PM 450 Solutions to Assignment 2

1. We have $x=r \cos \theta$ and $y=r \sin \theta$. Therefore

$$
\begin{aligned}
u_{r} & =u_{x} \frac{\partial x}{\partial r}+u_{y} \frac{\partial y}{\partial r}=u_{x} \cos \theta+u_{y} \sin \theta \\
u_{r r} & =\frac{\partial}{\partial r}\left(u_{x} \cos \theta+u_{y} \sin \theta\right)=\frac{\partial u_{x}}{\partial r} \cos \theta+\frac{\partial u_{y}}{\partial r} \sin \theta=\left(u_{x x} \frac{\partial x}{\partial r}+u_{x y} \frac{\partial y}{\partial r}\right) \cos \theta+\left(u_{y x} \frac{\partial x}{\partial r}+u_{y y} \frac{\partial y}{\partial r}\right) \sin \theta \\
& =u_{x x} \cos ^{2} \theta+2 u_{x y} \cos \theta \sin \theta+u_{y y} \sin ^{2} \theta \\
u_{\theta} & =u_{x} \frac{\partial x}{\partial \theta}+u_{y} \frac{\partial \theta}{\partial r}=-u_{x} r \sin \theta+u_{y} r \cos \theta \\
u_{\theta \theta} & =\frac{\partial}{\partial \theta}\left(-u_{x} r \sin \theta+u_{y} r \cos \theta\right)=-\frac{\partial u_{x}}{\partial \theta} r \sin \theta-u_{x} r \cos \theta+\frac{\partial u_{y}}{\partial \theta} r \cos \theta-u_{y} r \sin \theta \\
& =-\left(u_{x x}(-r \sin \theta)+u_{x y}(r \cos \theta)\right)(r \sin \theta)-u_{x} r \cos \theta+\left(u_{y x}(-r \sin \theta)+u_{y y}(r \cos \theta)\right)(r \cos \theta)-u_{y} r \sin \theta \\
& =u_{x x} r^{2} \sin ^{2} \theta-2 u_{x y} r^{2} \cos \theta \sin \theta+u_{y y} r^{2} \cos ^{2} \theta-u_{x} r \cos \theta-u_{y} r \sin \theta .
\end{aligned}
$$

Combining we get: $\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=u_{x x}+u_{y y}$.
2. (a) $\hat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \theta d \theta=0$ because f is an odd function. For $n \neq 0$, integrate by parts:

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \theta e^{-i n \theta} d \theta=\left.\frac{1}{2 \pi} \theta \frac{1}{-i n} e^{-i n \theta}\right|_{-\pi} ^{\pi}-\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{-i n} e^{-i n \theta} d \theta=\frac{(-1)^{n} i}{n}
$$

Thus $f \sim \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{(-1)^{n} i}{n} e^{i n \theta}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(-2) \frac{e^{i n \theta}-e^{-i n \theta}}{2 i}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2}{n} \sin n \theta$.
(b) This series does not converge uniformly. Since f is continuous on $[-\pi+\delta, \pi-\delta]$ for any $\delta>0$, the series converges uniformly on $[-\pi+\delta, \pi-\delta]$ to f. Thus it converges to f on $(-\pi, \pi)$. At $\theta=\pi$, you can see that the sin series vanishes, and thus it converges to 0 at $\theta=\pi$. If convergence were uniform, since the uniform limit of continuous functions is continuous, the limit would be continuous-but there is a jump discontinuity at $\theta=\pi \equiv-\pi(\bmod 2 \pi)$.
(c) $u(r, \theta)=\sum_{n=1}^{\infty}(-1)^{n-1} r^{n} \frac{2}{n} \sin n \theta$. Hence $\lim _{r \rightarrow 1^{-}} u(r, \pi)=\lim _{r \rightarrow 1^{-}} 0=0$.
3. Suppose that $\left\{A_{n}\right\}$ is bounded by C. Let $u_{n}(r, \theta)=A_{n} r^{|n|} e^{i n \theta}$. Then

$$
\frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u_{n}(r, \theta)=A_{n}|n| \ldots(|n|-j+1) r^{|n|-j}(i n)^{k} e^{i n \theta} .
$$

