
PM 450 Solutions to Assignment 1

1. (a) In standard form, the DE is y′ = Φ(x, y) = xy + 1. Thus we are seeking a fixed point of the
map

Tf(x) =

∫ x

0
1 + tf(t) dt for f ∈ C[−b, b].

When b = 1, we compute for f, g ∈ C[−1, 1]

|Tf(x)− Tg(x)| =
∣∣∣∣∫ x

0
1 + tf(t) dt−

∫ x

0
1 + tg(t) dt

∣∣∣∣ ≤ ∣∣∣∣∫ x

0
t|f(t)− tg(t)| dt

∣∣∣∣
≤
∣∣∣∣∫ x

0
t‖f − g‖∞ dt

∣∣∣∣ =
x2

2
‖f − g‖∞.

Therefore ‖Tf − Tg‖∞ = sup|x|≤1 |Tf(x) − Tg(x)| ≤ 1
2‖f − g‖∞. Thus T is a contraction

mapping.

(b) This is a linear DE, and therefore satisfies a global Lipschitz condition on [−b, b] × R.
(Alternatively, since ∂

∂yΦ(x, y) = x is bounded by b on [−b, b]×R, this DE satisfies a global

Lipschitz condition with constant b.) Therefore by the Global Picard Theorem, it has a
unique solution fb on [−b, b]. This is true for any value of b, and by uniqueness, we must
have fc|[−b,b] = fb if b < c. Thus defining f(x) = fb(x) for any |x| ≤ b uniquely defines the
solution on R.

(c) Compute the first few terms: f0 = 1, f1(x) = Tf0(x) =
∫ x
0 1 + t dt = x + 1

2x
2,

f2(x) =
∫ x
0 1+t(t+t2/2) dt = x+ 1

3x
3+ 1

2·4x
4, f3(x) =

∫ x
0 1+t(t+t3/3+t4/8) dt = x+ 1

3x
3+

1
3·5x

5 + 1
2·4·6x

6. We claim that the general pattern is: fn(x) =
∑n

k=1 a2k−1x
2k−1 + a2nx

2n

where a2k−1 = 1
1·3·5····(2k−1) and a2n = 1

2·4·····(2n) . We will verify this by induction. The

calculations above verify it for n = 0, 1, 2, 3. Assume that it is valid for n− 1. Then

fn(x) = Tfn−1(x) =

∫ x

0
1 + t

( n−1∑
k=1

a2k−1t
2k−1 + a2n−2t

2n
)
dt

= x +
n−1∑
k=1

a2k−1

∫ x

0
t2k dt + a2n−2

∫ x

0
t2n−1 dt

= x +

n−1∑
k=1

a2k−1
1

2k + 1
x2k+1 + a2n−2

1

2n
x2n =

n∑
k=1

a2k−1x
2k−1 + a2nx

2n

The radius of convergence of series f(x) =
∑∞

k=1 a2k−1x
2k−1 can be computed by the ratio

test:

lim
n→∞

|a2k+1x
2k+1|

|a2k−1x2k−1|
= lim

k→∞

x2

2k + 1
= 0.

This shows that the radius of convergence is∞ and the series converges uniformly on [−b, b]
for any b > 0. The annoying extra term a2nx

2n is bounded by sup|x|≤b |a2nx2n| = a2nb
2n on

[−b, b], and again by the ratio test lim
n→∞

a2n+2b
2n+2

a2nb2n
= lim

n→∞

b2

2n + 2
= 0. Hence this term

converges uniformly to 0 on [−b, b]. We conclude that fn(x) converges uniformly on [−b, b]
to f(x) =

∑∞
k=1 a2k−1x

2k−1 for every b > 0.
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2. (a) It is easy to check that if f(x) = x, then f ′′ − x−1f ′ + x−2f = 0 − x−1 + x−2x = 0. Now
substitute f(x) = xg(x) into the DE to get

0 = (xg)′′ − x−1(xg)′ + x−2(xg) = 2g′ + xg′′ − x−1(g + xg′) + x−1g = xg′′ + g′.

Hence
g′′

g′
= −1

x
. Integrating yields log g′(x) = − log x + a, whence g′(x) =

b

x
. Thus

g(x) = b log x + c. We obtain the solutions f(x) = bx log x + cx.

(b) The set of solutions is V = span{x, x log x}, which is a 2-dimensional vector subspace of
C[1, 3] because x and x log x are linearly independent.

(c) Note that if f = bx log x + cx is a function in V , then

Af :=

[
f(1)
f ′(1)

]
= b

[
0
1

]
+ c

[
1
0

]
=

[
c
b

]
.

This is a bijection from V onto R2, and shows that every set of initial values is obtained.

Remark: The DE is linear, and thus satisfies a global Lipshitz condition. So there is a
unique solution for each set of initial values. Our set V of solutions contains a solution for
each pair of initial values. Therefore we have found the complete set of solutions.

3. (a) We have y′ = Φ(x, y) where Φ(x, y) = 4xy − 4x2 − y2 + 2 and y(0) = 0. Since Φ is C1,
it satisfies a local Lipschitz condition on [−b, b] × [−R,R] for b, R > 0. Thus by the Local
Picard Theorem, there is a local solution.

