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An Improved Acoustic Model
for Active Noise Control in a Duct
This paper presents a model of sound propagation in a duct, for the purpose of a
noise control. A physical model generally different from those explored in much o
literature is derived, with non-constant acoustic load impedance at the one end, a
coupled disturbance loudspeaker model at the other end. Experimental results are
sented which validate the derived transfer function.@DOI: 10.1115/1.1592192#
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1 Introduction
Various control techniques have been applied to the problem

active noise control including feedback and feedforward al
rithms, utilizing both adaptive and robust designs@1#. Inherent in
most control methodologies is the need to model the system t
controlled. The sensor~s!, actuator~s!, and the acoustic behavior o
the path between the disturbance and location of noise contro
need to be included. With the aid of a valid mathematical mod
one can better understand system behavior in the face of chan
system parameters. Also, accurate determination of system be
ior allows high-performance controller designs since the pot
tially destabilizing path from actuator to sensor is modeled. F
thermore, an accurate model leads to computer simulations
can be used to predict experimental performance.

The physical system is shown in Fig. 1. It is a rigid duct
lengthL with a source loudspeaker at one end (x50) and open at
the other (x5L), herein called thedisturbanceand open ends,
respectively. The duct has a circular cross section of radiusa and
spatial coordinatex. There is a sensor microphone located ax
5xa and a canceller loudspeaker located atx5xc . The param-
eters for the experimental apparatus used are in Table 1.

Modelling the propagation of sound in a duct is a classic pr
lem and under common low-frequency assumptions, the so
waves propagating in a rigid tube are planar, or one dimensio
in nature@@2#, p. 38#. Various boundary conditions are employe
in the literature.

One such approach@3# is to model both ends as perfectly ope
by setting the pressures equal to zero. This is an unrealizable
where no sound at all escapes from the ends of the duct an
inappropriate for application to active noise control, because
amount of sound escaping from the open end is often the qua
to be controlled. In Refs.@4–8# a mixed absorptive/reflective
boundary condition is used at the open end of the duct. This le
to a nonzero constant impedance. However, the analytical solu
for the open end impedance of a duct@9# demonstrates that th
impedance is highly frequency dependent. Thus, the physic
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sound propagation in a tube show that, although small, the p
surep(x,t) is not zero at an open end and that the impedanc
strongly frequency dependent. Hu@10# derives a transfer function
for a duct with variable impedances at each end. No model for
impedances is given. Also, a time-domain interpretation for
model is not provided.

The boundary condition at the disturbance end of the duc
also treated in a variety of ways in the literature. The disturba
loudspeaker has been considered to be a source of pressure@4,7#.
However, a loudspeaker is closer to a volume velocity source t
a pressure source. The disturbance speaker cone velocity ca
used as the input to the duct transfer function. This approac
explored in Refs.@11,12#. Feedback is introduced to a loudspeak
so that its response is close to that of a pure volume velo
source. This approach does not include the interaction betwee
loudspeaker and the duct. Even when undriven, the loudspe
acts as a mechanical mass-spring-damper system and there is
pling between the duct and the loudspeaker. Thus, a system m
which assumes a pure pressure or volume velocity source neg
this coupling. A full electromechanical model of the loudspeak
should be coupled to the duct model to properly represent
disturbance end.

In this paper, a duct model is developed. First, we cite
analytic solution to the frequency-dependent impedance of
open end of the duct@9,13#. This model is coupled to the duc
system as the open end boundary condition. Next, a model
dynamic loudspeaker is coupled to the duct system as a so
end boundary condition. A classic one-dimensional model
sound propagation inside the duct will be given, and the fu
coupled system will then be solved in the frequency domain.
perimental results are presented that validate the derived mod
the duct system.

2 Open End Boundary Condition
The open end of the duct results in a partially reflective a

partially absorptive boundary condition. If the amount of refle
tion is independent of frequency, the boundary condition can
written in the time domain as@8#

p~L,t !

v~L,t !
5Kr0c, (1)01;
© 2003 by ASME Transactions of the ASME
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wherep(x,t) andv(x,t) represent pressure and velocity, respe
tively, r0 is the density of the medium andc is the speed of sound
in the medium. The quantityr0c is the specific acoustic imped
ance for free propagation in the medium.