Therefore for $r \leq R<1$,

$$
\left\|\frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u_{n}(r, \theta)\right\|_{\mathbb{D}_{R}}=\sup _{\substack{0 \leq r \leq R \\-\pi \leq \theta \leq \pi}}\left|\frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u_{n}(r, \theta)\right| \leq C|n|^{k+j} R^{|n|-j}
$$

Since $\lim _{n \rightarrow \infty} \frac{C(|n|+1)^{k+j} R^{|n|+1-j}}{C|n|^{k+j} R^{|n|-j}}=R<1$, the ratio test guarantees that $\sum_{n=-\infty}^{\infty}\left\|\frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u_{n}(r, \theta)\right\|_{\mathbb{D}_{R}}$ converges. Hence, by the Weierstrass M-test, $\sum_{n=-\infty}^{\infty} \frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u_{n}(r, \theta)$ converges uniformly on each \mathbb{D}_{R}. Appealing repeatedly to the Term by Term Differentiation Lemma shows that this series converges to $\frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u(r, \theta)$. Therefore u is C^{∞}.
4. Assume that f is real valued. Set $M=\|f\|_{\infty}$, and let $\varepsilon>0$ be given. Since f is Riemann integrable, there is a partition $\Delta=\left\{-\pi=t_{0}<t_{1}<\cdots<t_{n}=\pi\right\}$ so that with

$$
l_{k}=\inf _{t_{k-1} \leq t \leq t_{k}} f(t) \quad \text { and } \quad u_{k}=\sup _{t_{k-1} \leq t \leq t_{k}} f(t),
$$

we obtain

$$
\frac{1}{2 \pi} \sum_{k=1}^{n} l_{k}\left(t_{k}-t_{k-1}\right) \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t \leq \frac{1}{2 \pi} \sum_{k=1}^{n} u_{k}\left(t_{k}-t_{k-1}\right) \quad \text { and } \quad \frac{1}{2 \pi} \sum_{k=1}^{n}\left(u_{k}-l_{k}\right)\left(t_{k}-t_{k-1}\right)<\varepsilon .
$$

Define $g(t)$ to be piecewise linear on $\left[t_{k-1}, t_{k}\right]$ with $g\left(t_{k}\right)=f\left(t_{k}\right)$. Then it follows that g is continuous including $g(-\pi)=g(\pi),\|g\|_{\infty} \leq\|f\|_{\infty}$ and $l_{k} \leq g(t) \leq u_{k}$ for $t \in\left[t_{k-1}, t_{k}\right]$. Therefore $|f(t)-g(t)| \leq$ $u_{k}-l_{k}$ on $\left[t_{k-1}, t_{k}\right]$. We estimate

$$
\begin{aligned}
\|f-g\|_{2}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)-g(t)|^{2} \leq \frac{1}{2 \pi} \sum_{k=1}^{n}\left(u_{k}-l_{k}\right)^{2}\left(t_{k}-t_{k-1}\right) \\
& =\frac{1}{2 \pi} \sum_{k=1}^{n}\left(u_{k}+l_{k}\right)\left(u_{k}-l_{k}\right)\left(t_{k}-t_{k-1}\right) \leq 2 M \frac{1}{2 \pi} \sum_{k=1}^{n}\left(u_{k}-l_{k}\right)\left(t_{k}-t_{k-1}\right)<2 M \varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we can approximate f by continuous functions in the L^{2} norm as accurately as desired.
5. (a) $u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) P(r, t) d t \geq 0$ because the integrand is positive.
(b) $\frac{1-r}{1+r}=\frac{1-r^{2}}{1+2 r+r^{2}} \leq \frac{1-r^{2}}{1+2 r \cos \theta+r^{2}}=P(r, \theta) \leq \frac{1-r^{2}}{1-2 r+r^{2}}=\frac{1+r}{1-r}$.
(c) Note that $u(0,0)=u(0, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) P(0, t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) d t$. Therefore, by (b),

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) P(r, t) d t \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) \frac{1-r}{1+r} d t=\frac{1-r}{1+r} u(0,0) .
$$

Similarly,

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) P(r, t) d t \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta-t) \frac{1+r}{1-r} d t=\frac{1+r}{1-r} u(0,0)
$$

6. (a) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(r, \theta-t) P(s, t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{i n(\theta-t)} \sum_{m=-\infty}^{\infty} s^{|m|} e^{i m t} d t$

