
1. Abel’s Theorem

The purpose of this section is to demonstrate that when a power series converges
at some point on the boundary of the disk of convergence, then the sum equals the
limit of the function along the radius approaching the point. Because convergence
at the boundary may be conditional, this is a subtle fact.

First we need a new convergence test. The proof utilizes a rearrangement tech-
nique called summation by parts, which is analogous to integration by parts.

Lemma 1.1 (Summation by Parts Lemma). Suppose (xn) and (yn) are sequences
of complex numbers and define Xn =

∑n
k=1 xk and Yn =

∑n
k=1 yk. Then

m∑
n=1

xnYn +
m∑

n=1

Xnyn+1 = XmYm+1.

Proof. The argument is essentially an exercise in reindexing summations. Let
X0 = 0 and notice that the left-hand side (LHS) equals

LHS =
m∑

n=1

(Xn −Xn−1)Yn +
m∑

n=1

Xn(Yn+1 − Yn)

=
m∑

n=1

XnYn −
m∑

n=1

Xn−1Yn +
m∑

n=1

XnYn+1 −
m∑

n=1

XnYn.

= −X0Y1 + XmYm+1 = XmYm+1.

Thus, provided that lim
m→∞

XmYm+1 exists, the two series
∑

xnYn and
∑

Xnyn

either both converge or both diverge.

Theorem 1.2 (Dirichlet’s Test). Suppose that (an)n≥1 is a sequence of complex
numbers with bounded partial sums:∣∣∣ n∑

k=1

ak

∣∣∣ ≤ M < ∞ for all n ≥ 1.

If (bn)n≥1 is a sequence of positive numbers decreasing monotonically to 0, then the
series

∑∞
n=1 anbn converges. Moreover,

∣∣ ∑∞
n=1 anbn

∣∣ ≤ 2Mb1.

Proof. We use the Summation by Parts Lemma to rewrite anbn. Let xn = an for
all n; and set y1 = b1 and yn = bn − bn−1 for n > 1. Define Xn and Yn as in the
lemma. Note that yn < 0 for n > 1, and that there is a telescoping sum

Yn = b1 + (b2 − b1) + · · ·+ (bn − bn−1) = bn.

Hence anbn = xnYn.
Notice that |Xn| =

∣∣ ∑n
k=1 ak

∣∣ ≤ M for all n. Since |XnYn+1| ≤ M |bn+1|, the
Squeeze Theorem shows that lim

n→∞
XnYn+1 = 0. Furthermore,

n∑
k=1

|Xkyk+1| ≤
n∑

k=1

M |yk+1| = M
(
b1 +

n∑
k=1

bk − bk+1

)
= M(2b1 − bn+1) ≤ 2Mb1.
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Thus
∑∞

k=1 Xkyk+1 converges absolutely. Using the Summation by Parts Lemma,
convergence follows from

∞∑
n=1

anbn = lim
m→∞

m∑
n=1

xnYn = lim
m→∞

XmYm −
m∑

n=1

Xnyn+1 = −
∞∑

k=1

Xkyk+1.

Moreover,
∣∣ ∑∞

n=1 anbn

∣∣ ≤ 2Mb1.

Now we apply this to a power series. We first consider a disk around 0 with
radius 1 where the power series also converges at the point z = 1.

Lemma 1.3. Suppose that the power series
∑∞

k=0 akzk has radius of convergence
1, and that

∑∞
k=0 ak converges. Then this series converges uniformly on [0, 1] to a

continuous function f(x).

Proof. Since
∑∞

k=0 ak converges, limk→∞ ak = 0. Hence limk |ak|1/k ≤ 1. So
by Hadamard’s Theorem, the power series

∑∞
k=0 akzk has radius of convergence

at least 1. Let f(x) be the sum of this series for 0 ≤ x ≤ 1. We know that
convergence is uniform on [0, r] for r < 1, but Hadamard’s Theorem does not tell
us about convergence near z = 1.

Since
∑∞

k=0 ak converges, given any ε > 0, there is an integer N so that∣∣∣ ∞∑
k=n+1

ak

∣∣∣ <
ε

4
for all n ≥ N.

Thus we have bounded partial sums∣∣∣ m∑
k=n+1

ak

∣∣∣ =
∣∣∣ ∞∑

k=n+1

ak −
∞∑

k=m+1

ak

∣∣∣ <
ε

2
for all m > n ≥ N.

We make use of the Dirichlet Test. Fix n ≥ N and x ∈ [0, 1). Let bk = xn+k

for k ≥ 1. Since this sequence decreases monotonically to 0, Dirichlet’s Test shows
that

∑∞
k=1 an+kbk converges, say to a function

fn(x) =
∞∑

k=1

an+kbk =
∞∑

k=1

an+kxn+k.

