PM 450 Solutions to Assignment 4

1. Let $\varepsilon>0$, and write $I_{i}=\left(a_{i}, b_{i}\right)$. I claim that $I_{i}^{\prime}=\left(a_{i}-\varepsilon, b_{i}+\varepsilon\right)$ covers $[0,1]$. Indeed let $x \in[0,1]$. Pick a rational point $y \in(x-\varepsilon, x+\varepsilon) \cap \mathbb{Q} \cap[0,1]$. For some $i, y \in\left(a_{i}, b_{i}\right)$ by hypothesis. Hence $x \in I_{i}^{\prime}$. Since $m^{*}([0,1])=1$, it follows that

$$
1 \leq \sum_{i=1}^{n} \ell\left(I_{i}^{\prime}\right)=\sum_{i=1}^{n} \ell\left(I_{i}\right)+2 n \varepsilon
$$

Let ε decrease to 0 to get $\sum_{i=1}^{n} \ell\left(I_{i}\right) \geq 1$.
Second proof. If finitely many $I_{i}=\left(a_{i}, b_{i}\right)$ cover $\mathbb{Q} \cap[0,1]$, then their closures $\left[a_{i}, b_{i}\right]$ have closed union and thus cover the closure of $\mathbb{Q} \cap[0,1]$ which is $[0,1]$. Therefore $\sum_{i=1}^{n} b_{i}-a_{i} \geq m^{*}([0,1])=1$.
2. (a) Recall that $\left\{0=r_{0}, r_{1}, r_{2}, \ldots\right\}$ is an enumeration of $\mathbb{Q} \cap[0,1)$, and that

$$
E_{k}=E_{0}+r_{k}(\bmod 1):=\left(E_{0} \cap\left[0,1-r_{k}\right)\right)+r_{k} \cup\left(E_{0} \cap\left[1-r_{k}, 1\right)\right)+r_{k}-1 .
$$

Define translates of F inside each E_{k} by

$$
\begin{aligned}
F_{k} & =F+\left(r_{k}-r_{n}\right)(\bmod 1) \\
& = \begin{cases}\left(F \cap\left[0,1-r_{k}+r_{n}\right)\right)+r_{k}-r_{n} \cup\left(F \cap\left[1-r_{k}+r_{n}, 1\right)\right)+r_{k}-r_{n}-1 & \text { if } r_{k} \geq r_{n} \\
\left.\left(F \cap\left[0, r_{n}-r_{k}\right)\right)+1-r_{n}+r_{k} \cup\left(F \cap\left[r_{n}-r_{k}\right), 1\right)\right)-r_{n}+r_{k} & \text { if } r_{k}<r_{n} .\end{cases}
\end{aligned}
$$

As above, this splits F into two pieces and translates each of them. It follows that F_{n} is measurable and $m\left(F_{k}\right)=m(F)$ for all $k \geq 0$. Since $F_{k} \subset E_{k}$, these sets are disjoint. Therefore by countable additivity,

$$
1=m([0,1)) \geq m\left(\bigsqcup_{k \geq 0} F_{k}\right)=\sum_{k \geq 0} m\left(F_{k}\right)=\sum_{k \geq 0} m(F)
$$

Therefore $m(F)=0$.
(b) Since $F=\dot{\bigsqcup}_{k \in \mathbb{Z}} F \cap[k, k+1)$ and $0<m(F)=\sum_{k \in \mathbb{Z}} m(F \cap[k, k+1))$, there is an integer k so that $m(F \cap[k, k+1))>0$. We may translate this set into $[0,1)$. If we find a non-measureable set inside this set, then the translate back yields a non-measureable set inside F. So we may assume that $F \subset[0,1)$.
Let $F_{n}=F \cap E_{n}$ for $n \geq 0$. If these sets are all measurable, then by $2($ a), we have $m\left(F_{n}\right)=0$. However $F=\dot{\bigsqcup}_{n \geq 0} F_{n}$, and hence $m(F)=\sum_{n \geq 0} m\left(F_{n}\right)=0$. This is a contradiction, and thus at least one of the sets F_{n} must be non-measurable.
3. Since g is continuous, $g^{-1}((a, \infty))=U$ is open for any $a \in \mathbb{R}$. Therefore

$$
(g \circ f)^{-1}((a, \infty))=f^{-1}(U)
$$

is measurable. Hence $g \circ f$ is measurable.
4. First assume that f_{n} are real valued. Then $g=\liminf f_{n}$ and $h=\limsup f_{n}$ are measurable. Notice that

$$
A=\left\{x: \lim _{n \rightarrow \infty} f_{n}(x) \text { exists }\right\}=\{x: g(x)=h(x)\}=(h-g)^{-1}(\{0\}),
$$

which is measurable because $\{0\}$ is Borel. For the complex case, let

$$
B=\left\{x: \lim _{n \rightarrow \infty} \operatorname{Re} f_{n}(x) \text { exists }\right\} \text { and } C=\left\{x: \lim _{n \rightarrow \infty} \operatorname{Im} f_{n}(x) \text { exists }\right\} .
$$

