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Minimum-Phase Infinite-Dimensional

Second-Order Systems

Birgit Jacob, Kirsten Morris and Carsten Trunk

Abstract

In general, better performance can be achieved with a controlled minimum-phase system than a

controlled non-minimum-phase system. We show that a wide class of second-order infinite-dimensional

systems with either velocity or position measurements are minimum-phase. The results are illustrated

by two examples.

I. INTRODUCTION

There are a number of reasons why the minimum-phase property of a system is useful in

controller design. For example, the sensitivity of a minimum-phase system can be reduced to an

arbitrarily small level [41, e.g.], which implies good output disturbance rejection. On the other

hand, the sensitivity of a non-minimum-phase system has a non-zero lower bound due to the

non-minimum-phase part. A minimum-phase system that has relative degree no higher than two

can be stabilized by high-gain control [25], [52, e.g.]. Furthermore, most adaptive controllers

require the system to be minimum-phase. Thus, controller design for minimum-phase systems

is in general much easier than for non-minimum-phase systems.

As for finite-dimensional systems, it is often desired that the system is minimum-phase. For

instance, results on adaptive control and on high-gain feedback control of infinite-dimensional

systems, see [37], [38], [39], [40], [42, e.g.], require the system to be minimum-phase. Moreover,
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the sensitivity of an infinite-dimensional minimum-phase system can be reduced to an arbitrarily

small level and stabilizing controllers exist that achieve arbitrarily high gain or phase margin

[17].

Due to the importance of the minimum-phase property, it is advantageous to establish condi-

tions under which infinite-dimensional systems are minimum-phase. A stable finite-dimensional

system is minimum-phase or outer if and only if its transfer function has no zeros in the right-

half-plane. Unfortunately, determining the minimum-phase behaviour for infinite-dimensional

systems is less straightforward than for finite-dimensional systems. There are aspects of the

dynamics, besides zeros in the right-half-plane, that can lead to non-minimum-phase behaviour.

For example, the transfer function of a pure delay, exp(−s), has no zeros, but is not minimum-

phase. Also, in general, approximations to a model do not accurately predict the location of the

transfer function zeros, or the system minimum-phase behaviour [9], [36],

There are some results for first-order systems guaranteeing that the transfer function is positive

real [11], [12], [13], [44]. Positive-real systems are closely related to minimum-phase systems.

We show that a stable, positive-real system with finite relative degree is also minimum-phase.

In this paper we will show that several large classes of second-order systems are minimum-

phase. We study second-order systems of the form

z̈(t) + Aoz(t) + Dż(t) = Bou(t), (1)

equipped either with velocity measurements

y(t) = B∗
o ż(t), (2)

or position measurements

y(t) = B∗
oz(t). (3)

These systems have been studied in the literature for more than 20 years. Interest in this particular

model is motivated by various problems such as stabilization, see for example [3], [33], [34], [53],

solvability of the Riccati equations [20], and compensator problems with partial observations

[21]. We will show that with this choice of output, and certain assumptions on the damping

operator, these systems are well-posed and have an outer transfer function. In [60], [56] these

systems have been studied with the damping D = 1
2
B∗

oBo and the output

y(t) = −B∗
o ż(t) + u(t). (4)
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This re-definition of the output is crucial. In one space dimension, the example in [60, Section

7] with output (4) has transfer function exp(−2s), an inner function. With measurements (2) we

obtain the transfer function 1−exp(−2s), an outer function. Note that the velocity measurement

systems do have a positive real transfer function, whereas the position measurement systems do

not have positive real transfer functions, even in the finite-dimensional case.

We proceed as follows. In Section II we introduce the classes of second-order systems

considered in this article. General properties of these systems are shown in Sections III and

IV. The minimum-phase property of these second-order systems is proven in Section V. Several

examples at the end of this paper illustrate our results.

II. SECOND-ORDER SYSTEMS: FRAMEWORK

We study second-order systems of the form (1) with either position measurements (3) or

velocity measurements (2). As in [60], [56], we make the following assumptions throughout this

paper.

(A1) The stiffness operator Ao : D(Ao) ⊂ H → H is a self-adjoint, positive definite linear

operator on a Hilbert space H such that zero is in the resolvent set of Ao. Here D(Ao) denotes

the domain of Ao. Since Ao is self-adjoint and positive definite, Aα
o is well-defined for α ≥ 0. A

scale of Hilbert spaces Hα is defined as follows: For α ≥ 0, we define Hα = D(Aα
o ) equipped

with the norm induced by the inner product

〈x, y〉Hα = 〈Aα
o x, Aα

o y〉H , x, y ∈ Hα

and H−α = H∗
α. Here the duality is taken with respect to the pivot space H , that is, equivalently

H−α is the completion of H with respect to the norm ‖z‖H−α = ‖A−α
o z‖H . Thus Ao extends

(restricts) to Ao : Hα → Hα−1 for α ∈ R. We use the same notation Ao to denote this extension

(restriction).

We denote the inner product on H by 〈·, ·〉H or 〈·, ·〉, and the duality pairing on H−α ×Hα

by 〈·, ·〉H−α×Hα . Note that for (z′, z) ∈ H ×Hα, α > 0, we have

〈z′, z〉H−α×Hα = 〈z′, z〉H .

(A2 i) Let m ∈ N. The control operator Bo is a linear and bounded operator from Cm to

H− 1
2
.
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(A2 ii) The damping operator D : H 1
2
→ H− 1

2
is a bounded operator such that A

−1/2
o DA

−1/2
o

is a bounded self-adjoint non-negative operator on H . This implies that, in particular,

〈Dz, z〉H− 1
2
×H 1

2

≥ 0, z ∈ H 1
2
.

Remark 2.1: If z ∈ H 1
2

with 〈Dz, z〉H− 1
2
×H 1

2

= 0, then Dz = 0. To see this, first note that

since A
−1/2
o DA

−1/2
o is a bounded self-adjoint non-negative operator on H , it has a self-adjoint

non-negative square root, which we call S. It follows that

0 = 〈Dz, z〉H− 1
2
×H 1

2

= 〈A− 1
2

o DA
− 1

2
o A

1
2
o z, A

1
2
o z〉

= 〈SA
1
2
o z, SA

1
2
o z〉

= ‖SA
1
2
o z‖2.

Thus 〈Dz, z〉H− 1
2
×H 1

2

= 0 implies that S2A
1
2
o z = 0. This implies that A

− 1
2

o Dz = 0 and so

Dz = 0.

Moreover we introduce one more assumption which we later need in Section IV and Section V

to show well-posedness of the system (5), (6) below on the state space H 1
2
×H .

