
PM 450 Solutions to Assignment 2

1. We have x = r cos θ and y = r sin θ. Therefore

ur = ux
∂x

∂r
+ uy

∂y

∂r
= ux cos θ + uy sin θ

urr =
∂

∂r
(ux cos θ+uy sin θ) =

∂ux
∂r

cos θ+
∂uy
∂r

sin θ = (uxx
∂x

∂r
+ uxy

∂y

∂r
) cos θ + (uyx

∂x

∂r
+ uyy

∂y

∂r
) sin θ

= uxx cos2 θ + 2uxy cos θ sin θ + uyy sin2 θ

uθ = ux
∂x

∂θ
+ uy

∂θ

∂r
= −uxr sin θ + uyr cos θ

uθθ =
∂

∂θ
(−uxr sin θ + uyr cos θ) = −∂ux

∂θ
r sin θ − uxr cos θ +

∂uy
∂θ

r cos θ − uyr sin θ

= −
(
uxx(−r sin θ)+uxy(r cos θ)

)
(r sin θ)−uxr cos θ+

(
uyx(−r sin θ)+uyy(r cos θ)

)
(r cos θ)−uyr sin θ

= uxxr
2 sin2 θ − 2uxyr

2 cos θ sin θ + uyyr
2 cos2 θ − uxr cos θ − uyr sin θ.

Combining we get: ∆u = urr + 1
rur + 1

r2
uθθ = uxx + uyy.

2. (a) f̂(0) =
1

2π

∫ π

−π
θ dθ = 0 because f is an odd function. For n 6= 0, integrate by parts:

f̂(n) =
1

2π

∫ π

−π
θe−inθ dθ =

1

2π
θ

1

−in
e−inθ

∣∣∣π
−π
− 1

2π

∫ π

−π

1

−in
e−inθ dθ =

(−1)ni

n
.

Thus f ∼
∞∑

n=−∞
n6=0

(−1)ni

n
einθ =

∞∑
n=1

(−1)n

n
(−2)

einθ − e−inθ

2i
=

∞∑
n=1

(−1)n−1
2

n
sinnθ.

(b) This series does not converge uniformly. Since f is continuous on [−π + δ, π − δ] for any δ > 0, the
series converges uniformly on [−π+ δ, π− δ] to f . Thus it converges to f on (−π, π). At θ = π, you
can see that the sin series vanishes, and thus it converges to 0 at θ = π. If convergence were uniform,
since the uniform limit of continuous functions is continuous, the limit would be continuous—but
there is a jump discontinuity at θ = π ≡ −π (mod 2π).

(c) u(r, θ) =
∑∞

n=1(−1)n−1rn 2
n sinnθ. Hence limr→1− u(r, π) = limr→1− 0 = 0.

3. Suppose that{An} is bounded by C. Let un(r, θ) = Anr
|n|einθ. Then

∂j+k

∂rj∂θk
un(r, θ) = An|n|...(|n| − j + 1)r|n|−j(in)keinθ.

Therefore for r ≤ R < 1,∥∥∥ ∂j+k

∂rj∂θk
un(r, θ)

∥∥∥
DR

= sup
0≤r≤R
−π≤θ≤π

∣∣∣ ∂j+k
∂rj∂θk

un(r, θ)
∣∣∣ ≤ C|n|k+jR|n|−j .

Since lim
n→∞

C(|n|+ 1)k+jR|n|+1−j

C|n|k+jR|n|−j
= R < 1, the ratio test guarantees that

∞∑
n=−∞

∥∥ ∂j+k

∂rj∂θk
un(r, θ)

∥∥
DR

converges. Hence, by the Weierstrass M-test,

∞∑
n=−∞

∂j+k

∂rj∂θk
un(r, θ) converges uniformly on each DR.

Appealing repeatedly to the Term by Term Differentiation Lemma shows that this series converges to
∂j+k

∂rj∂θk
u(r, θ). Therefore u is C∞.
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4. Assume that f is real valued. Set M = ‖f‖∞, and let ε > 0 be given. Since f is Riemann integrable,
there is a partition ∆ = {−π = t0 < t1 < · · · < tn = π} so that with

lk = inf
tk−1≤t≤tk

f(t) and uk = sup
tk−1≤t≤tk

f(t),

we obtain

1

2π

n∑
k=1

lk(tk − tk−1) ≤
1

2π

∫ π

−π
f(t) dt ≤ 1

2π

n∑
k=1

uk(tk − tk−1) and
1

2π

n∑
k=1

(uk − lk)(tk − tk−1) < ε.

Define g(t) to be piecewise linear on [tk−1, tk] with g(tk) = f(tk). Then it follows that g is continuous
including g(−π) = g(π), ‖g‖∞ ≤ ‖f‖∞ and lk ≤ g(t) ≤ uk for t ∈ [tk−1, tk]. Therefore |f(t) − g(t)| ≤
uk − lk on [tk−1, tk]. We estimate

‖f − g‖22 =
1

2π

∫ π

−π
|f(t)− g(t)|2 ≤ 1

2π

n∑
k=1

(uk − lk)2(tk − tk−1)

=
1

2π

n∑
k=1

(uk + lk)(uk − lk)(tk − tk−1) ≤ 2M
1

2π

n∑
k=1

(uk − lk)(tk − tk−1) < 2Mε.