WhenK50, this is equivalent to the zero-pressure model of
open end atx5L where the wave is totally reflected but inverte
and whenK5`, this is equivalent to a closed end atx5L where
the wave is totally reflected without inversion. WhenK51, the
end impedance of the duct is equal to the medium’s spec
acoustic impedance, and as such the wave is totally transmi
analogous to a semi-infinite duct.

Let p̂(L,s) indicate the Laplace transform ofp(L,t), and de-
fine v̂(L,s) similarly. The specific acoustic impedance of the op
end of the duct is

ZL~s!5
p̂~L,s!

v̂~L,s!
. (2)

The impedanceZL is a quantitative measure of the manner
which the air outside the duct reacts against the sound wave
the duct. IfKÞ0 or `, energy is radiated by the duct into the a
Part of this radiated energy is real and propagates into the far-
and the remainder is stored or reactive energy. The amoun
energy radiated results from the real part ofZL and the reactive
energy results from the imaginary part ofZL . The open end
boundary condition~1! in the frequency domain is

p̂~L,s!5ZLv̂~L,s!, (3)

where

ZL~s!5r0c
11R

12R
(4)

is the specific acoustic impedanceof the end, andR is the re-
flection coefficient of the end of the duct. LetJ1 ,N1 ,I 1 ,K1 indi-
cate Bessel functions,a the radius of the duct,k52p f /c wheref
is the radiation frequency andc is the wave propagation spee
From Refs.@9# and@@13#, p. 1529#, the analytical solution forR is

R52uRue2ikl ,

where the end correctionl and magnitudeuRu are defined as fol-
lows:

l 5
a

p E
0

ka log$pJ1~x!@~J1~x!!21~N1~x!!2#1/2%

x@~ka!22x2#1/2 dx

1
1

p E
0

` log@1/~2I 1~x!K1~x!!#

x@x21~ka!2#1/2 dx,

uRu5expH 2
2ka

p E
0

ka tan21~J1~x!/N1~x!!

x@~ka!22x2#1/2 dxJ .

Figure 2 shows the frequency dependent nature of the com
end impedance from Eq.~4! as well as the approximation~8!
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~defined below!. It can be seen that the end impedance change
nature from predominantly reactive to predominantly resistive
frequency increases. For the dimensions of our duct~Table I!, the
normalization parameter 2pa/c 50.0006p and so the normalized
frequency is 1 when the actual frequency is 537 Hz. It can be s
from the plot that there is a significant variation in both the re
and imaginary parts of the impedance over the frequency ra
0–500 Hz.

The specific acoustic impedance of the duct atx5L, ZL(s),
given in Eq.~4!, is approximated by a rational function in Re
@@14# pg. 122# using an electrical circuit analogy. The differenti
equations that model this impedance are as follows. HereP(t) is
the driving voltage,Pc(t) is capacitor voltage, andVm(t) is the
inductor current.~Note thatP(t) and V(t) are equivalent to the
acoustic pressurep(L,t) and velocityv(L,t) respectively.!

dPc

dt
5PcS 2

1

CD S 1

R1
1

1

R2
D2

1

CR2
P, (5)

dVm

dt
5

P~ t !

M
, (6)

V~ t !5
1

R2
P~ t !1

1

R2
Pc~ t !1Vm~ t !. (7)

The corresponding impedanceP̂(L,s)/V̂(s) of this model is

ZL~s!5pa2
~R11R2!Ms1R1R2MCs2

~R11R2!1~M1R1R2C!s1R1MCs2 . (8)

The parameter values are as given in Ref.@14#, and are in Table 1.

Table 1 Parameters

L duct length 3.54 m
a duct radius .101m
r density of air 1.20 km/m3

c speed of sound in air 341 m/s
R2 end impedance parameter r0c/pa2 mks ac.V
R1 end impedance parameter 0.504R2 mks ac.V
C end impedance parameter 5.44a3/r0c2 m5/N
M end impedance parameter 0.1952r0 /a kg/m4

mD disturbance speaker’s cone effective mass .015 kg
kD disturbance speaker’s cone suspension stiffness 810.87 N/m
Rcoil electrical resistance of voice coil~disturbance! 6.0 V
Bl B• l magnetic voice coil motor~disturbance! 5.6 N/A
r d disturbance speaker’s effective radius .087 m
mc canceller speaker effective mass .006394 kg
kc canceller speaker stiffness parameter 673.7 N/m
Rc electrical resistance of voice coil~canceller! 6.05V
Blc B• l magnetic voice coil motor~canceller! 5.68 N/A
r c canceller speaker’s effective radius .06 m
xa mid-microphone location 1.095 m
xc canceller speaker location 2.32 m
Fig. 1 Acoustical duct system.
SEPTEMBER 2003, Vol. 125 Õ 383
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The impedance of this rational approximation closely matc
the original impedance~see Fig. 2!. The impedance~8! will
henceforth be used as the impedance for the open end.