(A3) There exists a constant β > 0 such that

〈Dz, z〉H− 1
2
×H 1

2

≥ β‖B∗
oz‖2, z ∈ H 1

2
.

The position control system (1), (3) is equivalent to the following standard first-order equation

ẋ(t) = Ax(t) + Bu(t) (5)

y(t) = Cpx(t) (6)

where A : D(A) ⊂ H 1
2
×H → H 1

2
×H , B : Cm → H 1

2
×H− 1

2
and Cp : H 1

2
×H → Cm are

given by

A =

 0 I

−Ao −D

 , B =

 0

Bo

 , Cp =
[

B∗
o 0

]
,

D(A) =
{

[ z
w ] ∈ H 1

2
×H 1

2
| Aoz + Dw ∈ H

}
.

The velocity control system (1), (2) has the equivalent first-order form (5) and

y(t) = Cvx(t), t ≥ 0, (7)
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where Cv : H 1
2
×H 1

2
→ Cm is given by Cv =

[
0 B∗

o

]
.

We will use the following notations throughout this article. We denote by L(X, Y ) the set of

linear, bounded operators from the Hilbert space X to the Hilbert space Y . We write L(X) for

L(X, X).

We denote by D(S), R(S), N(S), σ(S), and ρ(S) the domain, range, null space, spectrum,

and resolvent set, respectively, of an (unbounded) linear operator S on a Hilbert space X .

For a closed linear operator S on X we need to introduce the following subsets of the spectrum

σ(S). We denote by σc(S) the continuous spectrum, by σr(S) the residual spectrum and by σp(S)

the point spectrum. The approximate point spectrum, σap(S), consists of all λ for which there

is a sequence {xn}n∈N in D(S) such that

‖xn‖ = 1 and ‖(λI − S)xn‖ → 0 as n →∞

(see, for example, [16, page 242] and [47, page 178]). Note that our definition of the approximate

spectrum is different from the definition used in [56]. We point out that the point and continuous

spectrum are subsets of the approximate point spectrum.

The notation H2(C0; X) and H∞(C0; X), where C0 is the open right-half-plane, and X is a

Hilbert space, indicate the Hardy spaces of X-valued functions on C0. If X := C we write for

simplicity H2(C0), and H∞(C0). The Lebesgue space L2(0, t0; X) is the space of measurable,

square integrable X-valued functions on the interval (0, t0), 0 < t0 ≤ ∞, and H2(0, t0; X) is

the second-order Sobolev space of X-valued functions on the interval (0, t0).

III. STABILITY

For this section we always assume that (A1) and (A2) hold. The following theorem is well

known, see e.g. [4], [32], [5], [8], [23] or [60].

Theorem 3.1: The operator A is the generator of a strongly continuous semigroup (T (t))t≥0

of contractions on the state space H 1
2
×H .

This guarantees that the spectrum of A is contained in the closed left half plane of C. For the

main result of this paper it is required that there is no spectrum on the imaginary axis. This is

implied by the following well-known result (see e.g. [4], [5], [7], [8], [23], [24], [57], [56]).

Proposition 3.2: If there exists a constant β > 0 such that

〈Dz, z〉H− 1
2
×H 1

2

≥ β‖z‖2
H , z ∈ H 1

2
, (8)
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then A generates an exponentially stable semigroup on H 1
2
×H .

One aim of this section is to give a different condition than (8) guaranteeing that iR ⊂ ρ(A).

Concerning the spectrum of A on the imaginary axis we have the following proposition.

Proposition 3.3: The operator A has a bounded inverse, and for every iη ∈ σ(A), η ∈ R, we

have −iη ∈ σ(A), η2 ∈ σ(Ao), and iη ∈ σap(A). If, in addition,

〈Dz, z〉H− 1
2
×H 1

2

> 0 for any eigenvector z ∈ H1 of Ao (9)

holds, then the operator A has no eigenvalues on the imaginary axis and every iη ∈ σ(A) satisfies

iη ∈ σc(A).

Proof: This result can be found partly in [56]. In [60, Formula (5.2)], 0 ∈ ρ(A) is proven

and in [56, Proof of Lemma 4.5] it is shown that

A∗ = JAJ, with J =

I 0

0 −I

 . (10)

This fact implies immediately that the spectrum of A is symmetric about the real axis, and thus

−iη ∈ σ(A). Since A generates a bounded C0-semigroup, we have that iη is an element of the

boundary of σ(A), which proves iη ∈ σap(A) [16, Proposition 1.10 on page 242]. The proof

that η2 ∈ σ(Ao) can be found in [56, Lemma 4.6].

Now, suppose that A has an imaginary eigenvalue, iη. Since 0 ∈ ρ(A), we have η 6= 0. Then

we can find a ( z
w ) ∈ D(A)\{0} such that

A ( z
w ) = iη ( z

w ) ,

which implies that

Aoz + iηDz = η2z. (11)

Moreover, we have z 6= 0, since otherwise ( z
w ) = 0. Taking the inner product with z,

〈Aoz + iηDz, z〉 = η2‖z‖2.

Thus, the imaginary part is zero, which implies that 〈Dz, z〉H− 1
2
×H 1

2

= 0. Now Remark 2.1

implies that Dz = 0, and (11) shows that Aoz = η2z. Thus z is an eigenvector corresponding

to the eigenvalue η2. This implies that (9) does not hold. Thus, if (9) holds then A has no

eigenvalues on the imaginary axis.
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It remains to show that iη ∈ σc(A). Equation (10) implies that σp(A
∗) = σp(A). Moreover,

λ ∈ σr(A) implies that λ ∈ σp(A
∗), because R(λI−A)⊥ = N(λI−A∗). Since iR∩σp(A) = ∅,

iR ∩ σr(A) = ∅, and therefore iη ∈ σc(A).

If in addition to the assumption (9) of the previous proposition, we have that σc(A) ∩ iR is

countable, then A generates a strongly stable semigroup [1]. We need however that iR ⊂ ρ(A)

to show the minimum-phase property of these systems. In the following theorem we give a

different condition than (8) guaranteeing that iR ⊂ ρ(A). This also implies strong stability.

Theorem 3.4: [8, Lemma 4.1 and Theorem 4.4] Assume that A−1
o is a compact operator. Then

iηI − A has a closed range for every η ∈ R and so iR ∩ σc(A) = ∅.

Moreover,

iR ⊂ ρ(A) (12)

if and only if

〈Dz, z〉H− 1
2
×H 1

2

> 0 for any eigenvector z ∈ H1 of Ao. (13)

In particular, (13) holds if 0 /∈ σp(D).

We note that A does not necessarily have a compact resolvent if Ao has a compact resolvent.

