PM 450 Solutions to Assignment 6
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Recall from Assignment 2 that f ~ Z T(e — e ™). Therefore
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Equating these two and solving, we obtain
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(b) Let g = i@‘l — ”—2202, so that ¢ = f. As the series for f converges absolutely, it follows from
term by term integration that
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Equating these two and solving, we obtain
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2. Solution 1. Check by direct computation that {1,/2cosnf : n > 1} is an orthonormal set
L?(0,7). To see that it is a basis, observe that the algebraic span is the set of even trig.
polynomials. It is easy to see that the sum and product of even trig. polynomials are even trig.
polynomials; and thus this set is an algebra. (It follows that the product of two cosines can
be expressed as a sum of cosines, albeit in a somewhat complicated way.) Since cos separates
points of [0, 7], the Stone-Weierstrass Theorem shows that this algebra is dense in C[0, 7] in
the sup norm. Because ||f|2 < ||f|lco, it follows that the L2-closure of this algebra equals the
L?-closure of C[0, 7], which is all of L?(0, 7). Therefore this set is an orthonormal basis.
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Then it is clear that the range of U consists of all even functions. Moreover

Solution 2. Consider the map U of L?(0,7) into L?(—m,7) by U f(6) = {
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So U is a unitary map onto the subspace of even functions. This subspace is spanned by the
orthonormal set {1, (e 4 e="9)/\/2 :n > 1} = {1,v/2cosnf : n > 1}. Thus U~! will carry
this set to an orthonormal basis of L?(0, ), namely {1,v/2cosnf : n > 1}.

Remark. We could instead have used odd functions. Then we would find that {v/2sinn : n > 1}
is also an orthonormal basis for L*(0, 7).
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Applying Parseval’s Theorem, we get
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Rearranging, this yields = .
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4. (a) Let f ~ > ane™. Since f is continuous and 27-periodic, f/(0) = 2/ f'(0)do = 0.
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Integration by parts or term by term integration can be used to show that f’(n) = inay, for
n # 0 (and thus for all n). Thus we have (since ag = f(0) = 0)
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(b) Simllarly, we obtain that ﬁ(O) = 0 and ﬁ(n) = —nZa, for n # 0 (and thus for all n).
Therefore by the Cauchy-Schwarz inequality,
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the RHS converges to 0, establishing that lim / fng = / fg.

= ‘ / (f — fn)g‘ <|\f = fullp llgllq by Holder’s inequality. By hypothesis,
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(b) Since f € LP(T) for p < oo, we know that the Cesaro means o, (f) converge to f in the
LP(T) norm. By (a), we have
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Remark: if f € L*(T), this formula is still valid, but one must use the Cesaro means of g
in the proof.
Let g,,(0) = g(nf). We first need to compute the Fourier coefficients of g,. Then for 0 < |k| < n,
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It follows that g, (k) = 0. Therefore
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On the other hand, using the 27-periodicity if g,
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Alternate proof. For k & nZ, using the 2mw-periodicity of g,
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Therefore, if h(0) = Z are’™ is a trig. polynomial, and n > N,
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For a general f € LP(T), pick a trig. polynomial h with ||f — hl|, < & and h(0) = f(0). Use
Hoélder’s inequality to estimate
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Therefore for n > deg h, we have
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As € > 0 is arbitrary, , we obtain
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lim - f( )g(nd) do = f(0)§(0).
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Observe that (3) implies (2) is trivial. The implication (2) implies (1) is an immediate
consequence of the Uniform Boundedness Principle. We will prove that (1) implies (3).
Let C = sup,>1 ||Spnll. Fix f € LP(T). For € > 0, pick a trig. polynomial g such that
|f — gl <e. Then S,,(g) =g for n > degg. Therefore for n > degg,

1Spnf = fllp < 1SpnS(f = llp + [1Spng — 9llp + 1lg = fllp < (C+1)e.
It follows that Sy, , f converges to f in the LP(T) norm.

For f € LY(T),
[S1nfll = I Dull < [If 1 [ Dnll;
so that ||S1n| < ||Dnlli. On the other hand, if K, is the Féjer kernel, then ||/, |1 = 1.
We have
lim Si,K, = lim K, *D, = lim o0,(D,)= D,.
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It follows that
HSLNH > n%gnoo Ham(Dn)Hl = HDnHI

Hence ||S1,n]] = ||Dnll1. This is unbounded as n — oo, and therefore by (a), we deduce that
there is some function f € L!(T) such that ||S1,(f)| is unbounded, and therefore diverges.



