
PM 450 Solutions to Assignment 5

1. (a) Let gn = inf{fi : i ≥ n}. Then 0 ≤ gn ≤ fn are non-negative measurable functions which are
monotone increasing to lim inf fn = lim gn =: g. By the Monotone Convergence Theorem
applied to {gn}n≥1,∫

lim inf fn =

∫
g = lim

∫
gn ≤ lim inf

∫
fn.

(b) Since fn → f a. e., we have fnχE → fχE a. e. and fnχX\E → fχX\E a. e. By Fatou’s Lemma,
we obtain ∫

E
f =

∫
fχE ≤ lim inf

∫
fnχE = lim inf

∫
E
fn

and ∫
X\E

f =

∫
fχX\E ≤ lim inf

∫
fnχX\E = lim inf

∫
X\E

fn.

Hence we have

lim
n→∞

∫
fn =

∫
f =

∫
E
f +

∫
X\E

f ≤ lim inf

∫
E
fn + lim inf

∫
X\E

fn ≤ lim inf

∫
fn.

As the LHS equals the RHS and is finite, we must have that

∫
E
f = lim inf

∫
E
fn and∫

X\E
f = lim inf

∫
X\E

fn. Therefore

lim sup

∫
E
fn = lim sup

∫
fn −

∫
X\E

fn =

∫
f − lim inf

∫
X\E

fn =

∫
f −

∫
X\E

f =

∫
E
f.

Consequently,

∫
E
f = lim sup

∫
E
fn = lim inf

∫
E
fn = lim

∫
E
fn.

(c) Define fn on (0,∞) by fn(x) =


n if x ∈ (0, 1n)

1 if x ∈ [1, n)

0 otherwise

. Then lim fn = χ[1,∞) =: f . Note

that

∫
fn = n→∞ =

∫
f . However taking E = (0, 1), we have

∫
E
fn = 1→ 1 6= 0 =

∫
E
f .

2. (a) Let fn(x) =
1 + nx2

(1 + x2)n
on [0,∞). Observe that for x > 0,

fn+1(x)

fn(x)
=

1 + (n+ 1)x2

(1 + nx2)(1 + x2)
=

1 + x2

1+nx2

1 + x2
< 1.

and that lim
n→∞

fn+1(x)

fn(x)
=

1

1 + x2
< 1. It follows that fn are monotone decreasing and

lim
n→∞

fn(x) = 0 for x > 0. So fn → 0 a. e. Note that f2(x) =
1 + 2x2

1 + x2
≤ 2

1 + x2
is integrable

on [0,∞). Thus by the LDCT (since |fn| = fn ≤ f2 for n ≥ 2),

lim
n→∞

∫ ∞
0

1 + nx2

(1 + x2)n
dx =

∫ ∞
0

0 = 0.



(b) Let fn(x) :=
n sin(x/n)

x(1 + x2)
=

sin(x/n)

x/n

1

1 + x2
. Observe that | sin t| ≤ |t| for all t ∈ R,

and therefore |fn| ≤
1

1 + x2
; and

1

1 + x2
is integrable. Also lim

t→0

sin t

t
= 1 and therefore

lim
x→0

fn(x) =
1

1 + x2
. Thus by the LDCT,

lim
n→∞

∫ ∞
0

n sin(x/n)

x(1 + x2)
dx =

∫ ∞
0

1

1 + x2
dx = tan−1(x)

∣∣∣∣∞
0

=
π

2
.

3. First suppose that fn are real valued. Then gn± fn ≥ 0, and gn± fn → g± f . Hence by Fatou’s
Lemma, ∫

g ± f ≤ lim inf

∫
gn ± fn =

∫
g + lim inf

∫
±fn.

Subtracting the finite value

∫
g, we obtain∫

f ≤ lim inf

∫
fn and −

∫
f ≤ lim inf

∫
−fn = − lim sup

∫
fn.

Therefore lim sup

∫
fn ≤

∫
f ≤ lim inf

∫
fn; whence lim

n→∞

∫
fn =

∫
f . The complex case is

obtained by considering the real and imaginary parts of fn, which satisfy the same hypotheses.

4. (a) Note that limx→0 f(x) = 1, so f is continuous on [0,∞), and thus is both Riemann and
Lebesgue integrable on [0, A] for any A <∞. To set the stage, we recall the argument from
first year calculus that the improper Riemann integral∫ ∞

0

sinx

x
dx := lim

A→∞

∫ A

0

sinx

x
dx

exists. Indeed let an =
∫ (n+1)π
nπ

sinx

x
dx for n ≥ 0. We can make the estimates for n ≥ 1:

we have an = (−1)n|an| and∫ (n+1)π

nπ

| sinx|
(n+ 1)π

dx ≤ |an| ≤
∫ (n+1)π

nπ

| sinx|
nπ

dx.

This yields 2
(n+1)π ≤ |an| ≤

2
nπ . Thus |an| decreases to 0 monotonely, and the terms alternate

in sign, whence the series
∑

n≥0 an converges by the alternating series test. From that, it is
easy to deduce that the limit exists as A→∞. These estimates also show that∫ ∞

0
|f(x)| dx =

∞∑
n=0

|an| ≥
∞∑
n=1

2

(n+ 1)π
= +∞

because the harmonic series diverges. So |f | is not integrable. Therefore f is not Lebesgue
integrable.