The double sum $\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} r^{|n|} s^{|m|}<\infty$, so this series converges uniformly by the M-test. Thus it is valid to interchange the order of the integral and summation:

$$
\begin{aligned}
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} r^{|n|} s^{|m|} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n(\theta-t)} e^{i m t} d t \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} r^{|n|} s^{|m|} e^{i n \theta} \delta_{n, m}=\sum_{n=-\infty}^{\infty}(r s)^{|n|} e^{i n \theta}=P(r s, \theta) .
\end{aligned}
$$

Alternatively, observe that the LHS is $P_{r} * P_{s}$. Since $P(r, \theta)=\sum_{-\infty}^{\infty} r^{|n|} e^{i n \theta}$ and $P(s, \theta)=$ $\sum_{-\infty}^{\infty} s^{|n|} e^{i n \theta}$, we have $\widehat{P_{r} * P_{s}}(k)=\widehat{P_{r}}(k) \widehat{P_{s}}(k)=r^{|n|} s^{|n|}=(r s)^{|n|}$. Thus

$$
P_{r} * P_{s}(\theta)=\sum_{-\infty}^{\infty}(r s)^{|n|} e^{i n \theta}=P_{r s}(\theta) .
$$

(b) Observe that $g=f * P_{s}$. The harmonic extension of g is

$$
v(r, \theta)=\left(g * P_{r}\right)(\theta)=\left(\left(f * P_{s}\right) * P_{r}\right)(\theta)=\left(f *\left(P_{s} * P_{r}\right)\right)(\theta)=\left(f * P_{r s}\right)(\theta)=u(r s, \theta)
$$

7. (a) Integrating by parts, we obtain

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta=\left.\frac{1}{2 \pi} f(\theta) \frac{e^{-i n \theta}}{-i n}\right|_{-\pi} ^{\pi}+\frac{1}{2 \pi i n} \int_{-\pi}^{\pi} f^{\prime}(\theta) e^{-i n \theta} d \theta=\frac{\widehat{f^{\prime}}(n)}{i n}
$$

where the first term is 2π-periodic and hence is zero. Therefore, $|\hat{f}(n)|=\left|\widehat{f^{\prime}}(n)\right| /|n| \leq\left\|f^{\prime}\right\|_{\infty} /|n|$.
(b) Proceed by induction. Part (a) does the case $k=1$. Assume that $|\hat{f}(n)| \leq C|n|^{-k+1}$ for all $f \in C^{k-1}$. Then when f is C^{k}, f^{\prime} is C^{k-1} and thus $\left|\widehat{f^{\prime}}(n)\right| \leq C|n|^{-k+1}$ for some constant C. Therefore $|\hat{f}(n)|=\left|\widehat{f}^{\prime}(n)\right| /|n| \leq C|n|^{-k}$.
(c) If f is C^{2}, there is a constant C so that $|\hat{f}(n)| \leq C n^{-2}$ for $n \neq 0$. Therefore $\left\|\hat{f}(n) e^{i n \theta}\right\|_{\infty} \leq C n^{-2}$. Since $|\hat{f}(0)|+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} C n^{-2}<\infty$, the Fourier series converges uniformly by the Weierstrass M-test.
(d) If $k \geq 2$, the series $\sum_{-\infty}^{\infty}|\hat{f}(n)| \leq|\hat{f}(0)|+2 C \sum_{n=1}^{\infty} n^{-k}<\infty$ is summable. Therefore the series $\sum_{-\infty}^{\infty} \hat{f}(n) e^{i n \theta}$ converges uniformly to f. If $m \leq k-2$, the Fourier coefficients of $f^{(m)}$ are (by repeated use of (a)) $\widehat{f^{(m)}}(n)=\hat{f}(n)(i n)^{m}$ which is bounded by $C|n|^{m-k} \leq C n^{-2}$. Since $\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} C n^{-2}<\infty$, the series $\sum_{-\infty}^{\infty} \hat{f}(n)(i n)^{m} e^{i n \theta}$ converges uniformly by the Weierstrass M-test to a continuous 2π-periodic function f_{m}. Therefore we can repeatedly apply the term by term differentiation lemma to see that $f_{m}=f^{(m)}$. Therefore f is C^{k-2}.
(e) Combining parts (b) and (d), we see that f is C^{∞} if and only if $\hat{f}(n)$ is $O\left(|n|^{-k}\right)$ for all $k \geq 1$.