Indeed, if Ao = D then the range of −I−A is included in D(Ao)×H and, if Ao is unbounded,

−1 ∈ σc(A) follows. Hence A has no compact resolvent.

The following example shows that the assumption of Ao having compact resolvent in Theorem

3.4 cannot be omitted.

Example 3.5: Let H be an infinite-dimensional Hilbert space with orthonormal basis {en}n∈N

and Ao := I . Moreover, we define D ∈ L(H) by Dz =
∑∞

n=1
1
n
〈z, en〉en. Then we have

i ∈ σ(A), because

‖(iI − A) ( en
ien

)‖ =
1

n
→ 0

as n tends to infinity.

Under the assumptions of Theorem 3.4 it is possible that the spectrum lies arbitrarily close

to the imaginary axis.

Example 3.6: Let H be an infinite-dimensional Hilbert space with orthonormal basis {en}n∈N.
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We define the operators Ao : D(Ao) ⊂ H → H and D ∈ L(H) by

Aoz :=
∞∑

n=1

n2〈z, en〉en, z ∈ D(Ao),

D(Ao) := {z ∈ H |
∑
n∈N

n4|〈z, en〉|2 < ∞},

Dz :=
∞∑

n=1

1

n
〈z, en〉en.

An easy calculation shows that λn := − 1
2n

+ i
√

n2 − 1
4n2 , n ∈ N, are eigenvalues of A with

( en
λnen

) as corresponding eigenvectors.

We conclude this section with the following proposition, which will be used in the next section.

Proposition 3.7: [60, Prop. 5.3] For every s ∈ ρ(A),

1) (sI − A)−1 is a bounded and invertible map from H 1
2
×H− 1

2
to H 1

2
×H 1

2
.

2) The operator s2I + Ds + Ao ∈ L(H 1
2
, H− 1

2
) has a bounded inverse V (s) ∈ L(H− 1

2
, H 1

2
),

V (s) =
(
s2I + Ds + Ao

)−1
.

3) On H 1
2
×H− 1

2
, for every non-zero s ∈ ρ(A),

(sI − A)−1 =

 1
s
[I − V (s)Ao] V (s)

−V (s)Ao sV (s)

 . (14)

IV. SYSTEM PROPERTIES

A. Well-posed linear systems

In this subsection we review some definitions related to systems with unbounded control and

observation operators. We remark that throughout this subsection A, B and C denote arbitrary

operators between Hilbert spaces and not the specific operators introduced in Section II.

Denote by U , X and Y Hilbert spaces. Let A : D(A) ⊂ X → X be the generator of a

strongly continuous semigroup (T (t))t≥0 on X , the state space. X1 denotes the space D(A)

equipped with the graph topology and X−1 is the completion of X with respect to the norm

‖x‖X−1 := ‖(βI − A)−1x‖X , where β is an arbitrary element of the resolvent set of A. The

semigroup (T (t))t≥0 can be extended or restricted to a strongly continuous semigroup on X−1

or X1, respectively. We will denote this extension (restriction) again by (T (t))t≥0.
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Consider for B ∈ L(U,X−1) the following linear system

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = xo, (15)

where xo ∈ X and u ∈ L2
loc(0,∞; U). The operator T (t) defines the map from initial condition

to state, that is, for zero input u we have

x(t) = T (t)x(0). (16)

The mild solution of (15)

x(t) := T (t)xo +

∫ t

0

T (t− s)Bu(s) ds, t ≥ 0, (17)

is well-defined on X−1. For u ∈ H2(0,∞; U), define

Btu =

∫ t

0

T (t− s)Bu(s)ds. (18)

For such u, the mild solution x(·) is a continuous X-valued function. An operator B is called

an admissible control operator for the semigroup (T (t))t≥0, if for every t > 0 there is a constant

Mt > 0 such that for all u ∈ H2(0,∞; U),

‖Btu‖ ≤ Mt‖u‖2
L2(0,∞;U).

This allows us to extend Bt to a linear bounded operator from L2(0,∞; U) to X . For an

admissible control operator the solution (17) is as a continuous X-valued function. We call

B an infinite-time admissible control operator if the constant Mt is independent of t.

We now add an output to our system (15). Let C ∈ L(X1, Y ). For initial conditions x(0) = xo

in X1, define the output operator Ct : X1 → L2(0, t; Y ) by

(Ctxo)(s) = CT (s)xo, 0 ≤ s ≤ t.

The operator C ∈ L(X1, Y ) is called an admissible observation operator for the semigroup

(T (t))t≥0, if for every t > 0 there is a constant Nt > 0 such that for xo ∈ X1,∫ t

0

‖Ctxo‖2ds ≤ Nt‖xo‖2
X .

This allows us to extend the operator Ct to a linear bounded operator from X to L2(0, t; Y ). We

call C an infinite-time admissible observation operator if the constant Nt is independent of t.

Further information on admissible control and observation can be found in [26], [58], [59].
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For an input u ∈ L2
loc(0,∞; U) and zero initial condition the output y is given by

y(τ) = (Gtu)(τ), τ < t, (19)

where Gt is a linear operator from L2(0, t; U) to L2(0, t; Y ). Moreover, a certain functional

equation expressing the causality and time-invariance of the system must hold, see [51] or [10].

Because of this, Gtu is the convolution of the input u with a distribution g.

We define G : L2
loc(0,∞; U) → L2

loc(0,∞; Y ) by

(Gu)(τ) := (Gtu)(τ), τ ≤ t.

The transfer function G of system (15), (19), which is an analytic L(U, Y )-valued function

on some right-half-plane {s ∈ C | Re s > µ}, can be defined as follows. By ωo we denote

the growth bound of (T (t))t≥0. Let xo = 0. For ω > ωo and e−ω·u ∈ L2(0,∞; U) we have

e−ω·y ∈ L2(0,∞; U), and the transfer function G is defined by

ŷ(s) = G(s)û(s), Re s > ω,

where ·̂ denotes the Laplace transform.

The system (15), (19) is well-posed on X if and only if the four maps from input and initial

condition to state and output defined by T (t),Bt, Ct and Gt are bounded for some t > 0 (and

hence every t > 0). Boundedness of Gt is equivalent to the boundedness of the transfer function

G on some right-half-plane.

The system (15), (19) is regular, if it is well-posed and if for some E ∈ L(U, Y ), the transfer

function G satisfies

lim
s→+∞

G(s)u = Eu, u ∈ U.

