
PM 450 Solutions to Assignment 4

1. Let ε > 0, and write Ii = (ai, bi). I claim that I ′i = (ai − ε, bi + ε) covers [0, 1]. Indeed
let x ∈ [0, 1]. Pick a rational point y ∈ (x− ε, x+ ε) ∩Q ∩ [0, 1]. For some i, y ∈ (ai, bi)
by hypothesis. Hence x ∈ I ′i. Since m∗([0, 1]) = 1, it follows that

1 ≤
n∑

i=1

`(I ′i) =
n∑

i=1

`(Ii) + 2nε.

Let ε decrease to 0 to get
∑n

i=1 `(Ii) ≥ 1.

Second proof. If finitely many Ii = (ai, bi) cover Q ∩ [0, 1], then their closures [ai, bi]
have closed union and thus cover the closure of Q ∩ [0, 1] which is [0, 1]. Therefore∑n

i=1 bi − ai ≥ m∗([0, 1]) = 1.

2. (a) Recall that {0 = r0, r1, r2, . . . } is an enumeration of Q ∩ [0, 1), and that

Ek = E0+rk (mod 1) :=
(
E0 ∩ [0, 1−rk)

)
+rk ∪

(
E0 ∩ [1−rk, 1)

)
+rk−1.

Define translates of F inside each Ek by

Fk = F + (rk − rn) (mod 1)

=

{(
F ∩ [0, 1−rk+rn)

)
+rk−rn ∪

(
F ∩ [1−rk+rn, 1)

)
+rk−rn−1 if rk ≥ rn(

F ∩ [0, rn−rk)
)
+1−rn+rk ∪

(
F ∩ [rn−rk), 1)

)
−rn+rk if rk < rn.

As above, this splits F into two pieces and translates each of them. It follows that
Fn is measurable and m(Fk) = m(F ) for all k ≥ 0. Since Fk ⊂ Ek, these sets are
disjoint. Therefore by countable additivity,

1 = m([0, 1)) ≥ m
(⊔̇

k≥0
Fk

)
=
∑

k≥0m(Fk) =
∑

k≥0m(F ).

Therefore m(F ) = 0.

(b) Since F =
⊔̇

k∈ZF ∩ [k, k + 1) and 0 < m(F ) =
∑

k∈Zm(F ∩ [k, k + 1)), there is
an integer k so that m(F ∩ [k, k + 1)) > 0. We may translate this set into [0, 1).
If we find a non-measureable set inside this set, then the translate back yields a
non-measureable set inside F . So we may assume that F ⊂ [0, 1).
Let Fn = F ∩ En for n ≥ 0. If these sets are all measurable, then by 2(a), we have

m(Fn) = 0. However F =
⊔̇

n≥0Fn, and hence m(F ) =
∑

n≥0m(Fn) = 0. This is a
contradiction, and thus at least one of the sets Fn must be non-measurable.

3. Since g is continuous, g−1((a,∞)) = U is open for any a ∈ R. Therefore

(g ◦ f)−1((a,∞)) = f−1(U)

is measurable. Hence g ◦ f is measurable.

4. First assume that fn are real valued. Then g = lim inf fn and h = lim sup fn are measur-
able. Notice that

A = {x : lim
n→∞

fn(x) exists} = {x : g(x) = h(x)} = (h− g)−1({0}),

which is measurable because {0} is Borel. For the complex case, let

B = {x : lim
n→∞

Re fn(x) exists} and C = {x : lim
n→∞

Im fn(x) exists}.

Then by the real case, B and C are measurable. Since A = B ∩C, it is also measurable.



5. Let n0 = 1. For each i ≥ 1, recursively select ni > ni−1 so that

m({x : |f(x)− fni(x)| ≥ 2−i}) < 2−i.

I claim that fni converges to f almost everywhere. Indeed, let

Ai =
⋃
j≥i
{x : |f(x)− fnj (x)| ≥ 2−i} ⊆

⋃
j≥i
{x : |f(x)− fnj (x)| ≥ 2−j}.

By subadditivity,

m(Ai) ≤
∑
j≥i

m({x : |f(x)− fni(x)| ≥ 2−i}) <
∑
j≥i

2−j = 21−i.

Observe that Ai ⊇ Ai+1 and define A =
⋂

i≥1Ai. Then m(A) = limi→∞m(Ai) = 0. So

for x ∈ [0, 1] \ A, there is some i0 so that x 6∈ Ai0 . Therefore for every i ≥ i0, we have
|f(x)− fnj (x)| < 2−i for all j ≥ i. Thus limi→∞ fni(x) = f(x) for all x ∈ [0, 1] \A, which
is almost everywhere.

Remark: it is not true that the whole sequence converges a.e. Take a sequence of
characteristic functions fn = χAn where An = [log n, log(n + 1))] (mod 1), by which
I mean that the set is translated by an integer (or split and translated ) so as to fit in-
side [0, 1). The because log n → +∞, for every x in [0, 1), fn(x) = 1 infinitely often,
and fn(x) = 0 infinitely often. So the series does not converge at any point. However
m({x : fn(x) 6= 0}) = log n+1

n → 0, so the sequence converges to 0 in measure.

