PM 450

Assignment 6

Due Wednesday March 29.

- 1. (a) Using $f(\theta) = \theta^3 \pi^2 \theta$ from Assignment 2, Q3, evaluate $\sum_{n=1}^{\infty} \frac{1}{n^6}$. (b) Integrate f and use it to evaluate $\sum_{n=1}^{\infty} \frac{1}{n^8}$.
- 2. Prove that $\{1, \sqrt{2} \cos n\theta : n \ge 1\}$ is an orthonormal basis for $L^2(0, \pi)$ with the inner product

$$\langle f,g\rangle = \frac{1}{\pi} \int_{(0,\pi)} f\overline{g}.$$

- 3. Let $a \in \mathbb{R} \setminus \mathbb{Z}$. Let $f(\theta) = e^{ia\theta}$ for $\theta \in (-\pi, \pi]$. Evaluate $||f||_2^2$ in two ways and deduce that $\sum_{n=-\infty}^{\infty} \frac{1}{(a-n)^2} = \frac{\pi^2}{\sin^2 a\pi}.$
- 4. (a) Show that if f is a 2π -periodic C^1 function and $\hat{f}(0) = 0$, then $||f||_2 \le ||f'||_2$.
 - (b) Show that if f is a 2π -periodic C^2 function, then $||f'||_2^2 \leq ||f||_2 ||f''||_2$.
- 5. Let $1 \le p < \infty$ and suppose that $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Prove that if $f, f_n \in L^p(X)$ and $g \in L^q(X)$ and $\lim_{n \to \infty} ||f f_n||_p = 0$, then

$$\lim_{n \to \infty} \int_X f_n g = \int_X f g.$$

(b) Show that if $f \in L^p(\mathbb{T})$ and $g \in L^q(\mathbb{T})$, then

$$\frac{1}{2\pi} \int_{\mathbb{T}} fg = \lim_{n \to \infty} \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n+1} \right) \hat{f}(k) \hat{g}(-k).$$

6. Let $1 \le p < \infty$ and suppose that $\frac{1}{p} + \frac{1}{q} = 1$. Let $f \in L^p(\mathbb{T})$ and $g \in L^q(\mathbb{T})$. Prove that $\lim_{n \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta)g(n\theta) \, d\theta = \hat{f}(0)\hat{g}(0).$

Hint: prove it first when f is a trigonometric polynomial.

- 7. Fix $1 \le p < \infty$. Define a linear map $S_{p,n} : L^p(\mathbb{T}) \to L^p(\mathbb{T})$ given by $S_{p,n}f = s_n(f) = f * D_n$.
 - (a) Prove that the following statements are equivalent:
 - (1) $\sup_{n\geq 1} \|S_{p,n}\| < \infty.$
 - (2) $\sup_{n>1} \|S_{p,n}(f)\|_p < \infty$ for every $f \in L^p(\mathbb{T})$.
 - (3) $S_{p,n}f$ converges to f in the $L^p(\mathbb{T})$ norm for every $f \in L^p(\mathbb{T})$.
 - (b) Show that $||S_{1,n}|| = ||D_n||_1$. Hence show that there is a function $f \in L^1$ such that $s_n(f)$ diverges. **Hint:** look at $S_{1,n}(K_m)$ as $m \to \infty$.