1. (a) Prove that if $f_{n} \geq 0$ are measurable functions on X, then $\int \liminf f_{n} \leq \liminf \int f_{n}$.
(b) Suppose that $f_{n} \geq 0$ are measurable functions on X and $f_{n} \rightarrow f$ a.e. Moreover suppose that $\lim _{n \rightarrow \infty} \int f_{n}=\int f<\infty$. Prove that for every measurable $E \subset X, \lim _{n \rightarrow \infty} \int_{E} f_{n}=\int_{E} f$.
(c) Construct an example to show that the previous result can fail if $\int f=\infty$.
2. Evaluate the following limits and justify your argument with appropriate convergence theorems.
(a) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}} d x$
(b) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n \sin (x / n)}{x\left(1+x^{2}\right)} d x$
3. Suppose that $f_{n} \rightarrow f$ a.e. and $g_{n} \rightarrow g$ a.e. are all integrable functions and $\left|f_{n}\right| \leq g_{n}$ for $n \geq 1$. Suppose $\lim _{n \rightarrow \infty} \int g_{n}=\int g$. Prove that $\lim _{n \rightarrow \infty} \int f_{n}=\int f$. Hint: rework the proof of LDCT.
4. (a) Show that the improper Riemann-integrable function $f(x)=\frac{\sin x}{x}$ for $x \geq 0$ is not Lebesgue integrable on $[0, \infty)$.
(b) Show that if f is a bounded Lebesgue integrable function on $[0, \infty)$ and is also improper Riemann integrable, then the two integrals agree.
5. Suppose that $f, f_{n} \in L^{p}$ for some $1 \leq p<\infty$ and $f_{n} \rightarrow f$ a.e. and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$. Prove that f_{n} converges to f in the L^{p} norm.
6. Let $1 \leq p<r \leq \infty$.
(a) Suppose that $X \subset \mathbb{R}$ is measurable, and $m(X)<\infty$. Prove that $L^{r}(X) \subset L^{p}(X)$.

Hint: for f measurable on X, show that $\|f\|_{p} \leq\|f\|_{r} m(X)^{\frac{1}{p}-\frac{1}{r}}$.
(b) Find a function f so that $f \in L^{q}((0, \infty))$ if and only if $p<q \leq r$. Hint: consider combinations of functions of the form $f(x)=x^{-a}|\log x|^{-b}$ on various domains.
7. Let $A_{n}=\left\{x \in[0,1]: x=\left(0 . x_{1} x_{2} \ldots\right)_{\text {base } 2}\right.$ and $\left.x_{n}=0\right\}$ for $n \geq 1$.

Prove that $\lim _{n \rightarrow \infty} \int_{A_{n}} f=\frac{1}{2} \int_{[0,1]} f$ for all integrable functions on $[0,1]$.
Hint: first prove it for step functions with jumps at diadic rationals.