3 Disturbance End Boundary Condition
A loudspeaker is mounted at the disturbance end of the d

acting as a source of noise. It is a common approach in the lit
ture to impose the boundary condition of a closed end here. In
case, the loudspeaker is considered to be a volume velo
source, injecting a signalVD(t), and the particle velocity in the
duct at the disturbance end is

v~0,t !5
VD~ t !

pa2 , (9)

wherepa2 is the cross-sectional area of the duct.
384 Õ Vol. 125, SEPTEMBER 2003
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This condition implies that, when undriven, the loudspea
acts as a perfectly rigid end, with zero velocity. In fact, a lou
speaker connected to an amplifier has compliance, mass
damping even when undriven, and thus will not act as a perfe
rigid end.

A loudspeaker diaphragm moves when voltage across the i
terminals causes current flow in the voice coil. The voice coil is
the magnetic field of the permanent magnet and the current
duces a driving force which moves the attached diaphragm, g
erating an acoustic pressure. Compliance, mass, and dampin
ist in the loudspeaker from the spider and surround which att
the diaphragm to the frame. The movement of the voice c
within the permanent magnetic field induces a voltage, called
back EMF. The back EMF tends to oppose the driving volta
and is proportional to the diaphragm velocity. The loudspea
operates as a piston at low frequencies and can be modeled
Fig. 2 Normalized impedance ZL Õr0c „Solid … and the rational approximation to
ZL Õr0c „dashed …. „For our duct, normalized frequency is f Õ537.…
Transactions of the ASME
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simple mass-spring-damper system where the mass is that o
diaphragm and voice coil and the stiffness is due to the spider
surround. The effective cone massmD typically includes a con-
tribution due to the reactive component of the air load on the fr
and back of the loudspeaker diaphragm. We shall account for
discrepancy by using a effective value formD different from the
free-air value.

The governing equations of the loudspeaker are@@14#, e.g.#

Fmotor5~Bl !i , (10)

Vback5~Bl !ẋD , (11)

i 5
ED2Vback

Rcoil
, (12)

F5mDẍD1kDxD1ADPD . (13)

The loudspeaker suspension mechanical damping has bee
glected in this model because it is dominated by the electr
damping due toVback. Solving, we obtain

mDẍD~ t !1dDẋD~ t !1kDxD~ t !5g~ t !2ADPD~ t !, (14)

where dD5@(Bl)2/Rcoil#, AD5pr D
2 , and g(t)

5 (Bl/Rcoil) ED(t) is the driving force of the loudspeaker.
The loudspeaker is coupled to the duct by

ADẋD~ t !5pa2v~0,t ! (15)

and

PD~ t !5p~0,t !, (16)

wherev(x,t) is the particle velocity in the duct andp(x,t) is the
pressure in the duct.

Taking Laplace transforms of the loudspeaker model in
~14!, we obtain

ADp̂~0,s!5
Bl

Rcoil
ÊD~s!2Z0~s!v̂~0,s!, (17)

where

Z0~s!5
pa2

ADs
~mDs21dDs1kD!

is the mechanical impedance of the loudspeaker, andÊD(s) is the
Laplace transform of the driving voltageED(t).

Note that when the loudspeaker is undriven (ÊD(s)50), the
particle velocity atx50, v̂(0,s), is not necessarily zero. It is
dependent onZ0 , the impedance of the loudspeaker, andp̂(0,s).
The electrodynamic braking of the loudspeaker cone by its driv
amplifier’s zero output impedance is modeled by this equation

4 Duct Model
The duct is considered to be a finite-length, hard-walled str

ture, with sound dissipation only at the ends. The pressure in
duct is a function of space and timep(x,t), particle velocity is
v(x,t), and air density isr(x,t).