(b) Substitute f(x) = g(x) + 2x into the DE. We obtain

g′ + 2 = f ′ = 4xf − 4x2 − f2 + 2

= 4xg + 8x2 − 4x2 − (g2 + 4xg + 4x2) + 2 = −g2 + 2.

Therefore g′ = −g2 and g(0) = 2. Integrating −g−2g′ = 1 on [0, x] yields

x =

∫ x

0
1 dt =

∫ x

0
−g−2(t)g′(t) dt = g−1

∣∣∣x
0

=
1

g(x)
− 1

2
.

Therefore g(x) =
2

2x + 1
. Hence f(x) = 2x +

2

2x + 1
.

(c) The local Picard Theorem only yields a solution on some small interval around x = 0. But
the Continuation Theorem shows that the solution continues until it goes off to infinity. In
this case, we can see that the maximal solution is valid in (−0.5,∞).

Remark: the solution does not continue to (−∞, 0.5). The reason is that there are many
solutions, depending on initial values, say at x = −1. Any of these solutions would be valid,
as the initial value at x = 0 does not affect what happens here.

4. The DE is y′ = Φ(x, y) = sin

(
x5 + 3x2 − 1√

219− 2y2

)
and y(2) = 3. Observe that |y′(x)| ≤ 1, and

therefore if there is a solution on [−5, 9] = [2 − 7, 2 + 7] with y(2) = 3, then by the MVT,
|y(x)− y(2)|
|x− 2|

≤ 1; and thus |y(x)| ≤ 3 + |x−2| ≤ 10. On the set D = [−5, 9]× [−10, 10], we have

∂

∂y
Φ(x, y) = cos

(
x5 + 3x2 − 1√

219− 2y2

)
(x5 + 3x2 − 1)(−2y)

(219− 2y2)3/2
.
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Thus since |y| ≤ 10, we obtain∣∣∣∣ ∂∂yΦ(x, y)

∣∣∣∣ ≤ 20√
19

sup
x∈[−5,9]

|x5 + 3x2 − 1| < 3 · 105.

Therefore the function Φ is Lipschitz on D. So now we may apply the Local Picard Theorem and
the Continuation Theorem to obtain a solution on the largest interval which keeps the solution
inside D. As we have observed that |y| ≤ 10, the solution cannot leave D before reaching the
endpoints −5 and 9. Therefore there is a solution on the whole interval.

5. (a) If f(x) = 1−
√

1− x2 on [−1, 1], then f ′(x) =
x√

1− x2
and therefore f(0) = f ′(0) = 0 and

f ′′(x) =
1

(1− x2)3/2
=
(

1 +
x2

1− x2

)3/2
= (1 + (f ′(x))2)3/2.

The DE is C1 and thuse there is a local Lipschitz condition. Hence the solution in unique.

(b) To put this into the context of the Continuation Theorem, we must consider it as a first
order vector valued DE. We set

F (x) =

[
f0(x)
f1(x)

]
and F ′(x) =

[
f1(x)

(1 + (f1(x))2)3/2

]
and F (0) =

[
0
0

]
.

The solution is F (x) =

[
1−
√

1− x2

x(1− x2)−1/2

]
. Because the derivative f ′(x) blows up at x = ±1,

we do have lim
x→±1

‖F (x)‖ =∞. So the conclusion of the Continuation Theorem is satisfied.

6. (a) In standard form y′ = Φ(x, y) =
y2 − 1

xy
. Then

∂

∂y
Φ(x, y) =

2yxy − (y2 − 1)x

x2y2
=

1

x
+

1

xy2
.

If both x ≥ ε > 0 and y ≥ ε > 0, then
∣∣∣ ∂∂yΦ(x, y)

∣∣∣ ≤ ε−1 + ε−3; and therefore there is a

local Lipschitz condition in the open first quadrant.

(b) By separation of variables, we have
yy′

y2 − 1
=

1

x
. Integrating, we obtain∫

y

y2 − 1
y′dx =

1

2
log |y2 − 1| =

∫
1

x
dx = log x + c.

Thus y2 = 1+cx2, or y =
√

1 + cx2 since y > 0. The initial value y(1) = a yields c = a2−1;

whence y =
√

1 + (a2 − 1)x2. If a ≥ 1, the function is defined on (0,∞); while if 0 < a < 1,

then the solution hits the x-axis at x = (1 − a2)−1/2. At this point, we have y′(x) = −∞.
So the solution stops there. (Indeed when a > 1, so c > 0, this curve y2 − cx2 = 1 is a
hyperbola, and when 0 < a < 1, we have c < 0 and the curve is y2 + |c|x2 = 1, which is an
ellipse with a vertical tangent where it hits the x-axis.)

(c) Note lim
x→0+

y(x) = lim
x→0+

√
1 + (a2 − 1)x2 = 1 and lim

x→0+
y′(x) = lim

x→0+

(a2 − 1)x√
1 + (a2 − 1)x2

= 0.

Thus all solutions pass through (0, 1) with slope 0. Formally all of these solutions continue
into the second quadrant by symmetry. However we can pass from one solution in the first
quadrant to some different solution in the second quadrant. Because of the limits above,
any such continuation will be C1 because the functions and their derivatives are continuous
at x = 0. This does not contradict our theory because there is no Lipschitz condition valid

in a neighbourhood of x = 0 since Φ(x, y) =
y2 − 1

xy
is not even defined at x = 0.


