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1 Introduction sound propagation in a tube show that, although small, the pres-
. . . syrep(x,t) is not zero at an open end and that the impedance is
Various control techniques have been applied to the pmblemsﬂlfrongly frequency dependent. HiL0] derives a transfer function

a}ctive ”°.i$e. control incluc_iing feedback and_ feedforward _alg?(-)r a duct with variable impedances at each end. No model for the
rithms, utilizing both adaptive and robust desigts Inherent in impedances is given. Also, a time-domain interpretation for the
most control methodologies is the need to model the system to rﬁ]%P ] ’

. - del is not provided.
controlled. The sens(®), actuatofs), and the acoustic behavior of ™ 4 boundary condition at the disturbance end of the duct is

the path bet_ween the dl_sturban(_:e and Ioc_atlon of noise control Iéo treated in a variety of ways in the literature. The disturbance
need to be included. With the aid of a valid mathematical modef udspeaker has been considered to be a source of prédsiire
one can better understand system behawo_r |n_the face of Changl'—nﬂ/vever, a loudspeaker is closer to a volume velocity source than
system parameters. Also, accurate determlnatlon .Of system berﬁl\ﬁressure source. The disturbance speaker cone velocity can be
ior allows high-performance controller designs since the pote[jseq a5 the input to the duct transfer function. This approach is
tially destabilizing path from actuator to sensor is modeled. Fu Xplored in Refs[11,12). Feedback is introduced to a loudspeaker
thermore, an accurate mode] leads to computer simulations t 8'that its response is close to that of a pure volume velocity
ca$hbe uhseq tol preiilct e_xpekrllment_al Egrfolrml?r)ce. id duct ofouree: This approach does not include the interaction between the
| tﬁLp Yts'h'ca SysS eT |s(,js OV\I’(n mt 9. 1. GE'S a ”é;' uc tooudspeaker and the duct. Even when undriven, the loudspeaker
tﬁng by wi _all_so%rce lou Slf)edatﬁ;f tont? en @)dan opeg al acts as a mechanical mass-spring-damper system and there is cou-
eo t‘?r f(__”z' derf'ﬂ callec I Istur anceat1_n anra]a?-n z pling between the duct and the loudspeaker. Thus, a system model
res;:g(lz lve y'd. ? U'Cl'h as a circuiar cross sechlon OI r t'ﬂg( ¢ which assumes a pure pressure or volume velocity source neglects
spatial coordinat. There IS a Sensor micropnone locateal s coupling. A full electromechanical model of the loudspeaker

=X, and a cancell_er loudspeaker Iocatedxatxc_. The param- should be coupled to the duct model to properly represent the
eters for the experimental apparatus used are in Table 1. disturbance end

Modelling the propagation of sound in a duct is_a classic prob- n this paper, a duct model is developed. First, we cite the
lem and under common low-frequency assumptions, the soupgiyic solution to the frequency-dependent impedance of the
waves propagating in a rigid tube are planar, or one dimensiongjo ) eng of the dudi9,13). This model is coupled to the duct
In nature[[z], p. 38|. Various boundary conditions are employe ystem as the open end boundary condition. Next, a model of a
in tohe I|terak:ure. ) del both end foctl dynamic loudspeaker is coupled to the duct system as a source

ne suc approadt3] is to model bot ends as perfectly opery,, boundary condition. A classic one-dimensional model for
by setting the pressures equal to zero. This is an unrealizable c nd propagation inside the duct will be given, and the fully

where no sound at all escapes from the ends of the duct an Stipled system will then be solved in the frequency domain. Ex-

inappropriate for application to active noise control, because 88 i ental results are presented that validate the derived model of
amount of sound escaping from the open end is often the quan duct system

to be controlled. In Refs[4—8] a mixed absorptive/reflective
boundary condition is used at the open end of the duct. This leads
to a nonzero constant impedance. However, the analytical solutidn Open End Boundary Condition

for the open end impedance of a diiéj demonstrates that the 1o onen end of the duct results in a partially reflective and

impedance is highly frequency dependent. Thus, the physics Ofyiia 1y absorptive boundary condition. If the amount of reflec-

tion is independent of frequency, the boundary condition can be
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wherep(x,t) andv(x,t) represent pressure and velocity, respec- Table 1 Parameters
tively, po is the density of the medium amdis the speed of sound