The following well-known equations describe the propagat
of sound in a one-dimensional duct, e.g., Ref.@15#. HereV(x,t) is
a volume velocity source per unit length of the duct due to
canceller loudspeaker,

1

c2

]p

]t
52

]v
]x

r01
1

pa2 r0V~x,t !, (18)

r0

]

]t
v~x,t !52

]

]x
p~x,t !. (19)

The one-dimensional model used here assumes that the
propagating waves are the axial plane waves. The transv
waves attenuate rapidly and are neglected. For a circular du
radiusa, this assumption is valid for frequencies below the cut
frequency of 0.293c/a @@16#, Sec. 9.2#. For our system, a
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50.101m andc5341 m/s, leading to a cutoff frequency of abo
989 Hz. Thus, at frequencies below 900 Hz this one-dimensio
model is valid.

Let Vc(t) represent the total volume velocity~in m3/s) of the
canceller loudspeaker, distributed over a length 2r c of the duct at
locationx5xc . The volume velocityV(x,t) per unit length is

V~x,t !55
0, x,xc2r c

Vc~ t !
2

pr c
2 Ar c

22~x2xc!
2, xc2r c<x<xc1r c

0, xc1r c,x

.

(20)

The volume velocity is related to the voltageEc(t) applied to the
loudspeaker by a model identical to that described above for
disturbance loudspeaker

V̂c~s!5
Blc

RcZc~s!
Êc~s!, (21)

where

Zc~s!5
mcs

21dcs1kc

pr c
2s

.

Equations~18! and ~19! with the model for the open end atx
5L ~Eqs. ~5–7!! and the loudspeaker model atx50 ~Eqs. ~14–
16!! form a boundary value problem that fully describes the sou
dynamics in the duct. RegardingVc(t) andED(t) as external in-
puts, with state (p(x,t),v(x,t),Pc(t),Vm(t),xD(t),ẋD(t)), this
boundary value problem is mathematically well-posed with sta
spaceL2(0,L)3L2(0,L)3R4 ~Appendix A!. This implies that the
controlled system with inputsEc andED is well-posed.

We now derive the transfer function. This will be used to ver
the model by comparing the theoretical and experimental
quency responses. Assume that the duct is initially in a state
rest. Taking Laplace transforms with respect to time of Eqs.~18!
and ~19!, and writing p̂(x,s)5L$p(x,t)%, etc., we obtain

p̂xx~x!2S s

cD 2

p̂~x!5 f ~x!

p̂x~L !5
2r0s

ZL~s!
p̂~L !

p̂x~0!5r0sS ADp̂~0!2g~s!

Z0~s! D 6 , (22)

where f (x)5 (2r0s/pa2)V̂(x,s), g(s)5(Bl/Rcoil)ÊD(s).
The set of Eqs.~22! is a linear boundary value problem forp̂ as

a function ofx. This boundary value problem is solved in Appe
dix B, using a standard Green’s-function method. Define

a0~s!5
Z0~s!2r0cAD

Z0~s!1r0cAD
and aL~s!5

ZL~s!2r0c

ZL~s!1r0c
.

The transfer function that relates the pressure measured atx to the
voltage applied to the disturbance loudspeaker atx50 is

Gd~x,s!5e2x s/cGdo~x,s!, (23)

where

Gdo~x,s!5
Blr0c~11a0~s!!

2RcoilZ0~s!~12a0~s!aL~s!e22L s/c!

3~11aL~s!e2(x2L) ~s/c!!. (24)

DefineJ(z)52J(1,z)/z whereJ(1,z) indicates the Bessel func
tion of the first kind of order 1. The transfer function that relat
pressure measured atx to the voltage applied to the cancelle
loudspeaker atx5xc is

Blr0c

2RcZc~s!pa2~12a0~s!aL~s!e22L s/c!
G̃~s!,

where
SEPTEMBER 2003, Vol. 125 Õ 385
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G̃~s!5H ~aL~s!e(22L1x) ~s/c!1e2 ~s/c! x!S exc ~s/c!JS 2 ir c

s

cD1a0~s!e2xc ~s/c!JS ir c

s

cD D 0,xc<x

S aL~s!e(xc22L) ~s/c!JS 2 ir c

s

cD1e2 ~s/c! xcJS ir c

s

c D D ~ex~s/c!1a0~s!e2x ~s/c!! x<xc,L

. (25)

