PM 450

Assignment 5

- 1. (a) Prove that if $f_n \ge 0$ are measurable functions on X, then $\int \liminf f_n \le \liminf \int f_n$.
 - (b) Suppose that $f_n \ge 0$ are measurable functions on X and $f_n \to f$ a.e. Moreover suppose that $\lim_{n\to\infty} \int f_n = \int f < \infty$. Prove that for every measurable $E \subset X$, $\lim_{n\to\infty} \int_E f_n = \int_E f$.
 - (c) Construct an example to show that the previous result can fail if $\int f = \infty$.
- 2. Evaluate the following limits and justify your argument with appropriate convergence theorems.

(a)
$$\lim_{n \to \infty} \int_0^\infty \frac{1 + nx^2}{(1 + x^2)^n} dx$$
 (b) $\lim_{n \to \infty} \int_0^\infty \frac{n \sin(x/n)}{x(1 + x^2)} dx$

- 3. Suppose that $f_n \to f$ a.e. and $g_n \to g$ a.e. are all integrable functions and $|f_n| \leq g_n$ for $n \geq 1$. Suppose $\lim_{n \to \infty} \int g_n = \int g$. Prove that $\lim_{n \to \infty} \int f_n = \int f$. **Hint:** rework the proof of LDCT.
- 4. (a) Show that the improper Riemann-integrable function $f(x) = \frac{\sin x}{x}$ for $x \ge 0$ is not Lebesgue integrable on $[0, \infty)$.
 - (b) Show that if f is a bounded Lebesgue integrable function on $[0, \infty)$ and is also improper Riemann integrable, then the two integrals agree.
- 5. Suppose that $f, f_n \in L^p$ for some $1 \le p < \infty$ and $f_n \to f$ a.e. and $||f_n||_p \to ||f||_p$. Prove that f_n converges to f in the L^p norm.
- 6. Let $1 \le p < r \le \infty$.
 - (a) Suppose that $X \subset \mathbb{R}$ is measurable, and $m(X) < \infty$. Prove that $L^r(X) \subset L^p(X)$. **Hint:** for f measurable on X, show that $||f||_p \leq ||f||_r m(X)^{\frac{1}{p} - \frac{1}{r}}$.
 - (b) Find a function f so that $f \in L^q((0,\infty))$ if and only if $p < q \leq r$. Hint: consider combinations of functions of the form $f(x) = x^{-a} |\log x|^{-b}$ on various domains.
- 7. Let $A_n = \{x \in [0,1] : x = (0.x_1x_2...)_{\text{base 2}} \text{ and } x_n = 0\}$ for $n \ge 1$. Prove that $\lim_{n \to \infty} \int_{A_n} f = \frac{1}{2} \int_{[0,1]} f$ for all integrable functions on [0,1]. **Hint:** first prove it for step functions with jumps at diadic rationals.