in the medium. The quantitpec is the specific acoustic imped- - duct length 354 m
duct radius .101m
ance for free propagatlon in the medium. density of air 1.20 km/n?
WhenK =0, this is equivalent to the zero-pressure model of the speed of sound in air 341 m/s
open end ak=L where the wave is totally reflected but invertedR, end impedance parameter poc/ wa? mks acQ
and wherK =, this is equivalent to a closed endxat L where R: end impedance parameter 0.8Q4mks ac()
the wave is totally reflected without inversion. Whigr=1, the € eng !mpegance parameter 5.44°% poc® m°/N
end impedance of the duct is equal to the medium’s specifit ~€nd Impedance parameter . 0.195% /a kg/m'
disturbance speaker’s cone effective mass .015 kg

m,
acoustic impedance, and as such the wave is totally transmlttgﬁ disturbance speaker’s cone suspension stiffness 810.87 N/m

analogous to a semi-infinite duct. electrical resistance of voice cdtisturbancg 6.0 ()
Let p(L,s) indicate the Laplace transform @f(L,t), and de- BI B-I magnetic voice coil motofdisturbancg 5.6 N/A

disturbance speaker’s effective radius .087 m
fmzv(thhs) Zlmltlarly The specific acoustic impedance of the opehﬂC canceller speaker effective mass 006394 kg
end or the duct Is k.  canceller speaker stiffness parameter 673.7 N/m

B(L,S) R. electrical resistance of voice cditancelley  6.05Q
Z.(s)= p @) Bl. B-l magnetic voice coil motofcancelley 5.68 N/A
L o(L,s)’ r. canceller speaker’s effective radius .06 m
Xa ~ mid-microphone location 1.095 m
The impedanceZ, is a quantitative measure of the manner i, canceller speaker location 2.32m

which the air outside the duct reacts against the sound waves=r

the duct. IfK+#0 ore, energy is radiated by the duct into the air.

Part of this radiated energy is real and propagates into the far-field

and the remainder is stored or reactive energy. The amount of

energy radiated results from the real partZgf and the reactive (defined below It can be seen that the end impedance changes in
energy results from the imaginary part @ . The open end nature from predominantly reactive to predominantly resistive as
boundary conditior(1) in the frequency domain is frequency increases. For the dimensions of our {Uable |, the
normalization parameters2a/c =0.0006r and so the normalized

p(L.s)=Z0(L.s), ®) frequency is 1 when the actual frequency is 537 Hz. It can be seen
where from the plot that there is a significant variation in both the real
and imaginary parts of the impedance over the frequency range
Zu(8)=pot Ty (4 0-200Hz
1-R The specific acoustic impedance of the ductxatL, Z (s),

given in Eq.(4), is approximated by a rational function in Ref.
[[14] pg. 123 using an electrical circuit analogy. The differential
equations that model this impedance are as follows. PFPfétﬁa is
the driving voltage P.(t) is capacitor voltage, andl,(t) is the
inductor current(Note thatP(t) andV(t) are equivalent to the
acoustic pressurp(L,t) and velocityv (L,t) respectively.

is the specific acoustic impedancef the end, andR is the re-
flection coefficient of the end of the duct. L&f,N4,l,,K; indi-
cate Bessel functions, the radius of the duck=2=f/c wheref
is the radiation frequency and is the wave propagation speed.
From Refs[9] and[[13], p. 1529, the analytical solution foR is

- _ |R|e2ik|

dP, 1\/1 1 1
where the end correctionand magnitud¢R| are defined as fol- e Pc( - E) (R_ + R_) “CR P, (5)
lows: ! 2 z
2 fkalog{ml(x)[(h(x))z N ()2 dVm _ P ©)
- 7 Jo X[(ka)Z_X2]ll2 dt M
1 (=log[ 1421 ,(0K1(x))] Vo= = P(t)+ L b)), @)
= fo X+ (ka2 X

The corresponding impedanél{L,s)/\?(s) of this model is

o X(kaZ—xTTE | (Ry+Rp)Ms+R;R,MCs?

ZL(S):“aZ(R TRy T (MIRR,CsirRMcg ©
Figure 2 shows the frequency dependent nature of the complex L v .
end impedance from Eq4) as well as the approximatio(8) The parameter values are as given in R&#], and are in Table 1.

