1. Consider the DE: $y^{\prime}=1+x y$ and $y(0)=0$ for $x \in[-b, b]$, where $b>0$.
(a) Reduce this to finding the fixed point of a mapping T. Show that when $b=1$, the map T is a contraction mapping.
(b) Prove that the DE has a unique solution on $[-b, b]$ for any $b>0$. Hence deduce that there is a unique solution on the whole line \mathbb{R}.
(c) Start with $f_{0}(x)=1$ and compute $f_{n}(x)=T^{n} f_{0}$ by induction. Prove directly (rather than by quoting a theorem) that the sequence f_{n} converges uniformly on $[-b, b]$.
2. Consider the DE $y^{\prime \prime}-x^{-1} y^{\prime}+x^{-2} y=0$ for $x \in[1,3]$.
(a) Check that $y=x$ is a solution. Look for a solution of the form $f(x)=x g(x)$ by showing that g^{\prime} satisfies a 1 st order DE , and solving it.
(b) Show that the set of solutions that you obtain is a 2 -dimensional vector space.
(c) Show that the initial value conditions $y(1)=a_{0}$ and $y^{\prime}(1)=a_{1}$ determine a unique solution from this set.
3. Consider $f^{\prime}(x)+f(x)^{2}=4 x f(x)-4 x^{2}+2$ for $x \in \mathbb{R}$ and $f(0)=2$.
(a) Show that this DE satisfies a local Lipschitz condition on some smaller region around $x=0$; and hence deduce that there is a local solution.
(b) Solve this DE explicitly. Hint: Find the DE satisfied by $g(x)=f(x)-2 x$ and solve it first.
(c) Hence find the maximal continuation of the solution.
4. Consider $y^{\prime}=\sin \left(\frac{x^{5}+3 x^{2}-1}{\sqrt{219-2 y^{2}}}\right)$ and $y(2)=3$. Prove that there is a unique solution on $[-5,9]$.
Hint: Show that a solution must satisfy $|y| \leq 10$. Obtain a Lipschitz condition valid in this range.
5. Consider the DE: $y^{\prime \prime}=\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}$ and $y(0)=0, y^{\prime}(0)=0$.
(a) Show that $f(x)=1-\sqrt{1-x^{2}}$ is the unique solution on $[-1,1]$.
(b) This solution does not continue further, yet $|f(x)| \leq 1$. Why does this not contradict the Continuation Theorem?
6. Consider the DE: $x y y^{\prime}=y^{2}-1$ and $y(1)=a>0$.
(a) Show that this DE satisfies a local Lipschitz condition in y as long as x, y are both positive.
(b) Solve the DE and find the largest interval on which a solution exists.
(c) Observe that all solutions pass through $(0,1)$ with the same slope. What happens when the solution is continued through this point into the second quadrant? Is this a problem for the theory?
