1. Define $V_{n}(\theta)=\sum_{k=-n-1}^{n+1} e^{i k \theta}+\sum_{k=n+2}^{2 n+1} \frac{2 n+2-k}{n+1}\left(e^{i k \theta}+e^{-i k \theta}\right)$.
(a) Prove that $V_{n}(\theta)=2 K_{2 n+1}(\theta)-K_{n}(\theta)$ (where K_{n} is the Féjer kernel).
(b) Hence prove that V_{n} is an even summability kernel.
2. Let $f(\theta)=\theta^{3}-\pi^{2} \theta$ on $[-\pi, \pi]$.
(a) Compute the Fourier series for f.
(b) What can be said about the convergence of this series?
(c) Evaluate at $\theta=\pi / 2$ to evaluate $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}$.
3. Let $f(\theta)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq|\theta| \leq \frac{2 \pi}{3} \\ 0 & \text { if } & \frac{2 \pi}{3} \leq|\theta| \leq \pi\end{array}\right.$.
(a) Compute the Fourier series for f.
(b) What can be said about the convergence of this series?
(c) Evaluate at $\theta=0$ and hence compute $\sum_{n=0}^{\infty} \frac{1}{(3 n+1)(3 n+2)}$.
4. For $f \in \operatorname{RI}(\mathbb{T})$, and define the translation of f by t be $f_{t}(\theta)=f(\theta-t)$.
(a) Prove that $\lim _{t \rightarrow 0}\left\|f-f_{t}\right\|_{2}=0$. Hint: First prove it for $g \in \mathrm{C}(\mathbb{T})$, and then approximate f by continuous functions in the L^{2} norm.
(b) Prove that if $f, g \in \operatorname{RI}(\mathbb{T})$, then $f * g$ is continuous. Hint: Cauchy-Schwarz inequality for the L^{2} inner product.
5. Let $p(\theta)=\sum_{k=-n}^{n} a_{k} e^{i k \theta}$ be a trig polynomial of degree n.
(a) Compute the Fourier series of $g_{n}(\theta)=-2 n K_{n-1}(\theta) \sin (n \theta)$.
(b) Hence obtain a formula for $p^{\prime}(\theta)$ as a convolution.
(c) Prove that $\left\|p^{\prime}\right\|_{\infty} \leq 2 n\|p\|_{\infty}$.
6. Suppose that $f(\theta)$ is a monotone increasing real valued function on $[-\pi, \pi]$.
(a) Show that if $\left\{k_{n}\right\}$ is an even summability kernel, then $f * k_{n}$ converges pointwise, and find the limit.
(b) Prove that $|\hat{f}(n)| \leq C /|n|$ for $n \neq 0$.

Hint: WLOG $f(-\pi)=0$ (why?). Prove it first when f is a (monotone) step function by integrating over each interval and rearranging the sum. Then approximate a general monotone f.
(c) Hence show that the Fourier series of f converges at every point in $[-\pi, \pi]$.