R|-ex,3{_&ﬂ [l 0

x=0| X=Xa | x=xe | xa?  x=L|
| | | |
disturbance . ‘ !
loudspeaker !
mid canceller end
monitor microphone loudspeaker monitor microphone

Fig. 1 Acoustical duct system.
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The impedance of this rational approximation closely matchesThis condition implies that, when undriven, the loudspeaker

the original impedancdsee Fig. 2 The impedanceg8) will
henceforth be used as the impedance for the open end.

acts as a perfectly rigid end, with zero velocity. In fact, a loud-
speaker connected to an amplifier has compliance, mass and

3 Disturbance End Boundary Condition

damping even when undriven, and thus will not act as a perfectly

rigid end.
A loudspeaker diaphragm moves when voltage across the input

A loudspeaker is mounted at the disturbance end of the dutgrminals causes current flow in the voice coil. The voice coil is in
acting as a source of noise. It is a common approach in the litethe magnetic field of the permanent magnet and the current pro-
ture to impose the boundary condition of a closed end here. In thigces a driving force which moves the attached diaphragm, gen-
case, the loudspeaker is considered to be a volume velocdjating an acoustic pressure. Compliance, mass, and damping ex-
source, injecting a signalp(t), and the particle velocity in the jst in the loudspeaker from the spider and surround which attach

duct at the disturbance end is

Vp(1)
ma’l

v(0t)=

wherera? is the cross-sectional area of the duct.

N%rmalized Impedance [solid) and Approximation [dotted] vs. Normalized Frequency, Real and Imaginary Parts
10

the diaphragm to the frame. The movement of the voice coil
within the permanent magnetic field induces a voltage, called the
back EMF. The back EMF tends to oppose the driving voltage,
and is proportional to the diaphragm velocity. The loudspeaker
operates as a piston at low frequencies and can be modeled as a

9)
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Fig. 2 Normalized impedance Z,Ipoc (Solid) and the rational approximation to
Z,Ipgc(dashed). (For our duct, normalized frequency is  f/537.)
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simple mass-spring-damper system where the mass is that of th@.10Im andc=341 m/s, leading to a cutoff frequency of about
diaphragm and voice coil and the stiffness is due to the spider @89 Hz. Thus, at frequencies below 900 Hz this one-dimensional
surround. The effective cone mass, typically includes a con- model is valid.

tribution due to the reactive component of the air load on the front Let V(t) represent the total volume velociin m*/s) of the

and back of the loudspeaker diaphragm. We shall account for ti@nceller loudspeaker, distributed over a length & the duct at
discrepancy by using a effective value io, different from the locationx=x;. The volume velocity/(x,t) per unit length is

free-air value. 0 X< X T
The governing equations of the loudspeaker[atd], e.g] ) ' © ¢
F motor= (BD, (10) VD= Vel Tz e m (X0 e TeSxsxt
C
Vback:(BI)XD ) (11) O, XC+ rC<X
. Eb—Vback o . (20)
= TR L (12)  The volume velocity is related to the voltagg(t) applied to the
co! loudspeaker by a model identical to that described above for the
F=mpXp+kpxp+ApPp . (13) disturbance loudspeaker
The loudspeaker suspension mechanical damping has been ne- - Bl, .
glected in this model because it is dominated by the electrical Ve(s)= R.Z.(s) o(8), (21)

damping due td/,,c¢- Solving, we obtain where

MpXp(t) +dpXp(t) +KpXp(t) =g(t) —ApPp(1), (14) mes?+des+ k.

where  dp=[(B)%/Reoy],  Ap=ar3, and  g(t) Zo(S)=—— =2
= (BI/R.oi1) Ep(t) is the driving force of the loudspeaker. ¢

The loudspeaker is coupled to the duct by Equations(18) and (19) with the model for the open end at

=L (Egs.(5-7) and the loudspeaker model xt0 (Egs. (14—
ApXp(t)=ma’v(0t) (15) 16)) form a boundary value problem that fully describes the sound
dynamics in the duct. Regarding.(t) andEp(t) as external in-
puts, with state [§(x,t),v(x,t),Pc(t),Vm(t),Xp(t),Xp(t)), this
Pp(t)=p(0;), (16) boundary value problem is mathematically well-posed with state-
spacel,(0,L) X £,(0,L) X R* (Appendix A). This implies that the

and

wherev (X,t) is the particle velocity in the duct aru(x,t) is the ) -
pressure in the duct. controlled system with input&; andEp is well-posed.