In addition, Dirichlet’s Test provides an estimate for the size of the sum, namely

|fn(x)| ≤ 2
ε

2
b1 ≤ ε.

This estimate is independent of x, so we obtain

sup
0≤x<1

∣∣∣f(x)−
n∑

k=0

akxk
∣∣∣ = sup

0≤x<1
|fn(x)| ≤ ε.

We also have ∣∣∣f(1)−
n∑

k=0

ak

∣∣∣ =
∣∣∣ ∞∑

k=n+1

ak

∣∣∣ <
ε

4
.

This establishes that the power series converges uniformly to f(x) on the whole
interval [0, 1]. In particular, f(x) is continuous.
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Theorem 1.4 (Abel’s Theorem). Let f(z) =
∑∞

k=0 ak(z − z0)k be a power series
with finite radius of convergence R. Suppose that there is a point z1 = z0 + Reiθ

for which
∑∞

k=0 ak(z1 − z0)k converges. Then
∞∑

k=0

ak(z1 − z0)k = lim
r→R−

f(z0 + reiθ).

Proof. Clearly we may assume that z0 = 0. Consider the power series

g(z) =
∞∑

k=0

(akRkeikθ)zk.

This has radius of convergence 1 since

lim sup
k→∞

|akRkeikθ|1/k = R lim sup
k→∞

|ak|1/k = 1.

Also
∑∞

k=0 akRkeikθ converges by hypothesis. Therefore Lemma 1.3 applies. So
g(x) =

∑∞
k=0(akRkeikθ)xk is continuous on [0, 1]. In particular

∞∑
k=0

ak(z1 − z0)k = g(1) = lim
x→1−

g(x) = lim
r→R−

f(z0 + reiθ).

Example 1.5. Consider the power series f(z) =
∞∑

n=1

(−1)n−1

n (z− 1)n. By the ratio

test, this has radius of convergence 1.
Consider convergence on the boundary circle at z = 1+ eiθ. At z = 0, this is the

harmonic series −
∑

n≥1
1
n , which diverges. However at z = 1+eiθ for −π < θ < π,

we will show that the series
∑∞

n=1
(−1)neinθ

n converges. The reason is that the
sequence an = (−1)n−1einθ for n ≥ 1 has bounded partial sums because we have a
geometric series:∣∣∣ n∑

k=1

(−1)k−1eikθ
∣∣∣ =

∣∣∣ (−1)nei(n+1)θ − eiθ

eiθ + 1

∣∣∣ ≤ ∣∣∣ 2
eiθ/2 + e−iθ/2

∣∣∣ = sec θ
2 .

Now the sequence bn = 1
n is positive and monotone decreasing to 0. So Dirichlet’s

Test applies to the series
∑∞

n=1
einθ

n , and we conclude that the power converges at
every point on the boundary circle except z = 1.

If we apply the Term by Term Differentiation Theorem, we obtain that

f ′(z) =
∞∑

n=1

(−1)n−1(z − 1)n−1 =
1

1 + (z − 1)
=

1
z

for |z − 1| < 1.

Consider the analytic function g(z) = f(ez) defined on an open set Ω about 0 which
is mapped by ez one-to one and onto B1(1). By the chain rule, g′(z) = f ′(ez)ez = 1.
Since g(0) = 0, we conclude that g(z) = z. Therefore f is a branch of the logarithm
on B1(1) satisfying f(1) = 0.

Abel’s Theorem tells us that f(z) extends to be a continuous function on the set
B1(1) \ {0}. Some trigonometry shows that 1 + eiθ = 2 cos θeiθ/2. So we obtain

∞∑
n=1

(−1)n−1

n einθ = f(1 + eiθ) = lim
r→1−

f(1 + reiθ) = log(2 cos θ/2) + iθ/2
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for −π < θ < π. In particular, for θ = 0 we obtain

log 2 =
∞∑

n=1

(−1)n−1

n
= 1− 1

2 + 1
3 −

1
4 −

1
5 + . . . .

And for θ = π/2, we split the series into even and odd terms to get

1
2

log 2 + i
π

4
= log(2 cos π/4) + iπ/4 =

∞∑
n=1

(−1)n−1

n
in

=
1
2

∞∑
n=1

(−1)n−1

n
+ i

∞∑
n=0

(−1)n

2n + 1
.

Thus
π

4
=

∞∑
n=0

(−1)n

2n + 1
= 1− 1

3 + 1
5 −

1
7 −

1
9 + . . . .