E is called the feedthrough operator. Moreover, if C is a linear bounded operator from X to

Y , then the transfer function G is given by

G(s) = C(sI − A)−1B + E, Re s > wo, (20)

and we have

y(t) = Cx(t) + Eu(t), t > 0. (21)

For more information on well-posed linear systems, regular linear systems, and the corre-

sponding transfer function and feedthough operators we refer the reader to [10] and [54].
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B. Velocity/position measurement systems

We now return to the classes of systems introduced in Section II. We start with the velocity

measurement system (5), (7), that is, we assume that the output is given by

y(t) = B∗
o ż(t) = Cvx(t), (22)

where Cv : H 1
2
×H 1

2
→ Cm with Cv =

[
0 B∗

o

]
.

Proposition 4.1: If, in addition to assumptions (A1)-(A2), (A3) also holds then

1) The control operator B is infinite-time admissible for the semigroup generated by A.

2) The observation operator Cv is infinite-time admissible for the semigroup generated by A.

3) The system (5), (7) is well-posed.

4) The transfer function of (5), (7) is given by Gv(s) = sB∗
oV (s)Bo and satisfies Gv ∈

H∞(C0,L(Cm)).

Proof: The proof of this proposition uses the approach in [60]. Following the proof of

Lemma 5.4 in [60] we obtain, that for u ∈ H2(0,∞; Cm) and zo, wo ∈ H 1
2

satisfying

Aozo + Dwo −Bou(0) ∈ H

there exists a unique solution z ∈ C1(0,∞; H 1
2
) ∩ C2(0,∞; H) of (1) with z(0) = zo and

ż(0) = wo. Moreover, following the proof of Proposition 5.5 in [60] the identity

1

2

d

dt

∥∥∥∥∥∥
z(t)

ż(t)

∥∥∥∥∥∥
2

= −〈Dż(t), ż(t)〉+ Re〈Bou(t), ż(t)〉

holds. Using (A3) and the standard inequality that, for any ε > 0,

2Re〈a, b〉 ≤ ε ‖a‖2 +
1

ε
‖b‖2 ,

we obtain

1

2

d

dt

∥∥∥∥∥∥
z(t)

ż(t)

∥∥∥∥∥∥
2

≤ (−β +
ε

2
)‖B∗

o ż(t)‖2 +
1

2ε
‖u(t)‖2.

Choosing ε < 2β, there are constants c1, c2 > 0 such that

d

dt

∥∥∥∥∥∥
z(t)

ż(t)

∥∥∥∥∥∥
2

≤ c1‖u(t)‖2 − c2‖B∗
o ż(t)‖2.
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Rearranging and writing y(t) = B∗
o ż(t),

c2‖y(t)‖2 +
d

dt

∥∥∥∥∥∥
z(t)

ż(t)

∥∥∥∥∥∥
2

≤ c1‖u(t)‖2. (23)

Integrating this inequality over time and using Theorem 3.1 we obtain that B and Cv are (infinite-

time) admissible and that system (5), (7) is a well-posed linear system. This inequality also

implies that the system (5), (7) is L2-stable, that is, the input/output operator G is a linear

bounded operator from L2(0,∞; Cm) to L2(0,∞; Cm). Hence the transfer function Gv is in

H∞(C0,L(Cm)). Using Theorem 1.3 in [60] we obtain that Gv is given by Gv(s) = sB∗
oV (s)Bo,

s ∈ C0.

The following example shows that, in general, if condition (A3) does not hold, the system

(5), (7) is not well-posed.

Example 4.2: Let H be an infinite-dimensional Hilbert space with orthonormal basis {en}n∈N.

We define the operators Ao : D(Ao) ⊂ H → H , D ∈ L(H 1
2
, H− 1

2
) and Bo ∈ L(C, H− 1

2
) by

Aoz :=
∞∑

n=1

n2〈z, en〉en, z ∈ D(Ao)

D(Ao) := {z ∈ H |
∞∑

n=1

n4|〈z, en〉|2 < ∞},

Dz :=
∞∑

n=1

n〈z, en〉en,

Bo :=
∞∑

n=1

n
1
4 en.

Assumptions (A1)-(A2) are satisfied, while (A3) is not satisfied. Using Theorem 3.4 we obtain

that the transfer function Gv(s) = sB∗
oV (s)Bo is a holomorphic function on an open set

containing the closed right-half-plane. We now show that the transfer function is not bounded
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on the right-half-plane, and hence the control system is not well-posed. For positive integers ω,

|Gv(iω)| = |ωB∗
oV (iω)Bo|

=

∣∣∣∣∣
∞∑

n=1

ωn1/2

n2 + iωn− ω2

∣∣∣∣∣
≥

∣∣∣∣∣Im
∞∑

n=1

ωn1/2

n2 + iωn− ω2

∣∣∣∣∣
≥

∞∑
n=ω

n3/2ω2

n4 + ω4

≥
∫ ∞

ω

t3/2ω2

t4 + ω4
dt

=
√

ω

∫ ∞

1

x3/2

x4 + 1
dx.

Thus the function sB∗
oV (s)Bo is not bounded on the right-half-plane. This implies that the

system (5), (7) is not well-posed on any state-space [51].

We now study the properties of the position measurement system (5), (6).

Proposition 4.3: If, in addition to the standard assumptions (A1)-(A2), (A3) also holds then

1) The observation operator Cp is a bounded operator from H 1
2
× H to Cm and is thus

admissible for the semigroup generated by A.

2) The system (5), (6) is regular with feedthrough 0.

3) The transfer function of (5), (6) is given by Gp(s) = B∗
oV (s)Bo and satisfies Gp ∈

H∞(C0,L(Cm)).

Proof: The observation operator Cp is a bounded operator on the state space H 1
2
×H , and

thus Cp is an admissible observation operator for the semigroup generated by A. In Proposition

4.1 we showed that B is an infinite-time admissible control operator for the semigroup generated

by A. Using Proposition 3.7, (20) and (21) we see that the corresponding transfer function is given

by Gp(s) = B∗
oV (s)Bo, s ∈ C0. In Proposition 4.1 we proved that Gv, given by Gv(s) = sGp(s),

s ∈ C0, is a bounded holomorphic function on the right-half-plane. Thus the transfer function

Gp is an analytic function on the right-half-plane. It remains to show that Gp is bounded on

the right-half-plane. The function Gp has an analytic extension to a neighborhood of 0, since

0 ∈ ρ(A). (See Proposition 3.3.) Thus the boundedness of Gp on the right-half-plane follows
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from the fact that Gv is bounded on C0. Thus system (5), (6) is a well-posed linear system.

Further, the boundedness of Gv in the right-half-plane implies that

lim
s→+∞

Gp(s) = 0,

and therefore (5), (6) is a regular linear system with zero feedthrough.