The speaker cone radiusr c is very small, and so the termsJ(z) in the above function are close to the constant value 1 over
frequency range of interest, 02500 Hz. ApproximatingJ(z) by the constant value 1, we obtain

Gc~x,s!5e2ux2xcu ~s/c!Gco~s!, (26)

where we define

R~s!5
Blr0c

2RcZc~s!pa2~12a0~s!aL~s!e22L s/c!
, (27)

Gco~s!5R~s!H ~11aL~s!e2(x2L) ~s/c!!~11a0~s!e22xc ~s/c!! 0,xc<x

~11aL~s!e2(xc2L) ~s/c!!~11a0~s!e22x ~s/c!! x<xc,L
. (28)
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This is the same transfer function obtained if the canceller lo
speaker is regarded as a point source of volume velocity locate
x5xc . The spatial distribution of this loudspeaker has a ne
gible effect on the system frequency response over the frequ
range of interest.

5 Experimental Verification
Our experimental duct setup, shown in Fig. 1, consisted of

following components. The duct itself, of length 3.54 m, is a PV
1120 water pipe with an 8-in. nominal inner diameter, and a w
thickness of 0.375 in. The disturbance loudspeaker is a Ph
9710/M8 8.5-in. dimeter, 8-ohm, full-range driver which fi
snugly into the pipe’s coupling section. The canceller loudspea
is a Marsland ‘‘Linear B’’ 6.5-in., 8-ohm, high-compliance drive
mounted with an adapter flange into the side of the duct a
distance of 2.32 m from the disturbance end. The reference
error microphones are Panasonic miniature WM-63 elect
pressure-responding capsules, with appropriate simple RC po
ing circuits. Each is mounted on a stiff wire so as to place
capsule on the center line of the duct, at the positions of the
microphone~distance 1.095 m from the disturbance end!, and end
microphone~in the plane of the open end, 3.54 m from the d
turbance end!. The open end of the duct is well away from acou
tic obstructions. A dSPACE model DS1102 DSP Controller Bo
was used to obtain the frequency response in conjunction with
dSPACE ‘‘Real-Time Interface’’ software which interfaces wi
MATLAB ~with Simulink and the Real-Time Workshop!.

From Eq.~14!, the transfer function from drive voltage to con
acceleration is

âcone

ÊD

5
Bls2

RcoilS mDs21
~Bl !2

Rcoil

s1kDD .

As a validation of this loudspeaker model, the disturbance lo
speaker acceleration to input voltage response was measur
free air. Figure 3 compares the measured to the theoretical
quency responses.

It can be seen that the measurement agrees well in magn
and phase with the loudspeaker model to 400 Hz. Beyond
frequency value, the results bear no resemblance to the se
order model. This can be understood by considering that
model assumes piston-mode behavior on the part of the lo
speaker. It is common for loudspeakers of this size to h
breakup modes occurring in the 400–600-Hz range. Nonethe
386 Õ Vol. 125, SEPTEMBER 2003
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in the frequency range of interest to active noise control, up
roughly 400 Hz, the second-order loudspeaker model~14! is seen
to be valid.

As previously discussed, it is a common practice in the lite
ture to apply a rigid end assumption to thex50 boundary condi-
tion: Z05`. For the purpose of experimentally validating th
simplified version of the transfer function withZ05`, a rigid end
was created by inserting a tightly-fitted wooden plug into the d
turbance end of the duct, in place of the disturbance loudspea
Figures 4 and 5 display the frequency responses from the can
ler speaker volume velocity to the midpoint pressure. In Fig. 4
endx50 is plugged to obtain a rigid end, while the data in Fig
was obtained with the disturbance speaker in place, but undri
It can be seen from the low-frequency disagreement that the r
end boundary condition is not appropriate when a speaker is u
at the end. As can be seen in Fig. 4, agreement is very good u
roughly 500 Hz, and still somewhat valid up to 700 Hz. Th
illustrates the increased accuracy in the model obtained by u
the frequency-dependent impedanceZL at the open end.

