PM 450

Assignment 2

Due Wednesday February 1.

- 1. Convert the Laplacian $\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}$ to Cartesion coordinates. **Hint:** Compute u_r , u_{rr} , u_{θ} and $u_{\theta\theta}$ in terms of partials w.r.t. x and y.
- 2. Let $f(\theta) = \theta$ for $-\pi < \theta \le \pi$.
 - (a) Compute the Fourier series of f, and convert it to a sum of sines and cosines.
 - (b) Does this series converge uniformly on $[-\pi, \pi]$?
 - (c) Evaluate $\lim_{r \to 1^-} u(r, \pi)$.
- 3. Prove that if $\{A_n\}_{n\in\mathbb{Z}}$ is a bounded sequence, then $u(r,\theta) = \sum_{n\in\mathbb{Z}} A_n r^{|n|} e^{in\theta}$ is C^{∞} on the open disc \mathbb{D} , i.e. show that all partial derivatives $\frac{\partial^{j+k}}{\partial r^j \partial \theta^k} u$ exist and are continuous.
- 4. Show that every Riemann integrable function f on \mathbb{T} is a limit of continuous functions in the $L^2(\mathbb{T})$ norm. **Hint:** Assume that f is real valued first. Find a partition for which the upper and lower Riemann sums of $||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta$ are close. Use this partition to define a continuous function g that fits within the same upper and lower bounds. Estimate $||f g||_2^2$.
- 5. Let f be a positive Riemann integrable 2π -periodic function with harmonic extension $u(r, \theta)$. (a) Prove that $u(r, \theta) \ge 0$.
 - (b) Prove that $\frac{1-r}{1+r} \le P(r,\theta) \le \frac{1+r}{1-r}$.
 - (c) Hence prove that $\left(\frac{1-r}{1+r}\right)u(0,0) \le u(r,\theta) \le \left(\frac{1+r}{1-r}\right)u(0,0).$
- 6. (a) Prove that $\frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, \theta t) P(s, t) dt = P(rs, \theta)$. **Hint:** Use the series expansion of the Poisson kernel. Be careful about convergence issues.
 - (b) Let $f(\theta)$ be a Riemann integrable 2π -periodic function, and let $u(r,\theta)$ be its harmonic extension. Fix $s \in (0,1)$, and define $g(\theta) = u(s,\theta)$. Prove that the harmonic extension of g is $u(rs,\theta)$.
- 7. Say that a 2π -periodic function f is in $C^k(\mathbb{T})$ if f has derivatives up to order k and all are continuous and 2π -periodic.
 - (a) Show if $f \in C^1(\mathbb{T})$, then $|\hat{f}(n)| \leq C/|n|$ for some constant C. **Hint:** Integrate by parts.
 - (b) Show by induction that if $f \in C^k(\mathbb{T})$, then $|\hat{f}(n)| \leq Cn^{-k}$ for some constant C.
 - (c) In particular, if $f \in C^2(\mathbb{T})$, show that the Fourier series for f converges uniformly on \mathbb{T} to a continuous function.
 - (d) Conversely show that if $f \in C(\mathbb{T})$ satisfies $|\hat{f}(n)| \leq Cn^{-k}$ for an integer $k \geq 2$, then $f \in C^{k-2}(\mathbb{T})$. **Hint:** Term-by-term differentiation and the *M*-test.
 - (e) Hence give necessary and sufficient conditions on \hat{f} for f to be in $C^{\infty}(\mathbb{T})$.