PM 450

1. Define
$$V_n(\theta) = \sum_{k=-n-1}^{n+1} e^{ik\theta} + \sum_{k=n+2}^{2n+1} \frac{2n+2-k}{n+1} \left(e^{ik\theta} + e^{-ik\theta} \right).$$

(a) Prove that $V_n(\theta) = 2K_{2n+1}(\theta) - K_n(\theta)$ (where K_n is the Féjer kernel).

- (b) Hence prove that V_n is an even summability kernel.
- 2. Let $f(\theta) = \theta^3 \pi^2 \theta$ on $[-\pi, \pi]$.
 - (a) Compute the Fourier series for f.
 - (b) What can be said about the convergence of this series?

(c) Evaluate at
$$\theta = \pi/2$$
 to evaluate $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}$.

- 3. Let $f(\theta) = \begin{cases} 1 & \text{if } 0 \le |\theta| \le \frac{2\pi}{3} \\ 0 & \text{if } \frac{2\pi}{3} \le |\theta| \le \pi \end{cases}$
 - (a) Compute the Fourier series for f.
 - (b) What can be said about the convergence of this series?

(c) Evaluate at
$$\theta = 0$$
 and hence compute $\sum_{n=0}^{\infty} \frac{1}{(3n+1)(3n+2)}$.

- 4. For $f \in \operatorname{RI}(\mathbb{T})$, and define the translation of f by t be $f_t(\theta) = f(\theta t)$.
 - (a) Prove that $\lim_{t\to 0} ||f f_t||_2 = 0$. **Hint:** First prove it for $g \in C(\mathbb{T})$, and then approximate f by continuous functions in the L^2 norm.
 - (b) Prove that if $f, g \in RI(\mathbb{T})$, then f * g is continuous. **Hint:** Cauchy-Schwarz inequality for the L^2 inner product.
- 5. Let $p(\theta) = \sum_{k=-n}^{n} a_k e^{ik\theta}$ be a trig polynomial of degree n.
 - (a) Compute the Fourier series of $g_n(\theta) = -2nK_{n-1}(\theta)\sin(n\theta)$.
 - (b) Hence obtain a formula for $p'(\theta)$ as a convolution.
 - (c) Prove that $||p'||_{\infty} \leq 2n ||p||_{\infty}$.
- 6. Suppose that $f(\theta)$ is a monotone increasing real valued function on $[-\pi, \pi]$.
 - (a) Show that if $\{k_n\}$ is an even summability kernel, then $f * k_n$ converges pointwise, and find the limit.
 - (b) Prove that |f(n)| ≤ C/|n| for n ≠ 0.
 Hint: WLOG f(-π) = 0 (why?). Prove it first when f is a (monotone) step function by integrating over each interval and rearranging the sum. Then approximate a general monotone f.
 - (c) Hence show that the Fourier series of f converges at every point in $[-\pi, \pi]$.