Taking Laplace transforms of the loudspeaker model in E We now derive the transfer function. This will be used to verify
(14), we obtain the model by comparing the theoretical and experimental fre-
' quency responses. Assume that the duct is initially in a state of

. Bl . . rest. Taking Laplace transforms with respect to time of E#8)
App(0,s)= ﬁED(S)_Zo(S)U(OvS)v (I7)  and(19), and writing p(x,s) = £{p(x,1)}, etc., we obtain
where & s\? )
Prx(X) — E p(x)="1(x)
ra?
ZO(S):A_(mD52+dDS+kD) R —poS..
oS PuL)= 7 PL) (22)
is the mechanical impedance of the loudspeaker,E&s(@) is the - .
Laplace transform of the driving voltade,(t). 5.(0)= pos ApP(0)—g(s)
Note that when the loudspeaker is undrivef,(s)=0), the Px Po Zy(s) J

particle velocity atx=0, 0(0,s), is not necessarily zero. It is
dependent oz, the impedance of the loudspeaker, §{0,s).
The electrodynamic braking of the loudspeaker cone by its drivirég

amplifier's zero output impedance is modeled by this equation. ;. B, using a standard Green's-function method. Define

4 Duct Model N I T S NG Rt
The duct is considered to be a finite-length, hard-walled struc- @o(S)= Zo(S)+ poCho als)= Z(S)+poC

ture, with sound dissipation only at the ends. The pressure in the )
duct is a function of space and tingx,t), particle velocity is The transfer function that relates the pressure measuretbahe

v(x,t), and air density ip(x,t). voltage applied to the disturbance loudspeaker=a0 is

The following well-known equations describe the propagation Gd(x,s):e‘XS’CGdO(x,s), (23)
of sound in a one-dimensional duct, e.g., R&b]. HereV(x,t) is where
a volume velocity source per unit length of the duct due to the

wheref(x) = (— pos/ ma?)V(x,s), g(s)=(BI/Rcoi) Ep(S)-
The set of Eqs(22) is a linear boundary value problem fpras
function ofx. This boundary value problem is solved in Appen-

canceller loudspeaker, BlpoC(1+ a(s))
Gao(X,5)= 2RognZo(S)(1— —2Lslc
1 9p Jv 1 coil40 ag(s)a (s)e )
@t axPot oV, (18) X (1+ ar (5)e20 V) (510, (24)
J F) Defined(z)=2J(1,z)/z whereJ(1,z) indicates the Bessel func-
poﬁv(x,t): - &p(x,t). (19) tion of the first kind of order 1. The transfer function that relates

pressure measured atto the voltage applied to the canceller
The one-dimensional model used here assumes that the oalydspeaker ax=Xx. is
propagating waves are the axial plane waves. The transverse
waves attenuate rapidly and are neglected. For a circular duct of
radiusa, this assumption is valid for frequencies below the cutoff
frequency of 0.29&a [[16], Sec. 9.2 For our system, a where

B|pOC
2R.Z.(s)ma’(1— ag(s)ay (s)e 2-5°)

G(s),
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S S
(aL(S)e(*2L+x) (sle) 4 g (slc) X) exc(s/c)J( ,ircE) +a0(s)e*Xc(S/C>J( irca)) 0<X.=<X

G(s)= (25)

s s
aL(s)e(Xc’ZL)(S’C)J(—irce +e” (S’C)XCJ(ircg) (99 ag(s)e *99)  x=x.<L

The speaker cone radius is very small, and so the termKz) in the above function are close to the constant value 1 over the
frequency range of interest,-0600 Hz. Approximatingl(z) by the constant value 1, we obtain

Ge(x,5)=e Xl &OG  (s), (26)
where we define

B|p0C

R(s)= 2R.Z.(S)ma’(1— ay(S)a (s)e 2%’

27)

(1+ a (s)e2* D FO) (1 + qp(s)e™ e (59)  0<x.<x

: 28
(1+a ()€t D (9) (14 ay(s)e™ > (99)  x<x <L (28)

