- 1. Consider the DE: y' = 1 + xy and y(0) = 0 for $x \in [-b, b]$, where b > 0.
 - (a) Reduce this to finding the fixed point of a mapping T. Show that when b = 1, the map T is a contraction mapping.
 - (b) Prove that the DE has a unique solution on [-b, b] for any b > 0. Hence deduce that there is a unique solution on the whole line \mathbb{R} .
 - (c) Start with $f_0(x) = 1$ and compute $f_n(x) = T^n f_0$ by induction. Prove directly (rather than by quoting a theorem) that the sequence f_n converges uniformly on [-b, b].
- 2. Consider the DE $y'' x^{-1}y' + x^{-2}y = 0$ for $x \in [1, 3]$.
 - (a) Check that y = x is a solution. Look for a solution of the form f(x) = xg(x) by showing that g' satisfies a 1st order DE, and solving it.
 - (b) Show that the set of solutions that you obtain is a 2-dimensional vector space.
 - (c) Show that the initial value conditions $y(1) = a_0$ and $y'(1) = a_1$ determine a unique solution from this set.
- 3. Consider $f'(x) + f(x)^2 = 4xf(x) 4x^2 + 2$ for $x \in \mathbb{R}$ and f(0) = 2.
 - (a) Show that this DE satisfies a local Lipschitz condition on some smaller region around x = 0; and hence deduce that there is a local solution.
 - (b) Solve this DE explicitly. **Hint:** Find the DE satisfied by g(x) = f(x) 2x and solve it first.
 - (c) Hence find the maximal continuation of the solution.
- 4. Consider $y' = \sin\left(\frac{x^5 + 3x^2 1}{\sqrt{219 2y^2}}\right)$ and y(2) = 3. Prove that there is a unique solution on [-5, 9].

Hint: Show that a solution must satisfy $|y| \leq 10$. Obtain a Lipschitz condition valid in this range.

- 5. Consider the DE: $y'' = (1 + (y')^2)^{3/2}$ and y(0) = 0, y'(0) = 0.
 - (a) Show that $f(x) = 1 \sqrt{1 x^2}$ is the unique solution on [-1, 1].
 - (b) This solution does not continue further, yet $|f(x)| \leq 1$. Why does this not contradict the Continuation Theorem?
- 6. Consider the DE: $xyy' = y^2 1$ and y(1) = a > 0.
 - (a) Show that this DE satisfies a local Lipschitz condition in y as long as x, y are both positive.
 - (b) Solve the DE and find the largest interval on which a solution exists.
 - (c) Observe that all solutions pass through (0, 1) with the same slope. What happens when the solution is continued through this point into the second quadrant? Is this a problem for the theory?