Then by the real case, B and C are measurable. Since $A=B \cap C$, it is also measurable.
5. Let $n_{0}=1$. For each $i \geq 1$, recursively select $n_{i}>n_{i-1}$ so that

$$
m\left(\left\{x:\left|f(x)-f_{n_{i}}(x)\right| \geq 2^{-i}\right\}\right)<2^{-i} .
$$

I claim that $f_{n_{i}}$ converges to f almost everywhere. Indeed, let

$$
A_{i}=\bigcup_{j \geq i}\left\{x:\left|f(x)-f_{n_{j}}(x)\right| \geq 2^{-i}\right\} \subseteq \bigcup_{j \geq i}\left\{x:\left|f(x)-f_{n_{j}}(x)\right| \geq 2^{-j}\right\} .
$$

By subadditivity,

$$
m\left(A_{i}\right) \leq \sum_{j \geq i} m\left(\left\{x:\left|f(x)-f_{n_{i}}(x)\right| \geq 2^{-i}\right\}\right)<\sum_{j \geq i} 2^{-j}=2^{1-i}
$$

Observe that $A_{i} \supseteq A_{i+1}$ and define $A=\bigcap_{i \geq 1} A_{i}$. Then $m(A)=\lim _{i \rightarrow \infty} m\left(A_{i}\right)=0$. So for $x \in[0,1] \backslash A$, there is some i_{0} so that $x \notin A_{i_{0}}$. Therefore for every $i \geq i_{0}$, we have $\left|f(x)-f_{n_{j}}(x)\right|<2^{-i}$ for all $j \geq i$. Thus $\lim _{i \rightarrow \infty} f_{n_{i}}(x)=f(x)$ for all $x \in[0,1] \backslash A$, which is almost everywhere.

Remark: it is not true that the whole sequence converges a.e. Take a sequence of characteristic functions $f_{n}=\chi_{A_{n}}$ where $\left.A_{n}=[\log n, \log (n+1))\right](\bmod 1)$, by which I mean that the set is translated by an integer (or split and translated) so as to fit inside $[0,1)$. The because $\log n \rightarrow+\infty$, for every x in $[0,1), f_{n}(x)=1$ infinitely often, and $f_{n}(x)=0$ infinitely often. So the series does not converge at any point. However $m\left(\left\{x: f_{n}(x) \neq 0\right\}\right)=\log \frac{n+1}{n} \rightarrow 0$, so the sequence converges to 0 in measure.
6. (a) The usual Cantor set is obtained using $a_{n}=3^{-n}$, and there are 2^{n-1} intervals removed at the nth stage. Therefore

$$
m(C)=m([0,1])-\sum_{n \geq 1} \frac{2^{n-1}}{3^{n}}=1-\frac{1 / 3}{1-2 / 3}=0 .
$$

(b) Let $0<t \leq 1 / 3$ and let $a_{n}=t^{n}$ to get a Cantor set K_{t}. Then arguing as in 6(a), this set has measure

$$
m\left(K_{t}\right)=1-\sum_{n \geq 1} 2^{n-1} t^{n}=1-\frac{t}{1-2 t}=\frac{1-3 t}{1-2 t} .
$$

Solve $\frac{1-3 t}{1-2 t}=r$ to get $t=\frac{1-r}{3-2 r}$. Then $m\left(K_{t}\right)=r$.
(c) We need some notation. Let the intervals removed at the nth stage for C be denoted $I_{n, i}$ for $1 \leq i \leq 2^{n-1}$ in increasing order; and let the corresponding intervals removed at the nth stage for K be denoted $J_{n, i}$ for $1 \leq i \leq 2^{n-1}$. We could obtain a formula for the endpoints of these intervals, but it is not necessary. Define h to be linear and increasing on each $I_{n, i}$ with range $J_{n, i}$. Observe that h is an increasing function from $U:=\bigcup_{n, i} I_{n, i}$ onto $V:=\bigcup_{n, i} J_{n, i}$, and that these are both dense open subsets of $[0,1]$. Then define

$$
h(0)=0 \quad \text { and } \quad h(x)=\sup \{h(t): t<x, t \in U\} \text { for } x \in[0,1] \backslash U .
$$

Note that h is a monotone strictly increasing function from $[0,1]$ into $[0,1]$ and that $h(1)=1$.