V. MINIMUM-PHASE BEHAVIOUR OF SECOND-ORDER SYSTEMS

In this section we give some conditions under which the classes of second-order systems

introduced in Section II are minimum-phase. We first introduce a definition of a minimum-phase

system that is appropriate for infinite-dimensional systems. For any function g ∈ H∞(C0; Cm×m)

define the operator Λg : H2(C0; Cm) → H2(C0; Cm) by Λgf = gf for any f ∈ H2(C0; Cm).

Definition 5.1: [49, page 94] A bounded, holomorphic function g : C0 → Cm×m is called

minimum-phase or outer if the range of Λg is dense in H2(C0; Cm).

Thus, outer functions correspond to operators that have inverses defined on a dense subset of

H2(C0; Cm). This explains their importance in controller design- such a system has an inverse

defined on a dense subset of H2(C0; Cm). In particular, this implies that a scalar outer function

has no zeros in the open right-half-plane, and it can be shown that a bounded rational function is

outer if and only if the function has no zeros in the open right-half-plane. For more information

on outer functions we refer the reader to [49, Chap. 5]. The following test will be helpful, see

[43, page 22] for more details.

Theorem 5.2: [Helson-Lowdenslager Theorem] Let g : C0 → Cm×m be bounded and

holomorphic. Then g is outer if and only if det(g(·)) is a scalar outer function.

It is difficult to establish that a given function is outer. Therefore we will use the following well-

known factorization result: Every bounded holomorphic function g : C0 → C can be factored

as g(s) = τ(s)h(s), s ∈ C0, where τ is an inner function, that is, |τ(s)| ≤ 1 for s ∈ C0, and

|τ(iη)| = 1 for almost every η ∈ R, and h is an outer function. We note that |h(iη)| = |g(iη)| for

almost every η ∈ R, and that |h(s)| ≥ |g(s)| on C0. All the right-half-plane zeros of a function

are included in the inner function. For more results on the inner-outer factorization of bounded,

holomorphic functions we refer the reader to [15, page 192 ff.], [22, page 132 ff.].

We will show that the transfer functions discussed in previous sections have inner factor 1 and

hence are outer or minimum-phase. We summarize some results on inner functions. Let {βn}n∈N
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be a sequence of points in C0 satisfying the Blaschke condition
∞∑

n=1

Re βn

1 + |βn|2
< ∞. (24)

Then the Blaschke product Θ corresponding to the sequence {βn}n∈N is given by

Θ(s) =
∏
n∈N

|1− β2
n|

1− β2
n

s− βn

s + βn

, s ∈ C0, (25)

where |1−β2
n|

1−β2
n

is assumed to be 1 if βn = 1. The function Θ is in H∞(C0) and the zeros of Θ

are precisely the points βn, each zero having multiplicity equal to the number of times it occurs

in the sequence. Moreover, |Θ(s)| ≤ 1 for all s with positive real part, and |Θ(iη)| = 1 for

almost all real η’s. Thus every Blaschke product is an inner function. However, not every inner

function can be written as a Blaschke product. Another class of inner functions are the singular

functions. A singular function is a holomorphic function S : C0 → C that can be written as

S(s) = e−ρs exp

[
−

∫
R

ts + i

t + is
dµ(t)

]
, s ∈ C0, (26)

where µ is a finite singular positive measure on R and ρ is a non-negative real number. Every

inner function τ can be uniquely written as

τ(s) = eiαΘ(s)S(s), s ∈ C0, (27)

where α ∈ R, Θ is a Blaschke product and S is a singular function, see for example [15,

page 192ff.]. In the following proposition we formulate sufficient conditions for functions to be

minimum-phase.

Definition 5.3: A function g ∈ H∞(C0) has finite relative degree, if there exists n ∈ N such

that for real s,

lim
s→∞

sng(s) 6= 0. (28)

The smallest n0 ∈ N satisfying (28) is called the relative degree of g.

Proposition 5.4: Assume that g ∈ H∞(C0) has finite relative degree and is analytic on some

open set Ω containing the closed right-half-plane. Then g is minimum-phase if and only if g has

no zeros in the open right-half-plane.

Proof: Due to the inner-outer factorization the function g can be written as

g(s) = eiαΘ(s)S(s)h(s), s ∈ C0,
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where Θ is a Blaschke product, S is a singular function of the form (26) and h is an outer

function. We note that the function g is outer if and only if the functions S and Θ are identically

1. The function g is holomorphic on Ω and the closed right-half-plane is contained in Ω. This

implies that the measure µ in (26) is zero [49, page 142]. The finite relative degree property

shows that ρ = 0, and thus the singular function S(s) is identically 1. The Blaschke product

will be the identity if and only if g has no zeros in the open right-half-plane. This proves the

proposition.

There are some results for first-order systems guaranteeing that the transfer function is positive

real [11], [12], [13], [44]. A function g ∈ H∞(C0) is called positive real, if g(s) = g(s) and

Re g(s) ≥ 0 for all s ∈ C0. An adaptive controller for a class of positive-real second-order

systems with relative degree one is constructed in [27], [28], [29]. In [11] the positive real

property, together with exponential stability of the semigroup, and a relative-degree assumption, is

shown to imply convergence and stability of an adaptive compensator. The following proposition

relates minimum-phase and positive real functions.

Proposition 5.5: Assume that g ∈ H∞(C0) has finite relative degree and is analytic on some

open set Ω containing the closed right-half-plane. If g is also positive real then g is minimum-

phase.

Proof: Due to Proposition 5.4, it is enough to show that g has no zeros in C0. Assume

that there is a so ∈ C0 such that g(so) = 0. The function g is non constant, since g(so) = 0 and

g has finite relative degree. Thus the open mapping theorem for analytic functions implies that

we can find an element s ∈ C0 near so such that Re g(s) < 0. This implies that g is not positive

real.

In particular, every positive real system that is exponentially stable and has finite relative

degree is minimum-phase.

We now return to the class of systems introduced in Section II. We first show that if Bo is

not the zero operator, s2‖Gp(s)‖L(Cm) 6→ 0 as s tends to +∞ and so both control systems have

finite relative degree.

Lemma 5.6: Assume that assumptions (A1)-(A3) are satisfied. We have that for s ≥ 1 and

u ∈ Cm

〈u, s2Gp(s)u〉Cm ≥ M‖Bou‖2
H− 1

2

. (29)
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Proof: We recall that Gp(s) = B∗
oV (s)Bo for s ∈ C with Re s > 0, see Proposition 4.3,

and we define the operator X(s) ∈ L(H), s ∈ [0,∞), by

X(s) = s2A−1
o + sA−1/2

o DA−1/2
o + I.

X(s) is a self-adjoint operator satisfying the estimate

‖X(s)‖ ≤ s2‖A−1
o ‖+ s‖A−1/2

o DA−1/2
o ‖+ 1.

