PM 450 Solutions to Assignment 2

We have x = rcosf and y = rsinf. Therefore
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Ugy = éfg(—uxr sin @ + wu,r cos0) =

= Uypr’sin?  — 2umy7“2 cos 0 sin 6 + uyyr cos? 0 — u,rcosf — UyT sin 6.
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Combining we get: Au = upy + ;ur + ;3Ug9 = Uga + Uyy-
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(a) f(0)= o / 0 df = 0 because f is an odd function. For n # 0, integrate by parts:
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Thus f ~ Z - e = Z - (—2) 57 = Z(—l)" Esmne.
nzggo n=1 n=1

(b) This series does not converge uniformly. Since f is continuous on [—7 + d, 7 — ] for any § > 0, the
series converges uniformly on [—7 4 d, 7 — ] to f. Thus it converges to f on (—m, 7). At 6 = 7, you
can see that the sin series vanishes, and thus it converges to 0 at § = «. If convergence were uniform,
since the uniform limit of continuous functions is continuous, the limit would be continuous—but
there is a jump discontinuity at 6 = 7 = —7 (mod 27).

(c) u(r,0) =320 (—1)n1pn2 = sinnfd. Hence lim, ;- u(r,m) = lim,_,;- 0 = 0.

Suppose that{4,} is bounded by C. Let u,(r,0) = A,r™e™®. Then
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Since nlg)go ClnlF 7 R = R < 1, the ratio test guarantees that Z Hmun(r H)HDR
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converges. Hence, by the Weierstrass M-test, Z un(r,0) converges uniformly on each Dg.
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Appealing repeatedly to the Term by Term Differentiation Lemma shows that this series converges to
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Wu(r, 6). Therefore u is C*.
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4. Assume that f is real valued. Set M = ||f]|c0, and let € > 0 be given. Since f is Riemann integrable,
there is a partition A = {—7 =tg <t} < --- < t, = 7} so that with

lp=inf f(t) and wur= sup f(1),

te—1Ststy to—1<t<ty,
we obtain
i zn:lk(tk — tk:—l) < i /Tr f(t) dt < i zn:uk(tk — tk—l) and i Zn:(uk — lk)(tk - tk—l) <e.
27 P —2n J_, 27 Pt 27 Pt

Define g(t) to be piecewise linear on [tx_1,tx] with g(tx) = f(tx). Then it follows that g is continuous
including g(—m) = g(7), |glloc < ||flloo and Iy < g(t) < uy for t € [tg_1,tx]. Therefore |f(t) — g(t)| <
up, — I on [tg_1,tx]. We estimate
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= % Z(uk + lk)(uk — lk)(tk — tkfl) < QM% Z(uk — lk)(tk — tkfl) < 2Me.

Since € > 0 is arbitrary, we can approximate f by continuous functions in the L? norm as accurately as

desired.
5. (a) u(r,0) / f(@ —t)P(r,t)dt > 0 because the integrand is positive.
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(c) Note that u(0,0) = u(0,0) = o f(@—t)P(0,t)dt = o | f( — t)dt. Therefore, by (b),
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u(r0) = g [0 0PE > o /_Wf(e D=1,
Similarly,
u(r,0) = o— P(r, 1—7“ = 1—u(0,0).
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The double sum » 2 >> rinlslml < o0, so this series converges uniformly by the M-test.
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Thus it is valid to interchange the order of the integral and summation:

_ Z Z Snlglm| L /7r Gin(0—t) gimt gy

nN=—00 M=—00
o

= io: io: T‘n|5|m|€in95n7m — Z (rs)\n\einO _ P(T‘S,Q).

Alternatively, observe that the LHS is P. x Ps. Since P(r,0) = > _rl"le? and P(s,0) =
S slPle™? | we have Pr/*TDs(k) = f’;(k‘)ﬁ(k‘) = rlrlslnl = (15)I"l, Thus

[e.9]

P, x Ps(0) = Z(rs)'"'eme = P,s(6).
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Observe that g = f x P;. The harmonic extension of g is

v(r,0) = (g Pr)(0) = ((f * Ps) = P)(0) = (f * (Ps # P2))(0) = (f * Prs)(0) = u(rs, 0).

Integrating by parts, we obtain

£ 1 —inf _ 1 e—in@ g 1 N / —inf _ f/(n)
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where the first term is 27-periodic and hence is zero. Therefore, |f(n)| = |f'(n)|/|n| < |f|loe/In].

Proceed by induction. Part (a) does the case k = 1. Assume that |f(n)| < C|n|7**! for all
f € C*1. Then when f is C¥, f" is C*¥~! and thus |f’(n)| < C|n|7**! for some constant C.
Therefore | f(n)| = |f'(n)/|n| < Cln|~*.

If fis C2, there is a constant C' so that |f(n)| < Cn~2 for n # 0. Therefore || f(n)ei™||o < Cn~2.

Since | f )| + Z Cn~? < o0, the Fourier series converges uniformly by the Weierstrass M-test.

n=—oo

n#0
If k > 2, the series >.°°_|f(n)| < [f(0)] + 203 n~* < oo is summable. Therefore the se-
ries > > f(n)e™® converges uniformly to f. If m < k — 2, the Fourier coefficients of f(™ are
(by repeated use of (a)) f(m ( ) = f( )(in)™ which is bounded by C|n|™* < Cn=2. Since

Z Cn~? < o0, the series Z f in)™e™? converges uniformly by the Weierstrass M-test to a

n=—o0o
n#0
continuous 2m-periodic function f,,. Therefore we can repeatedly apply the term by term differen-

tiation lemma to see that f,, = f(™. Therefore f is C*—2
Combining parts (b) and (d), we see that f is C if and only if f(n) is O(|n|*) for all k > 1.