Geo(s)=R(s)

This is the same transfer function obtained if the canceller loudt the frequency range of interest to active noise control, up to
speaker is regarded as a point source of volume velocity locateda@ighly 400 Hz, the second-order loudspeaker métiél is seen
X=X, . The spatial distribution of this loudspeaker has a neglte be valid.
gible effect on the system frequency response over the frequencys previously discussed, it is a common practice in the litera-
range of interest. ture to apply a rigid end assumption to tke O boundary condi-
tion: Zy=o. For the purpose of experimentally validating the
simplified version of the transfer function wity =, a rigid end
. e was created by inserting a tightly-fitted wooden plug into the dis-
5 Experimental Verification turbance end of the duct, in place of the disturbance loudspeaker.
Our experimental duct setup, shown in Fig. 1, consisted of tidgures 4 and 5 display the frequency responses from the cancel-
following components. The duct itself, of length 3.54 m, is a PV®r speaker volume velocity to the midpoint pressure. In Fig. 4 the
1120 water pipe with an 8-in. nominal inner diameter, and a wahdx=0 is plugged to obtain a rigid end, while the data in Fig. 5
thickness of 0.375 in. The disturbance loudspeaker is a Philip&s obtained with the disturbance speaker in place, but undriven.
9710/M8 8.5-in. dimeter, 8-ohm, full-range driver which fitdt can be seen from the low-frequency disagreement that the rigid
snugly into the pipe’s coupling section. The canceller loudspeak@nd boundary condition is not appropriate when a speaker is used
is a Marsland “Linear B” 6.5-in., 8-ohm, high-compliance driverat the end. As can be seen in Fig. 4, agreement is very good up to
mounted with an adapter flange into the side of the duct atraughly 500 Hz, and still somewhat valid up to 700 Hz. This
distance of 2.32 m from the disturbance end. The reference aHdstrates the increased accuracy in the model obtained by using
error microphones are Panasonic miniature WM-63 electréfie frequency-dependent impedarnteat the open end.
pressure-responding capsules, with appropriate simple RC powerFigures 6-9 illustrate the four measured voltage to pressure
ing circuits. Each is mounted on a stiff wire so as to place tHgansfer functions, compared to the theoretical transfer function
capsule on the center line of the duct, at the positions of the nfigrived in Secs. 2—4. In all four figures, it can be seen that the
microphone(distance 1.095 m from the disturbance grahd end model agrees very well with the data in the region where the
microphone(in the plane of the open end, 3.54 m from the disloudspeaker model is valid, 50-500 Hz. Agreement is quite good
turbance end The open end of the duct is well away from acousHp to about 900 Hz.
tic obstructions. A dSPACE model DS1102 DSP Controller Board Figures 6 and 8 illustrate that the pressure atxkel end is
was used to obtain the frequency response in conjunction with theite significant, particularly at the natural frequencies of the duct.
dSPACE “Real-Time Interface” software which interfaces withThis illustrates the error of earlier models which assumed that

MATLAB (with Simulink and the Real-Time Workshpp pressure is 0 at=L.
From Eq.(14), the transfer function from drive voltage to cone
acceleration is 6 Conclusions
An improved analytical duct model has been experimentally
acone Bls? verified. The necessity of carefully modeling the boundary condi-
E = BI)2 : tions of the duct has been demonstrated.
D R.l mps2+ s+kp A theoretical and fully analytical solution to the open-end im-

pedance of the duct has been cited. An approximation of this
frequency-dependent impedance was coupled to the duct system,
As a validation of this loudspeaker model, the disturbance loudnd experimentally validated.
speaker acceleration to input voltage response was measured iA loudspeaker model was coupled to the duct system model at
free air. Figure 3 compares the measured to the theoretical ftee disturbance end, providing a better fit to experimental data
guency responses. than more simple boundary conditions. A loudspeaker model for
It can be seen that the measurement agrees well in magnittlde canceller signal was also included. Although this speaker has a
and phase with the loudspeaker model to 400 Hz. Beyond thienconstant frequency response, the spatial distribution of the
frequency value, the results bear no resemblance to the secepdaker was found to be insignificant over the frequency range of
order model. This can be understood by considering that tierest, 0-500 Hz.
model assumes piston-mode behavior on the part of the loud-The theoretical model is very accurate up to about 500 Hz, and
speaker. It is common for loudspeakers of this size to haveasonable up to the frequency where the one-dimensional as-
breakup modes occurring in the 400—600-Hz range. Nonethelesgmption breaks down, about 900 Hz.

