1. Convert the Laplacian $\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}$ to Cartesion coordinates.

Hint: Compute $u_{r}, u_{r r}, u_{\theta}$ and $u_{\theta \theta}$ in terms of partials w.r.t. x and y.
2. Let $f(\theta)=\theta$ for $-\pi<\theta \leq \pi$.
(a) Compute the Fourier series of f, and convert it to a sum of sines and cosines.
(b) Does this series converge uniformly on $[-\pi, \pi]$?
(c) Evaluate $\lim _{r \rightarrow 1^{-}} u(r, \pi)$.
3. Prove that if $\left\{A_{n}\right\}_{n \in \mathbb{Z}}$ is a bounded sequence, then $u(r, \theta)=\sum_{n \in \mathbb{Z}} A_{n} r^{|n|} e^{i n \theta}$ is C^{∞} on the open disc \mathbb{D}, i.e. show that all partial derivatives $\frac{\partial^{j+k}}{\partial r^{j} \partial \theta^{k}} u$ exist and are continuous.
4. Show that every Riemann integrable function f on \mathbb{T} is a limit of continuous functions in the $L^{2}(\mathbb{T})$ norm. Hint: Assume that f is real valued first. Find a partition for which the upper and lower Riemann sums of $\|f\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\theta)|^{2} d \theta$ are close. Use this partitition to define a continuous function g that fits within the same upper and lower bounds. Estimate $\|f-g\|_{2}^{2}$.
5. Let f be a positive Riemann integrable 2π-periodic function with harmonic extension $u(r, \theta)$.
(a) Prove that $u(r, \theta) \geq 0$.
(b) Prove that $\frac{1-r}{1+r} \leq P(r, \theta) \leq \frac{1+r}{1-r}$.
(c) Hence prove that $\left(\frac{1-r}{1+r}\right) u(0,0) \leq u(r, \theta) \leq\left(\frac{1+r}{1-r}\right) u(0,0)$.
6. (a) Prove that $\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(r, \theta-t) P(s, t) d t=P(r s, \theta)$.

Hint: Use the series expansion of the Poisson kernel. Be careful about convergence issues.
(b) Let $f(\theta)$ be a Riemann integrable 2π-periodic function, and let $u(r, \theta)$ be its harmonic extension. Fix $s \in(0,1)$, and define $g(\theta)=u(s, \theta)$. Prove that the harmonic extension of g is $u(r s, \theta)$.
7. Say that a 2π-periodic function f is in $C^{k}(\mathbb{T})$ if f has derivatives up to order k and all are continuous and 2π-periodic.
(a) Show if $f \in C^{1}(\mathbb{T})$, then $|\hat{f}(n)| \leq C /|n|$ for some constant C. Hint: Integrate by parts.
(b) Show by induction that if $f \in C^{k}(\mathbb{T})$, then $|\hat{f}(n)| \leq C n^{-k}$ for some constant C.
(c) In particular, if $f \in C^{2}(\mathbb{T})$, show that the Fourier series for f converges uniformly on \mathbb{T} to a continuous function.
(d) Conversely show that if $f \in C(\mathbb{T})$ satisfies $|\hat{f}(n)| \leq C n^{-k}$ for an integer $k \geq 2$, then $f \in C^{k-2}(\mathbb{T})$. Hint: Term-by-term differentiation and the M-test.
(e) Hence give necessary and sufficient conditions on \hat{f} for f to be in $C^{\infty}(\mathbb{T})$.