The only discontinuities that a monotone function can have are jump discontinuities, because there is a limit from the left and from the right at each point. After removing the intervals at the nth stage, there are 2^{n} intervals remaining of equal length, so that their lengths are at most 2^{-n}. It follows that the monotone function h has no jump discontinuities with a gap of more than 2^{-n}. Since n is arbitrary, h
has no jump discontinuities, and therefore is continuous. So h is a homeomorphism of $[0,1]$ onto itself. Since $h(U)=V$, we have

$$
h(C)=h([0,1] \backslash U)=[0,1] \backslash V=K .
$$

(d) This problem is tricky. Some care must be taken to ensure that the resulting set has less than full measure. Following the hint, consider Cantor sets K_{n} in $[0,1]$ with $m\left(K_{n}\right)=2^{-n-1}$ as in $6(\mathrm{~b})$. Work inside $[0,1]$. Let $E_{1}=K_{1}$. In each open interval in the complement of E_{1}, put a scaled copy of K_{2} to get a set E_{2}. Then in each interval of the complement of E_{2}, put a scaled copy of K_{3} to get E_{3}, etc. At each stage, the complement of E_{n} in $[0,1]$ is a dense open set U_{n}. In the end, one obtains a set $E_{\infty}=\bigcup_{n \geq 1} E_{n} \subset[0,1]$.

Estimate $m\left(\bar{E}_{\infty}\right)$. Clearly $m\left(E_{\infty}\right)>m\left(K_{1}\right)=1 / 4$. On the other hand, at the nth stage, we are adding sets which have total measure equal to $2^{-n-1} m\left([0,1] \backslash E_{n-1}\right)<$ 2^{-n-1}. Thus $1 / 4<m\left(E_{\infty}\right)<\sum_{n \geq 1} 2^{-n-1}=1 / 2$. Observe that the largest interval removed from any K_{n} has length less than $1 / 3$, and thus at the nth stage, the largest interval in the complement of E_{n} has length at most 3^{-n}. Finally we define $E=\bigcup_{k \in \mathbb{Z}} E_{\infty}+k$.

Given an interval I, translate it by an integer so that $I \cap(0,1)=(a, b)$ is nonempty. This does not affect $m(I \cap E)$. Choose n_{0} so that $b-a>3^{1-n_{0}}$. Since $U_{n_{0}}$ is dense in $[0,1]$, it contains a point x within $\frac{1}{2} 3^{-n_{0}}$ of the midpoint of I. The component J of U_{n} containing x has length less than $3^{-n_{0}}$, so $J \subset I$. Hence I contains a scaled copy of $K_{n_{0}+1}$ inside J. Thus $m(I \cap E)>0$. On the other hand, within J, the argument of the previous paragraph shows that $m(E \cap J)<m(J)$. It follows that $0<m(I \cap E)<m(I)$.
7. (a) Since $f(x)$ is monotone increasing and continuous, and $k(x)=x$ is monotone strictly increasing and continuous, $g(x)=f(x)+x$ is strictly increasing and continuous. Clearly $g(0)=0$ and $g(1)=2$, so g maps $[0,1]$ one-to-one and onto $[0,2]$. The inverse function $h=g^{-1}$ is thus a strictly increasing function of $[0,2]$ onto $[0,1]$. As the range of h has no gaps, it has no jump discontinuities, and therefore it is continuous. So g is a homeomorphism.
(b) Recall that $U=[0,1] \backslash C$ is a disjoint union of open intervals $I_{i}=\left(a_{i}, b_{i}\right)$ on which f is constant, so g translates each interval to $J_{i}=I_{i}+f\left(a_{i}\right)$. It follows from 6(a) that the open set $g(U)$ has measure

$$
m(g(U))=\sum_{i \geq 1} m\left(J_{i}\right)=\sum_{i \geq 1} m\left(I_{i}\right)=1 .
$$

Therefore

$$
m(g(C))=m(g([0,1])-m(g(U))=2-1=1 .
$$

(c) By 2(b), the set $g(C)$ contains a non-measurable set F. Let $A=g^{-1}(F) \subset C$. Then $m(A)=0$ because all sets with outer measure 0 are measurable. However $h^{-1}(A)=F$ is not measurable.
(d) Let $f=\chi_{A}$ be the characteristic function of A, which is measurable because A is measurable. Then $f \circ h=\chi_{F}$, which is not measurable because $\chi_{F}^{-1}((.5, \infty))=F$.