coil
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Since the model is physics based, and the parameters are car- H=L(0L)X L(0L)X RXRXRXR.
ried through the model development, application of this model to
other experimental configurations should be straightforward. The
results obtained here for the one- dimensional duct can also be )
extended to analyze the three-dimensional problem, permitting the Hilbert spacét has inner product
study of active noise control for more complicated applications.

Active noise control implementations could exploit the mod-
eled transfer function. Good experimental agreement over the fre- 1 L
guency range 0—500 Hz permits the robust design of controllers ZvW>H:27f
with good performance. The model can be used in computer-base Cpo
controller design. In addition, accurate modeling of the feedback
path from canceller loudspeaker to monitor microphone would aid 4 kiDZ Wet @z W

H : ; H 2 <55 2466

the implementation of adaptive control strategies. Ta Ta

L
Z,W dx+ pof ZoWod X+ Czzws+ Mzaw,

0 0

Appendix A: State-Space Formulation

We will now show that the duct model is mathematically welLet I'; indicate function evaluation at=L, I'g function evalua-
posed. Define the state= H where tion atx=0. Define the operatoh on H

Magnitude — dB
8 & &

]

1000

Phase - radians

Fig. 3 Measured (dashed) and calculated (solid ) input voltage to loudspeaker cone accelera-
tion frequency responses.
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- P -
0 7p0C2a—X 0 0 O 0 D(A)=1{z,eHY(0L),z,e HY(OL),zy(L)
19 1 1 Ap
g X 0 0 0 0 0 :R—Zzl(L)+ R—223+z4,22(0):77—azze .
1 1/1 1 N .
_ r. 0 ——|—+—] 0 O 0 To simplify the development of the state-space formulation, the
A= CR; C\R; Ry canceller speaker volume velocity,(t) and the disturbance
1 speaker voltageEp(t) are set to zero. The partial differential
MFL 0 0 0 O 0 equations for the duct noig@8)—(19), the loudspeaker equations
(14)—(16) and Egs.(5)—(7) describing the behavior at the open
0 0 0 0 O 1 end can be written ag(t) e D(A) with
A k d
_ iro 0 0 o__b _-b dz
L mD mD mD- a 7Az(t)|
with domain where the state(t) e H is

Magnitude — dB

Phase - radians
\
S

|
-
o

-20

-25

Fig. 4 Measured (dashed) and calculated (solid ) canceller speaker to mid microphone fre-
guency responses, with rigid plug at  x=0.
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p(x,t) (1) ReAZ2), <0 for ze D(A),
v(x,t) (2) Range Il —A)=%H for somex.

P.(t) (1) We will first show that RéAzz),,<0, for anyze D(A),
z(t)=
Pm(t)
Xp(t) . . 1
Xp(t) (Az,2)y= *J Zézdxfj 2,Z,dx— EZI(L)Z
We will use the Lumer-Phillips Theorefe.g., Ref[17]) to show 0 0 2
thatA generates a strongly continuous semigrefipon H. Thus, /
A - ; ; - 1 1 _ ko _
for every initial conditionz(0) e H there is a unique solution to - R7+ R7) |25|2+ 21 (L)Zy+ —5 7625
1 2 ma

the system of differential equations that depends continudqirsly
the H norm) on z(0). This will also show that the semigroup is A K d
dissipative and so if there is no disturbance voltage or canceller -2z (0)zZg— 2 27— —
. 241 6 24546 2
speaker volume velocity, then ma 7a 7a
Iz =<llz(0)ll, t=0.

This will be done by showing that Integrating the first integral by parts,

|26/%.

110

100

Magnitude - dB

Phase - radians

1 i ] ) ; 1 i ! A\
[ 100 200 300 400 500 600 700 800 900 1000
Hz

-25

Fig. 5 Measured (dashed) canceller speaker to mid microphone frequency response, with
loudspeaker at x=0. Calculation is with rigid.