Since ε > 0 is arbitrary, we can approximate f by continuous functions in the L2 norm as accurately as
desired.

5. (a) u(r, θ) =
1

2π

∫ π

−π
f(θ − t)P (r, t)dt ≥ 0 because the integrand is positive.

(b)
1− r
1 + r

=
1− r2

1 + 2r + r2
≤ 1− r2

1 + 2r cos θ + r2
= P (r, θ) ≤ 1− r2

1− 2r + r2
=

1 + r

1− r
.

(c) Note that u(0, 0) = u(0, θ) =
1

2π

∫ π

−π
f(θ − t)P (0, t)dt =

1

2π

∫ π

−π
f(θ − t)dt. Therefore, by (b),

u(r, θ) =
1

2π

∫ π

−π
f(θ − t)P (r, t)dt ≥ 1

2π

∫ π

−π
f(θ − t)1− r

1 + r
dt =

1− r
1 + r

u(0, 0).

Similarly,

u(r, θ) =
1

2π

∫ π

−π
f(θ − t)P (r, t)dt ≤ 1

2π

∫ π

−π
f(θ − t)1 + r

1− r
dt =

1 + r

1− r
u(0, 0).

6. (a)
1

2π

∫ π

−π
P (r, θ − t)P (s, t) dt =

1

2π

∫ π

−π

∞∑
n=−∞

r|n|ein(θ−t)
∞∑

m=−∞
s|m|eimt dt

The double sum
∑∞

n=−∞
∑∞

m=−∞ r
|n|s|m| < ∞, so this series converges uniformly by the M-test.

Thus it is valid to interchange the order of the integral and summation:

=

∞∑
n=−∞

∞∑
m=−∞

r|n|s|m|
1

2π

∫ π

−π
ein(θ−t)eimt dt

=

∞∑
n=−∞

∞∑
m=−∞

r|n|s|m|einθδn,m =

∞∑
n=−∞

(rs)|n|einθ = P (rs, θ).

Alternatively, observe that the LHS is Pr ∗ Ps. Since P (r, θ) =
∑∞
−∞ r

|n|einθ and P (s, θ) =∑∞
−∞ s

|n|einθ, we have P̂r ∗ Ps(k) = P̂r(k)P̂s(k) = r|n|s|n| = (rs)|n|. Thus

Pr ∗ Ps(θ) =
∞∑
−∞

(rs)|n|einθ = Prs(θ).
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(b) Observe that g = f ∗ Ps. The harmonic extension of g is

v(r, θ) = (g ∗ Pr)(θ) =
(
(f ∗ Ps) ∗ Pr

)
(θ) =

(
f ∗ (Ps ∗ Pr)

)
(θ) = (f ∗ Prs)(θ) = u(rs, θ).

7. (a) Integrating by parts, we obtain

f̂(n) =
1

2π

∫ π

−π
f(θ)e−inθ dθ =

1

2π
f(θ)

e−inθ

−in

∣∣∣π
−π

+
1

2πin

∫ π

−π
f ′(θ)e−inθ dθ =

f̂ ′(n)

in

where the first term is 2π-periodic and hence is zero. Therefore, |f̂(n)| = |f̂ ′(n)|/|n| ≤ ‖f ′‖∞/|n|.

(b) Proceed by induction. Part (a) does the case k = 1. Assume that |f̂(n)| ≤ C|n|−k+1 for all

f ∈ Ck−1. Then when f is Ck, f ′ is Ck−1 and thus |f̂ ′(n)| ≤ C|n|−k+1 for some constant C.

Therefore |f̂(n)| = |f̂ ′(n)|/|n| ≤ C|n|−k.

(c) If f is C2, there is a constant C so that |f̂(n)| ≤ Cn−2 for n 6= 0. Therefore ‖f̂(n)einθ‖∞ ≤ Cn−2.

Since |f̂(0)|+
∞∑

n=−∞
n6=0

Cn−2 <∞, the Fourier series converges uniformly by the Weierstrass M-test.

(d) If k ≥ 2, the series
∑∞
−∞ |f̂(n)| ≤ |f̂(0)| + 2C

∑∞
n=1 n

−k < ∞ is summable. Therefore the se-

ries
∑∞
−∞ f̂(n)einθ converges uniformly to f . If m ≤ k − 2, the Fourier coefficients of f (m) are

(by repeated use of (a)) f̂ (m)(n) = f̂(n)(in)m which is bounded by C|n|m−k ≤ Cn−2. Since
∞∑

n=−∞
n6=0

Cn−2 < ∞, the series
∞∑
−∞

f̂(n)(in)meinθ converges uniformly by the Weierstrass M-test to a

continuous 2π-periodic function fm. Therefore we can repeatedly apply the term by term differen-
tiation lemma to see that fm = f (m). Therefore f is Ck−2.

(e) Combining parts (b) and (d), we see that f is C∞ if and only if f̂(n) is O(|n|−k) for all k ≥ 1.