Figures 6–9 illustrate the four measured voltage to press
transfer functions, compared to the theoretical transfer func
derived in Secs. 2–4. In all four figures, it can be seen that
model agrees very well with the data in the region where
loudspeaker model is valid, 50–500 Hz. Agreement is quite g
up to about 900 Hz.

Figures 6 and 8 illustrate that the pressure at thex5L end is
quite significant, particularly at the natural frequencies of the du
This illustrates the error of earlier models which assumed t
pressure is 0 atx5L.

6 Conclusions
An improved analytical duct model has been experimenta

verified. The necessity of carefully modeling the boundary con
tions of the duct has been demonstrated.

A theoretical and fully analytical solution to the open-end im
pedance of the duct has been cited. An approximation of
frequency-dependent impedance was coupled to the duct sys
and experimentally validated.

A loudspeaker model was coupled to the duct system mode
the disturbance end, providing a better fit to experimental d
than more simple boundary conditions. A loudspeaker model
the canceller signal was also included. Although this speaker h
nonconstant frequency response, the spatial distribution of
speaker was found to be insignificant over the frequency rang
interest, 0–500 Hz.

The theoretical model is very accurate up to about 500 Hz,
reasonable up to the frequency where the one-dimensiona
sumption breaks down, about 900 Hz.
Transactions of the ASME
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Since the model is physics based, and the parameters are
ried through the model development, application of this mode
other experimental configurations should be straightforward.
results obtained here for the one- dimensional duct can also
extended to analyze the three-dimensional problem, permitting
study of active noise control for more complicated application

Active noise control implementations could exploit the mo
eled transfer function. Good experimental agreement over the
quency range 0–500 Hz permits the robust design of contro
with good performance. The model can be used in computer-b
controller design. In addition, accurate modeling of the feedb
path from canceller loudspeaker to monitor microphone would
the implementation of adaptive control strategies.

Appendix A: State-Space Formulation
We will now show that the duct model is mathematically w

posed. Define the statezPH where
Journal of Dynamic Systems, Measurement, and Control
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H5L2~0,L !3L2~0,L !3R3R3R3R.

The Hilbert spaceH has inner product

^z,w&H5
1

c2ro
E

0

L

z1w̄1dx1roE
0

L

z2w̄2dx1Cz3w̄31Mz4w̄4

1
kD

pa2 z5w̄51
mD

pa2 z6w̄6 .

Let GL indicate function evaluation atx5L, G0 function evalua-
tion at x50. Define the operatorA on H
Fig. 3 Measured „dashed … and calculated „solid … input voltage to loudspeaker cone accelera-
tion frequency responses.
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n

A53
0 2roc2

]

]x
0 0 0 0

2
1

ro

]

]x
0 0 0 0 0

2
1

CR2
GL 0 2

1

C S 1

R1
1

1

R2
D 0 0 0

1

M
GL 0 0 0 0 0

0 0 0 0 0 1

2
AD

mD
G0 0 0 0 2

kD

mD
2

dD

mD

4
with domain
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D~A!5H z1PH1~0,L !,z2PH1~0,L !,z2~L !

5
1

R2
z1~L !1

1

R2
z31z4 ,z2~0!5

AD

pa2 z6J .

To simplify the development of the state-space formulation,
canceller speaker volume velocityVc(t) and the disturbance
speaker voltageED(t) are set to zero. The partial differentia
equations for the duct noise~18!–~19!, the loudspeaker equation
~14!–~16! and Eqs.~5!–~7! describing the behavior at the ope
end can be written asz(t)PD(A) with

dz

dt
5Az~ t !,

where the statez(t)PH is
Fig. 4 Measured „dashed … and calculated „solid … canceller speaker to mid microphone fre-
quency responses, with rigid plug at xÄ0.
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s

z~ t !5F p~x,t !
v~x,t !
Pc~ t !
Pm~ t !
xD~ t !
ẋD~ t !

G .

We will use the Lumer-Phillips Theorem~e.g., Ref.@17#! to show
thatA generates a strongly continuous semigroupeAt on H. Thus,
for every initial conditionz(0)PH there is a unique solution to
the system of differential equations that depends continuously~in
the H norm! on z(0). This will also show that the semigroup i
dissipative and so if there is no disturbance voltage or cance
speaker volume velocity, then

iz~ t !iH<iz~0!iH , t>0.