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2003, Vol. 125 / 389



Re(Az,2) = Re[ —25(L)z5(L) +2,(0)2,(0)

|23 2+ 24(L)z4

1 V2o ( 1 N 1

R7221( )Z3 R TR,

Ap — dp
221(0)267_‘_612262]-

ma

Now apply the boundary conditions D(A):
1 ) 1 — —
Re(Az,z);=Re — R7|21(L)| - ﬁzszl(L)_Z421(L)
2 2

I L*(l+1) 2
ﬁzszl() szzl( )Z3 R, R*2|23\

+2z1(L)z4— ﬁzl(O)zef gy |26/

=R ! L)+ za|? L
= R72|Zl() z3 R71|23‘

dp
ma’

2.
Thus,
Re(Az,z),<0
for all ze D(A).
(20 We now show that Range |(A)=H. Let vy

=(b,1,¥1,Y2,Y3,Ya) be any element of{. We need to findz
e D(A) so that
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Fig. 6 Measured (dashed) and calculated (solid ) disturbance speaker to end microphone

frequency responses.
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—Az=y.

Definez as follows

X
Zl:pofl_ H(s)ds—My,,

L ge PO
Zz—ﬁ Od’(s) S Eys,

Zg= "Y3-

It can easily be verified thate D(A) and that
—Az=y.

This completes the proof.

Appendix B: Transfer Function Solution

Here we provide a brief derivation of the relevant transfer func-
tions. Further details can be found in Rgf$8,19. Consider the
differential equation in variablg,

c 1 . 1 ) 1[ . M }
=Ulg T YiT =5 Y2,
Ry R CR
b i Gy (LX) —K*G(£,x)=8({~X), (29)
z,=2,(L)— izl(L)f — wherek= s/c. Let G be the generalized solution to this second-
Rz R, order ordinary differential equatiof©DE)
~Mp Ap 01+ Ae+Be ® 0=¢=x
Z5= kD Ya MDzl( ) mDY3 ’ G(LX): Cekg_‘,_De—kg XSgSL (30)
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Fig. 7 Measured (dashed) and calculated (solid) disturbance speaker to mid microphone

frequency responses.
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The choice of coefficienta, B, C, D is made using the boundary G(L,X)px(L) =G (L,x)p(L) —G(0x)px(0)
conditions, so that pressup€x) can be calculated frors({,x).

To this end, examine the integral L

+G;(0,X)IO(0)+J P(O[G (&%) —K°G(¢,X)]d.

0

L L
fo f(HG(L.x)dl= fo G(¢X) (P (&) —K*p(£))d¢.

Integrating the right-hand side by parts, gives Substituting the conditions in Eq&2) and (29) we obtain
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Fig. 8 Measured (dashed) and calculated (solid ) canceller speaker to end microphone frequency responses.
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2

JLfmG(g )dg [G(L >7”°S) GA(LX)|p(L) Zo=T2 (mps?+ dpst kp)
,X)dd= X ]| — ,X =——(mpSs s ,
0 Zu(s))  CeRP 0= pzs (Mos™+ dostko
—AppoS!
+ G(O,x)( > )+Gg(0,x) p(0) A (R;+Ry)Ms+R;R,MCs?
o(S) L™ T8 R+ Ry)+(M+R;R,C)s+ RMC&"’
G(0X)pos
WQ(S)JFD(X% (31) . Bl i
an S)= .
where g Reoil °
40 1 i 1 1 1| i 1 Ll 1
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Fig. 9 Measured (dashed) and calculated (solid ) canceller speaker to mid microphone frequency responses.
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To eliminate the first two terms on the right-hand side of Edzrom Eqs.(35) and(36) we obtain that

(31), we choose the following conditions d&
B=«agA, where aO=ZO(S)_—pOCAD (39)
s )
G(LX) —C- £ G,(Lx)=0, (32) Zo(S)+poChp
Z.(s) and
poSAp Z,(S)~ poC
G(0X) =—— —G40x)=0. 33 — . a—2Lk _ 2t Fo
(0x) Zs05) I (33) C=a, e 2¥D, where a, ACETS (40)
Now, examine the equation From EQgs.(37) and(39) it follows that
G (LX) —K?G(£,x)=8({~X), L
. . . (C-A)=e ¥ (42)
which when integrated frorg=x_ to x, gives 2k
« , [* and
- (B—D)= 5 e (42)

