. Use Hölder's inequality to estimate

$$
\begin{aligned}
\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) g(n \theta) d \theta-\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(\theta) g(n \theta) d \theta\right| & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)-h(\theta) \| g(n \theta)| d \theta \\
& \leq\|f-h\|_{p}\left\|g_{n}\right\|_{q}<\varepsilon\|g\|_{q}
\end{aligned}
$$

Therefore for $n>\operatorname{deg} h$, we have

$$
\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) g(n \theta) d \theta-\hat{f}(0) \hat{g}(0)\right|<\varepsilon\|g\|_{q}
$$

As $\varepsilon>0$ is arbitrary, , we obtain

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) g(n \theta) d \theta=\hat{f}(0) \hat{g}(0)
$$

7. (a) Observe that (3) implies (2) is trivial. The implication (2) implies (1) is an immediate consequence of the Uniform Boundedness Principle. We will prove that (1) implies (3). Let $C=\sup _{n \geq 1}\left\|S_{p, n}\right\|$. Fix $f \in L^{p}(\mathbb{T})$. For $\varepsilon>0$, pick a trig. polynomial g such that $\|f-g\|<\varepsilon$. Then $S_{p, n}(g)=g$ for $n \geq \operatorname{deg} g$. Therefore for $n \geq \operatorname{deg} g$,

$$
\left\|S_{p, n} f-f\right\|_{p} \leq\left\|S_{p, n} S(f-g)\right\|_{p}+\left\|S_{p, n} g-g\right\|_{p}+\|g-f\|_{p} \leq(C+1) \varepsilon
$$

It follows that $S_{p, n} f$ converges to f in the $L^{p}(\mathbb{T})$ norm.
(b) For $f \in L^{1}(\mathbb{T})$,

$$
\left\|S_{1, n} f\right\|=\left\|f * D_{n}\right\| \leq\|f\|_{1}\left\|D_{n}\right\|_{1}
$$

so that $\left\|S_{1, n}\right\| \leq\left\|D_{n}\right\|_{1}$. On the other hand, if K_{m} is the Féjer kernel, then $\left\|K_{m}\right\|_{1}=1$. We have

$$
\lim _{m \rightarrow \infty} S_{1, n} K_{m}=\lim _{m \rightarrow \infty} K_{m} * D_{n}=\lim _{m \rightarrow \infty} \sigma_{m}\left(D_{n}\right)=D_{n}
$$

It follows that

$$
\left\|S_{1, n}\right\| \geq \lim _{m \rightarrow \infty}\left\|\sigma_{m}\left(D_{n}\right)\right\|_{1}=\left\|D_{n}\right\|_{1} .
$$

Hence $\left\|S_{1, n}\right\|=\left\|D_{n}\right\|_{1}$. This is unbounded as $n \rightarrow \infty$, and therefore by (a), we deduce that there is some function $f \in L^{1}(\mathbb{T})$ such that $\left\|S_{1, n}(f)\right\|$ is unbounded, and therefore diverges.