This implies that

〈z, (X(s))−1z〉 ≥ ‖z‖2

s2‖A−1
o ‖+ s‖A−1/2

o DA
−1/2
o ‖+ 1

, s ∈ [0,∞), z ∈ H,

and thus we have for s ≥ 1 and u ∈ Cm

〈u, s2Gp(s)u〉Cm = 〈u, s2B∗
oA

−1/2
o (X(s))−1A−1/2

o Bou〉Cm

= 〈A−1/2
o Bou, s2(X(s))−1A−1/2

o Bou〉H

≥ ‖A−1/2
o Bou‖2

H

‖A−1
o ‖+ s−1‖A−1/2

o DA
−1/2
o ‖+ s−2

≥ ‖A−1/2
o Bou‖2

H

‖A−1
o ‖+ ‖A−1/2

o DA
−1/2
o ‖+ 1

≥ M‖Bou‖2
H− 1

2

,

for some constant M > 0.

Lemma 5.7: Assume that assumptions (A1)-(A3) are satisfied and that Bo is injective. Then

for every s ∈ C0 the matrices Gp(s) and Gv(s) are invertible.

Proof: It is sufficient to show invertibility of Gp. The proof is similar to the proof for finite-

dimensional second-order systems in [35]. From Theorem 3.1, it follows that Gp is well-defined

in the open right-half-plane.

We first show that if for some so ∈ C0, the nullspace of Gp(so) contains a non-zero element

then Bo is not injective. Suppose so ∈ C0 is such that there exists non-zero uo ∈ Cm with

Gp(so)uo = 0. Using Prop. 4.3 for the representation of the transfer function,

B∗
oV (so)Bouo = 0.
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Define zo = V (so)Bouo. If zo = 0 then Bouo = 0. Since uo is non-zero, this implies that Bo is

not injective. Assume now that zo 6= 0. Noting that zo ∈ H 1
2

we can write

(s2
oI + soD + Ao)zo −Bouo = 0

B∗
ozo = 0

where the first equation holds in H− 1
2

and the second in Cm. Thus,

〈(s2
oI + soD + Ao)zo −Bouo, zo〉H− 1

2
×H 1

2

= 0.

Using B∗
ozo = 0, this becomes

〈(s2
oI + soD + Ao)zo, zo〉H− 1

2
×H 1

2

= 0. (30)

Using the positivity of Ao, the non-negativity of D and decomposing so into real and imaginary

parts, so = σ + iη where σ > 0, the imaginary part of (30) is:

η〈[2σI + D]zo, zo〉H− 1
2
×H 1

2

= 0

and (A2) implies that η = 0. The real part of (30) is

〈[(σ2 − η2)I + σD + Ao]zo, zo〉H− 1
2
×H 1

2

= 0.

Since η = 0, this equation is not satisfied for any non-zero zo. Thus, Gp(so)uo = 0 implies that

uo = 0 or Bo is not injective.

Remark 5.8: Suppose that ρ(A) includes the closed right-half-plane so that Gp can be extended

to a set including the imaginary axis. Then Lemma 5.7 can be strengthened to include the

imaginary axis for Gp. It is only necessary to consider the case where so = iη. Then equation

(30) implies that

η〈Dzo, zo〉H− 1
2
×H 1

2

= 0

〈[−η2I + Ao]zo, zo〉H− 1
2
×H 1

2

= 0.

These equations have a non-trivial solution for zo if and only if η2 is an eigenvalue of Ao with

eigenvector zo and 〈Dzo, zo〉 = 0. Thus, if Bo is injective, ρ(A) includes the imaginary axis and

〈Dz, z〉 > 0 for any eigenvector of Ao, then Gp(s) is invertible for every s ∈ C0. The same

conclusion holds for Gv exept that Gv(0) = 0.
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We give in Theorem 5.9 below sufficient conditions for the minimum-phase property of Gp

and Gv.

Theorem 5.9: Assume that assumptions (A1)-(A3) are satisfied. If in addition, the resolvent

of A contains the imaginary axis and the operator Bo is injective, then Gp and Gv are minimum-

phase functions.

Proof: It is sufficient to show the result for Gp, and due to the Definition 5.1 it is sufficient

to show that det Gp is a scalar outer function. In Lemma 5.7 it was shown that Gp(s) is invertible

for all s ∈ C0. This implies that det Gp(s) 6= 0 for all s ∈ C0.

Since the resolvent set of A contains the imaginary axis, the transfer function Gp is analytic

on an open set Ω containing the closed right-half-plane and belongs to H∞(C0,L(Cm)) (cf.

Proposition 4.3). Thus, det Gp is analytic on Ω and belongs to H∞(C0).

We show next that det Gp has finite relative degree. Lemma 5.6 implies that for some constant

M > 0,

〈s2Gp(s)u, u〉Cm ≥ M‖Bou‖2
H− 1

2

, s ≥ 1.

Since Bo is an injective bounded mapping from Cm to H− 1
2
, this implies that

〈s2Gp(s)u, u〉Cm ≥ c‖u‖2, s ≥ 1, u ∈ Cm,

for some constant c > 0. This shows that the eigenvalues of s2Gp(s) are uniformly bounded

away from zero as s approaches infinity, which implies that s2m det Gp(s) 6→ 0 as s tends to

infinity. Now Theorem 5.9 follows from Proposition 5.4.

The following result is now immediate.

Corollary 5.10: Assume that assumptions (A1)-(A3) are satisfied. If Ao has a compact re-

solvent, 〈Dz, z〉H− 1
2
×H 1

2

> 0 for any eigenvector of Ao, and Bo is injective, then the transfer

functions Gp and Gv are minimum-phase functions.

VI. EXAMPLES

In this section we apply our results to some well-known models with position measurements.

We will first study an Euler-Bernoulli beam with Kelvin-Voigt damping, and then a damped

plate on a bounded connected domain. We show that both control systems have minimum-phase

transfer functions.
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A. Euler-Bernoulli Beam

Consider a beam with a thin film of piezoelectric polymer applied to one side. A spatially

uniform voltage u(t) is applied to the film to control the vibrations. Consider only transverse

vibrations, and let z(r, t) denote the deflection of the beam from its rigid body motion at time

t and position r. The beam is clamped at the end r = 0 and free at the other end r = 1. Use of

the Euler-Bernoulli model for the beam deflection and the Kelvin-Voigt damping model leads

to the following description of the vibrations [2], [6]:

∂2z

∂t2
+

∂2

∂r2

[
E

∂2z

∂r2
+ Cd

∂3z

∂r2∂t

]
= 0, r ∈ (0, 1), t > 0. (31)

Here E and Cd are positive physical constants, representing a weighted average of the properties

of the beam and of the piezoelectric film. For all t > 0 the boundary conditions are, for some

constant c > 0,
z(0, t) = 0,

∂z
∂r
|r=0 = 0,[

E ∂2z
∂r2 + Cd

∂3z
∂r2∂t

]
r=1

= cu(t),[
E ∂3z

∂r3 + Cd
∂4z

∂r3∂t

]
r=1

= 0.