Since we assume th&i(Z,x) is continuous at =x, the second
term on the left equals zero, and thus we have the condition Combining the above equations, we solve farB, C, D to

X5 _ obtain
GL Xl =1. (34) T
Equations(33), (32), and(34) respectively imply that A= 2k(aga e ¥ —1)°
—(A+B) ’)Z(’SAD +k(A—B)=0, (35) _ aglae e e
o(s) 2K(agare AF—1)
(Cét+De ) L2 k(ce—De k)=0,  (36) oo e (e age )
Z.(s) 2K(agaLe 2F—1)
Cké*—Dke ¥~ Ake*+Bke ¥*=1. (37) e
The continuity of G(¢,x) at {=x implies D= 2k(aga e 2tk —1)"
Ae*+Be *=Ce*+De ¥ (38) Thus
|
(aLe—ZLkekx+e—kX)(ek§+ aoe—ki) 0=/(=<x
G({,x)= 2K 2Tk “2LKakE o kY (kX —kx ' (43)
I 1) | (ae e“t+e )(eNtae ) x=(¢=<L
I
So, from Eq.(31), —pos (Xt
GCU(S7X1XC):TJ' 2vr§_(§_xc)26(§,x)d§,
—G(0x)pos L AT ¢ Sy,
p(x)= Z—Og(SH . f(OGx)dZ.  (44) (46)

here G is as defined in Eq(43). For x.+r.<x, substitute

From Eg.(44) it can be seen that the transfer function thag(év x) into Eq. (46) to obtain, writingk= s/c

relates the pressure measuredxab the voltage applied to the

disturbance loudspeaker xat0 is Gey(8,X,%0) _poc 1
P(X)|v,=0 Ve malar2 2(1— aga e 2K
—————=Gy(s,x,0),

Epn(s) ol ) X (a e 2kt gk T,
poC Bl (1+ap)(a ¥ +e™™) where
where Gy(s,x,00= ——
o Zo Root 2(1— apay)
Similarly, the transfer function that relates pressure measured at 1= f 2\re—(L—x)*(e+ age  )dy. (47)

X to the total volume velocity/. generated by the canceller loud- Xe~lo

speaker ak=Xx is We need to calculate the integfl Using the change of variables
GCU(S,X,XC):%' {=X.+r.cosf, d{=-r.sinodo, (48)

C
where, lettingV indicate the Laplace transform ¥(x,t), I:2r§exckf ekrcost gir2 o g
0
L —pos..
GCU(Si)(!XC)VC= aZ V( gis)G(ng)dg (45) 2 K ™ K )
o +2rie *kay | e kreosigin?ade. (49)
0
We now evaluate the integréd5). Substituting in the definition
of V(¢,s), we obtain From a standard table of integrals
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' . Using the substitutiori48), we obtain as above
f e'ka cost sir? gd 9= k—qJ(l,kq), (50)
0 J(1,—ikry) J(1jikre)

T= 2 —2Lk Xck2.—0+ —Xck2.—
where J(1) is the Bessel function of the first kind of order 1 e L@ € —ikr, € ikr.
evaluated ak. Thus, (52)

J(1,—ikry) J(L,ikre) Define J(z) =2J(1,z)/z. Substituting Egs(51) or (52) as ap-
2] axck c —xck c ’
I=mrg &2 Tikr, T @0® 2 ikr, (1) propriate into Eq(46), we obtain that
Similarly, for x<x.—r., we need to evaluate poC -
XetTe > 5k oLk ch(srxc)_ 277a2(1*a0(s)a|_(s)e’2" S/C) G(S)’
I= 2\ri—(L—xo)%(e X+ o e 2kekhydg.
X~ T where
|
S S
(aL(S)e(‘2L+X) (sle) 4 @~ (s/c)X) eXc (o)) _irCE +a0(S)e_x°(S/°)J(il’cE)) 0<X <X
G(s)= (53)

(aL(s)e(xc—2L) (sl)y

—ir S +e” (FO%g| jr S
‘e ‘c

(€99 + ag(s)e *99)  x=x.<L

Using the loudspeaker mod&21), we obtain the overall transfer function from canceller speaker voltage to acoustic pr@&ure
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