(b) Let fn = fχ[0,n]. Then by assumption, the improper Riemann integral exists and equals∫ ∞
0

f(x) = lim
A→∞

∫ ∞
0

f(x) dx = lim
n→∞

∫ n

0
f(x) dx = lim

n→∞

∫
fn.
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However since f is Lebesgue integrable, so is |f |. We have that |fn| ≤ |f | and fn converges
to f pointwise. Therefore by the LDCT, we have∫

f = lim
n→∞

∫
fn = lim

n→∞

∫ n

0
f(x) dx.

Thus the two integrals agree.

5. First proof. Since ϕ(x) = xp is convex on R+, we have(x+ y

2

)p
≤ xp + yp

2
or (x+ y)p ≤ 2p−1(xp + yp) for x, y ≥ 0.

Therefore for any complex numbers z, w, we have |z − w|p ≤ (|z| + |w|)p ≤ 2p−1(|z|p + |w|p).
It follows that |f − fn|p ≤ 2p−1(|f |p + |fn|p) =: gn. Moreover lim gn = 2p|f |p =: g. As these

functions are all integrable, and lim

∫
gn =

∫
g by hypothesis, we may apply Q.3 to obtain that

lim
n→∞

‖f − fn‖pp = lim
n→∞

∫
|f − fn|p =

∫
lim
n→∞

|f − fn|p =

∫
0 = 0.

That is, fn converges to f in Lp.

Second proof. Let ε > 0. Using absolute continuity of the integrable function |f |p, there is a

δ > 0 so that if m(A) < δ, then

∫
A
|f |p < ε. There is a measurable set X so that m(X) < ∞

such that

∫
X
|f |p > ‖f‖pp − ε; so

∫
Xc

|f |p < ε. By Egorov’s Theorem, there is a subset E ⊂ X

with m(X \ E) < δ so that fn → f uniformly on E. Therefore, lim

∫
E
|f − fn|p = 0. By Q.1b,

since |fn|p → |f |p a. e., and all are positive and integrable,

lim

∫
Ec

|fn|p =

∫
Ec

|f |p =

∫
X\E
|f |p +

∫
Xc

|f |p < ε+ ε = 2ε.

Therefore

lim sup ‖f − fn‖pp = lim sup

∫
|f − fn|p

≤ lim sup

∫
E
|f − fn|p +

∫
Ec

2p−1(|f |p + |fn|p)

< 0 + 2p−1(2ε+ 2ε) = 2p+1ε.

Consequently, lim
n→∞

‖f − fn‖p = 0; that is, fn → f in Lp.

6. (a) Let s = r/p and let t be the conjugate value so that 1
s + 1

t = 1. Apply Hölder’s inequality:

‖f‖pp =

∫
X
|f |p =

∫
X
|f |p · 1 ≤

(∫
X
|f |ps

)1/s(∫
X

1t
)1/t

= ‖f‖r/sr m(X)1/t = ‖f‖prm(X)1−
p
r .

Take the pth root, and get ‖f‖p ≤ ‖f‖rm(X)
1
p
− 1

r . Hence if f ∈ Lr(X), it also belongs to
Lp(X). That is, Lr(X) ⊂ Lp(X).

(b) Observe that fa(x) := x−aχ[1,∞) ∈ Lq ⇔
∫ ∞
1

x−aq dx < ∞ ⇔ aq > 1 ⇔ q >
1

a
. Likewise
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gb(x) = x−b| log x|−2bχ(0,1/e] ∈ Lq ⇔
∫ 1/e

0
x−bq| log x|−2bq dx < ∞ ⇔ bq ≤ 1 ⇔ q ≤ 1

b
. So

take a = 1/p and b = 1/r. Then f1/p + g1/r belongs to Lq if and only if p < q ≤ r.

7. First suppose that f = χ
(2−k(i−1),2−ki] is the characteristic function of some dyadic interval. Then

for n > k, it is clear that m(An ∩ (2−k(i− 1), 2−ki]) = 2−k−1. Hence∫
An

f =
1

2

∫ 1

0
f(x) dx for n > k.

The same is true for a finite linear combination of such functions, namely step functions with
discontinuities at dyadic rationals. Now every continuous function is uniformly approximable by
such step functions. Thus these step functions are uniformly dense in C[0, 1]. The continuous
functions are dense in L1(0, 1) and ‖f‖1 ≤ ‖f‖∞, so the step functions are also dense in L1(0, 1).
Take f ∈ L1(0, 1) and let fk be step functions with dyadic discontinuities such that fk → f in
L1. Then for any fixed k and n sufficiently large, we have∣∣∣∣ ∫

An

f − 1

2

∫
[0,1]

f

∣∣∣∣ =

∣∣∣∣ ∫
An

f − fk +

∫
An

fk −
1

2

∫
[0,1]

fk +
1

2

∫
[0,1]

fk − f
∣∣∣∣

≤
∫
An

|f − fk|+
(∫

An

fk −
1

2

∫
[0,1]

fk

)
+

1

2

∫
[0,1]
|fk − f |

≤ ‖f − fk‖1 + 0 +
1

2
‖f − fk‖1 =

3

2
‖f − fk‖1.

As ‖f − fk‖1 is arbitrarily small, it follows that

lim
n→∞

∫
An

f =
1

2

∫
[0,1]

f
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