(32)

A position sensor is used at the tip:

y(t) =
∂z

∂r
(1, t).

We will put this control system into the framework of this paper. The analysis is quite standard.

See [31, Sect. 5.3] for the generalization to a plate.

Here H is L2(0, 1) and Ao = E d4

dr4 with D(Ao) given by{
z ∈ H4(0, 1) : z(0) = z′(0) = z′′(1) = z′′′(1) = 0

}
.

For z, v ∈ D(Ao),

〈A
1
2
o z, A

1
2
o v〉 = 〈Aoz, v〉 = E〈v′′, v′′〉.

The space H 1
2

is therefore the closure of D(Ao) with respect to E〈z′′, v′′〉 and so

H 1
2

=
{
z ∈ H2(0, 1) : z(0) = z′(0) = 0

}
with inner product 〈z, v〉H 1

2

= E〈z′′, v′′〉. Let x(t) = (z(·, t), ż(·, t)). The damping operator

D : H 1
2
→ H− 1

2
is

〈Dz, φ〉H− 1
2
×H 1

2

=
Cd

E
〈z, φ〉H 1

2
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for z, φ ∈ H 1
2
. Hence D = Cd

E
Ao. The weak formulation of the boundary value problem (31),

(32) is

〈z̈(t), φ〉+ 〈Aoz(t), φ〉H− 1
2
×H 1

2

+ 〈Dż(t), φ〉H− 1
2
×H 1

2

= cφ′(1)u(t),

for all φ ∈ H 1
2
. It follows that Bou = cδ′(1)u. Sobolev’s Inequality implies that evaluation of φ′

at a point is bounded on H 1
2

and so the control operator Bo is bounded from C to H− 1
2
. The

dual operator is given by B∗
oz = cz′(1). Assumptions (A1)-(A2) are satisfied. Notice that this

choice of D and Bo is not included in the special class covered in [60], [56]. The inequality

〈Dz, z〉H− 1
2
×H 1

2

=
Cd

E
‖z‖2

H 1
2

≥ α‖z‖2, z ∈ H 1
2
,

for a positive constant α, implies the well-known result that A generates an exponentially stable

semigroup on H 1
2
× L2(0, 1) (see Proposition 3.2). Furthermore, for z ∈ H 1

2
,

〈Dz, z〉 =
Cd

E
‖z‖2

H 1
2

≥ β|z′(1)|2 =
β

c
|B∗

oz|2

for some β > 0 by Sobolev’s Inequality. Thus (A3) is also satisfied, implying well-posedness

of the control system with measurements z′(1) (Proposition 4.3). Theorem 5.9 implies that the

transfer function is minimum-phase.

If the position measurement is replaced by velocity measurement, the same conclusions hold.

Even for this simple example, the transfer function is quite complicated and it is not easy to

determine from direct analysis of the transfer function that there are no right-hand-plane zeros

and no singular part.

Also, we still have well-posedness of the system and the minimum-phase property if we

consider weaker damping than Kelvin-Voigt damping. The damping must satisfy 〈Dz, z〉 ≥

β|z′(1)|2 and also 〈Dz, z〉 > 0 for any eigenvector of Ao (cf. Corollary 5.10).

B. Plate with Boundary Damping

We show that a problem consisting of a wave equation with damping, as well as control,

occurring through the boundary has the minimum-phase property. This problem occurs in, for

example, vibrations of a plate or membrane that is fixed on part of the boundary. The wave

equation with boundary damping and control on the boundary has been studied many times in

the literature. See for instance, [20], [30], [48], [55] for the state-space formulation of similar
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systems and [30], [46], [50] for stability analysis. The control system in [60] is similar to that

studied here although we consider a more general control input and a different observation. In

[60] the partial differential equation is placed into the framework used in this paper and in [60].

We include full details for completeness.

Consider a bounded connected region Ω with boundary Γ. The region Ω ⊂ Rn has Lipschitz

boundary Γ, where Γ = Γ0 ∪ Γ1 and Γ0, Γ1 are disjoint open subsets of Γ with both Γ0 and

Γ1 not empty and Γ1 is such that the interior sphere condition holds at least one point in Γ1.

Assume also that Ω is such that the embedding of H1(Ω) into L2(Ω) is compact. Then the

Poincaré inequality is satisfied [14, pg. 127-130]. That is, there is a constant c > 0 such that for

all f ∈ H1(Ω) with f |Γ0 = 0, ∫
Ω

|∇f(x)|2dx ≥ c

∫
Ω

|f(x)|2dx.

We use the following system description

z̈ = ∇2z, Ω× (0,∞),

z(x, 0) = z0, ż(x, 0) = z1, Ω,

z(x, t) = 0, Γ0 × (0,∞),

∂z(x,t)
∂n

+ d(x)2ż(x, t) = b(x)u(t), Γ1 × (0,∞),

y(t) =
∫

Γ1
b(x)z(x, t)dx, [0,∞).

(33)

We also assume that b, d ∈ C(Γ1)∩L2(Γ1) with infx∈Γ1 d(x) > 0 and b not identically zero. The

Sobolev spaces Hs(Ω), s = 1/2, 1, 2, and the boundary spaces H1/2(Γ), L2(Γ1) are defined as

usual, see [19]. The Dirichlet trace operator, γg = g|Γ, is a linear bounded operator from H1(Ω)

to H1/2(Γ). We then define

γ1g = g|Γ1 = PΓ1γg.

Define

H1
Γ0

(Ω) = {g ∈ H1(Ω) | g|Γ0 = 0}

and define H̃1/2(Γ1) to be traces γ1g where g ∈ H1
Γ0

(Ω) with the usual trace norm. Thus,

γ1 ∈ L(H1
Γ0

(Ω), H̃1/2(Γ1)). The space H̃1/2(Γ1) is dense in L2(Γ1), see e.g. [19]. We will

consider γ1 as a map γ1 : H1
Γ0

(Ω) → L2(Γ1). For f ∈ C1(Ω) we define the Neumann trace by

α1f =
∂f

∂n
|Γ1 .
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Using the following Green formula [19, Lem. 1.5.3.7], we can extend the Neumann trace: For

f ∈ H2(Ω) and g ∈ H1(Ω),∫
Ω

(∇2f)gdx = −
∫

Ω

∇f · ∇gdx +

∫
Γ

γ(
∂f

∂η
)γ(g)dx.