6. (a) The usual Cantor set is obtained using an = 3−n, and there are 2n−1 intervals
removed at the nth stage. Therefore

m(C) = m([0, 1])−
∑
n≥1

2n−1

3n
= 1− 1/3

1− 2/3
= 0.

(b) Let 0 < t ≤ 1/3 and let an = tn to get a Cantor set Kt. Then arguing as in 6(a),
this set has measure

m(Kt) = 1−
∑
n≥1

2n−1tn = 1− t

1− 2t
=

1− 3t

1− 2t
.

Solve
1− 3t

1− 2t
= r to get t =

1− r
3− 2r

. Then m(Kt) = r.

(c) We need some notation. Let the intervals removed at the nth stage for C be denoted
In,i for 1 ≤ i ≤ 2n−1 in increasing order; and let the corresponding intervals removed
at the nth stage for K be denoted Jn,i for 1 ≤ i ≤ 2n−1. We could obtain a formula
for the endpoints of these intervals, but it is not necessary. Define h to be linear
and increasing on each In,i with range Jn,i. Observe that h is an increasing function
from U :=

⋃
n,i In,i onto V :=

⋃
n,i Jn,i, and that these are both dense open subsets

of [0, 1]. Then define

h(0) = 0 and h(x) = sup{h(t) : t < x, t ∈ U} for x ∈ [0, 1] \ U.

Note that h is a monotone strictly increasing function from [0, 1] into [0, 1] and that
h(1) = 1.

The only discontinuities that a monotone function can have are jump discontinu-
ities, because there is a limit from the left and from the right at each point. After
removing the intervals at the nth stage, there are 2n intervals remaining of equal
length, so that their lengths are at most 2−n. It follows that the monotone function
h has no jump discontinuities with a gap of more than 2−n. Since n is arbitrary, h



has no jump discontinuities, and therefore is continuous. So h is a homeomorphism
of [0, 1] onto itself. Since h(U) = V , we have

h(C) = h([0, 1] \ U) = [0, 1] \ V = K.

(d) This problem is tricky. Some care must be taken to ensure that the resulting set
has less than full measure. Following the hint, consider Cantor sets Kn in [0, 1] with
m(Kn) = 2−n−1 as in 6(b). Work inside [0, 1]. Let E1 = K1. In each open interval
in the complement of E1, put a scaled copy of K2 to get a set E2. Then in each
interval of the complement of E2, put a scaled copy of K3 to get E3, etc. At each
stage, the complement of En in [0, 1] is a dense open set Un. In the end, one obtains
a set E∞ =

⋃
n≥1En ⊂ [0, 1].

Estimate m(E∞). Clearly m(E∞) > m(K1) = 1/4. On the other hand, at the nth

stage, we are adding sets which have total measure equal to 2−n−1m([0, 1]\En−1) <
2−n−1. Thus 1/4 < m(E∞) <

∑
n≥1 2−n−1 = 1/2. Observe that the largest interval

removed from any Kn has length less than 1/3, and thus at the nth stage, the
largest interval in the complement of En has length at most 3−n. Finally we define
E =

⋃
k∈ZE∞ + k.

Given an interval I, translate it by an integer so that I ∩ (0, 1) = (a, b) is non-

empty. This does not affect m(I ∩ E). Choose n0 so that b − a > 31−n0 . Since
Un0 is dense in [0, 1], it contains a point x within 1

23−n0 of the midpoint of I. The
component J of Un containing x has length less than 3−n0 , so J ⊂ I. Hence I
contains a scaled copy of Kn0+1 inside J . Thus m(I ∩ E) > 0. On the other hand,
within J , the argument of the previous paragraph shows that m(E ∩ J) < m(J). It
follows that 0 < m(I ∩ E) < m(I).

7. (a) Since f(x) is monotone increasing and continuous, and k(x) = x is monotone strictly
increasing and continuous, g(x) = f(x) + x is strictly increasing and continuous.
Clearly g(0) = 0 and g(1) = 2, so g maps [0, 1] one-to-one and onto [0, 2]. The
inverse function h = g−1 is thus a strictly increasing function of [0, 2] onto [0, 1].
As the range of h has no gaps, it has no jump discontinuities, and therefore it is
continuous. So g is a homeomorphism.

(b) Recall that U = [0, 1] \ C is a disjoint union of open intervals Ii = (ai, bi) on which
f is constant, so g translates each interval to Ji = Ii + f(ai). It follows from 6(a)
that the open set g(U) has measure

m(g(U)) =
∑
i≥1

m(Ji) =
∑
i≥1

m(Ii) = 1.

Therefore
m(g(C)) = m(g([0, 1])−m(g(U)) = 2− 1 = 1.

(c) By 2(b), the set g(C) contains a non-measurable set F . Let A = g−1(F ) ⊂ C.
Then m(A) = 0 because all sets with outer measure 0 are measurable. However
h−1(A) = F is not measurable.

(d) Let f = χA be the characteristic function of A, which is measurable because A is
measurable. Then f ◦ h = χF , which is not measurable because χ−1F ((.5,∞)) = F .