For g ∈ H1
Γ0

(Ω) we obtain∫
Ω

(∇2f)gdx = −
∫

Ω

∇f · ∇gdx +

∫
Γ1

α1f γ1g dx. (34)

Using this, we can define α1f as an element of H̃−1/2(Γ1) for all f ∈ H2(Ω). Here H̃−1/2(Γ1)

denotes the dual space of H̃1/2(Γ1). Note that L2(Γ1) is densely and continuously embedded in

H̃−1/2(Γ1).

We define the self-adjoint operator Ao on L2(Ω) by

Aof = −∇2f, D(Ao) = {f ∈ H2(Ω) ∩H1
Γ0

(Ω), α1f = 0}.

It is well-known that this operator is positive definite. The existence of a bounded inverse follows

from the Poincaré inequality and so it satisfies (A1) on H = L2(Ω). The inner product on H

will be indicated by (·, ·). The space H 1
2

= D(A
1
2
o ) is the completion of D(Ao) in the norm

(Aoz, z)1/2 and so, using (34) we see that H 1
2

= H1
Γ0

(Ω). The inner product on H 1
2

is indicated

by (·, ·)H 1
2

. The inner product on L2(Γ1) is indicated by 〈·, ·〉. We define the extension of Ao to

H 1
2
→ H− 1

2
by

(Aof, g) = (∇f,∇g)Hn . (35)

By the Riesz representation theorem, for any v ∈ L2(Γ1), there is a unique g ∈ H 1
2

such that

(g, φ)H 1
2

= 〈v, γ1φ〉

for all φ ∈ H 1
2
. This defines a map N : L2(Γ1) → H 1

2
with Nv = g. Alternatively,

(Aog, φ)H− 1
2
×H 1

2

= 〈v, γ1φ〉

where Ao is understood in the extended sense (35). Equivalently,

(AoNv, φ)H− 1
2
×H 1

2

= 〈v, γ1φ〉

and so γ∗1 = AoN .

We define D = γ∗1(d(·)2γ1). Then D is a linear bounded operator from H 1
2

to H− 1
2

and

〈Df, f〉H− 1
2
×H 1

2

≥ 0 for all f ∈ H 1
2
. Further, we define Bo : C → H− 1

2
as Bo = γ∗1b. The

operators Bo and D satisfy assumption (A2i) and (A2ii), respectively, with m = 1.
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We now write the boundary control problem (33) in the abstract second-order form (1). For

z ∈ H2(Ω), g ∈ H1(Γ0), we have from (34) and the boundary condition(
∇2z, g

)
= − (∇z,∇g)Hn − 〈d(·)2γ1ż, γ1g〉+ 〈b(·)u, γ1g〉

= − (Aoz, g)H− 1
2
×H 1

2

− (Dz, g)H− 1
2
×H 1

2

+ (Bou, g)H− 1
2
×H 1

2

.

We thus obtain the abstract second-order differential equation:

z̈(t) + Aoz(t) + Dz(t) = Bou(t)

valid for all z ∈ H 1
2

as an equation in H− 1
2
. We now show that assumption (A3) is also satisfied.

For z ∈ H 1
2

we obtain

‖B∗
oz‖2 = 〈b, γ1z〉2 ≤ ‖b‖2‖γ1z‖2 ≤ ‖b‖2

inf |d(x)|2
‖d(·)γ1z‖2.

Thus,

(Dz, z)H− 1
2
×H 1

2

= 〈d(·)γ1z, d(·)γ1z〉 ≥
inf d(x)2

‖b‖2
‖B∗

oz‖2 = β‖B∗
oz‖2

for some β > 0. Thus, (A3) is satisfied. By Proposition 4.3 the position control system with

y(t) = B∗
oz(t), or

y(t) = 〈b(x), γ1z〉

is well-posed. Note that the damping operator does not satisfy the inequality

(Dz, z)H− 1
2
×H 1

2

≥ β‖z‖2, z ∈ H 1
2
,

for some β > 0. Although the semigroup is a contraction, it is not exponentially stable for all

geometries Γ0, Γ1 [46], [50].

We now show that the conditions of Theorem 3.4 are satisfied and so iR ⊂ ρ(A) and also

the system is strongly stable. It is well-known that A−1
o is a compact operator. Suppose that z

is an eigenvector of Ao with Dz = 0. In other words, we have z ∈ H2(Ω) satisfying for some

complex number λ,

∇2z − λz = 0, z|Γ = 0,
∂z

∂n
|Γ1 = 0.

For all λ ≥ 0, z must be the zero function [19, Thm. 2.2.3]. Consider now the case λ < 0 and

define the sets in Ω,

Ω+ = {x ∈ Ω; ∇2z − λz = 0, z(x) > 0},

Ω− = {x ∈ Ω; ∇2z − λz = 0, z(x) < 0}.
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If both sets are empty, this implies that z is the zero function. Let xo ∈ Γ1 be a point satisfying

an interior sphere condition. Either

1) xo is in the boundary of Ω− or

2) xo is in the boundary of Ω+ or

3) z(x) = 0 for all x in some open set W ⊂ Ω with xo in the boundary of W .

Since ∂z
∂n
|(xo) = 0, Hopf’s Maximum Principle [18, Lem. 3.4] implies that for every open set

W ⊂ Ω with xo on the boundary of W , there are points x1, x2 in W with z(x1) ≥ 0 and

z(x2) ≤ 0. Thus neither alternative (1) or (2) is possible. Thus, the last condition must hold.

Since z is analytic, we obtain that z is the zero function on Ω. Thus, for any eigenvector z of

Ao we have 〈Dz, z〉H− 1
2
×H 1

2

> 0. Theorem 3.4 then implies that the resolvent of A contains the

imaginary axis and that the system is strongly stable. Theorem 5.9 then shows that the transfer

function G of the boundary control system (33) is a minimum-phase function.

VII. CONCLUSIONS

In this paper we examined second-order control systems. The second-order structure of these

systems was used to show that a wide class of control systems, with either position or velocity

measurements, are minimum-phase. The class of systems with velocity measurements for which

this property holds is slightly larger than previously shown. The major contribution of this work,

however, is to establish the minimum-phase property for systems with position measurements.

These systems do not usually have positive-real transfer functions. It was assumed that the

damping is stronger than the control effort, see (A3). A counterexample illustrated that the

system transfer function may be improper if this assumption fails to hold. Another assumption

that was implicit in the framework is that the observation of position is given by Cp = [B∗
o 0].

Although this leads to a system that is not mathematically collocated, this represents a type of

physical collocation condition in that it implies a relation between the location of the sensors

and the actuators. The results were illustrated with several common applications.
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