This will be done by showing that
Journal of Dynamic Systems, Measurement, and Control
ller

~1! Rê Az,z&H<0 for zPD(A),
~2! Range (lI 2A)5H for somel.

~1! We will first show that RêAz,z&H<0, for anyzPD(A),

^Az,z&H52E
0

L

z28z̄1dx2E
0

L

z18z̄2dx2
1

R2
z1~L !z̄3

2S 1

R1
1

1

R2
D uz3u21z1~L !z̄41

kD

pa2 z6z̄5

2
AD

pa2 z1~0!z̄62
kD

pa2 z5z̄62
dD

pa2 uz6u2.

Integrating the first integral by parts,
Fig. 5 Measured „dashed … canceller speaker to mid microphone frequency response, with
loudspeaker at xÄ0. Calculation is with rigid.
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Rê Az,z&H5ReH 2z2~L !z1~L !1z2~0!z1~0!

2
1

R2
z1~L !z32S 1

R1
1

1

R2
D uz3u21z1~L !z4

2
AD

pa2 z1~0!z62
dD

pa2 uz6u2J .

Now apply the boundary conditions inD(A):

Rê Az,z&H5ReH 2
1

R2
uz1~L !u22

1

R2
z3z1~L !2z4z1~L !

1
AD

pa2 z6z̄1~0!2
1

R2
z1~L !z̄32S 1

R1
1

1

R2
D uz3u2
390 Õ Vol. 125, SEPTEMBER 2003
1z1~L !z42
AD

pa2 z1~0!z62
dD

pa2 uz6u2

5ReH 2
1

R2
uz1~L !1z3u22

1

R1
uz3u2

2
dD

pa2 uz6u2J .

Thus,

Rê Az,z&H<0

for all zPD(A).
~2! We now show that Range (2A)5H. Let y

5(f,c,y1 ,y2 ,y3 ,y4) be any element ofH. We need to findz
PD(A) so that
Fig. 6 Measured „dashed … and calculated „solid … disturbance speaker to end microphone
frequency responses.
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c-

d-
2Az5y.

Definez as follows

z15roE
L

x

c~s!ds2My2 ,

z25
1

roc2 E
0

x

f~s!ds2
AD

pa2 y3 ,

z35CS 1

R1
1

1

R2
D 21Fy11

M

CR2
y2G ,

z45z2~L !2
1

R2
z1~L !2

1

R2
z3 ,

z55
mD

kD
Fy42

AD

MD
z1~0!1

dD

mD
y3G ,
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z652y3 .

It can easily be verified thatzPD(A) and that

2Az5y.

This completes the proof.

Appendix B: Transfer Function Solution
Here we provide a brief derivation of the relevant transfer fun

tions. Further details can be found in Refs.@18,19#. Consider the
differential equation in variablex,

Gzz~z,x!2k2G~z,x!5d~z2x!, (29)

wherek5 s/c. Let G be the generalized solution to this secon
order ordinary differential equation~ODE!

G~z,x!5H Aekz1Be2kz 0<z<x

Cekz1De2kz x<z<L
. (30)
Fig. 7 Measured „dashed … and calculated „solid … disturbance speaker to mid microphone
frequency responses.
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y
The choice of coefficientsA, B, C, D is made using the boundar
conditions, so that pressurep(x) can be calculated fromG(z,x).

To this end, examine the integral

E
0

L

f ~z!G~z,x!dz5E
0

L

G~z,x!~pzz~z!2k2p~z!!dz.

Integrating the right-hand side by parts, gives
392 Õ Vol. 125, SEPTEMBER 2003
G~L,x!px~L !2Gz~L,x!p~L !2G~0,x!px~0!

1Gz~0,x!p~0!1E
0

L

p~z!@Gzz~z,x!2k2G~z,x!#dz.

Substituting the conditions in Eqs.~22! and ~29! we obtain
Fig. 8 Measured „dashed … and calculated „solid … canceller speaker to end microphone frequency responses.
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E
0

L

f ~z!G~z,x!dz5FG~L,x!S 2r0s

ZL~s! D2Gz~L,x!Gp~L !

1FG~0,x!S 2ADr0s

Z0~s! D1Gz~0,x!Gp~0!

1
G~0,x!r0s

Z0~s!
g~s!1p~x!, (31)

where
Journal of Dynamic Systems, Measurement, and Control
Z05
pa2

ADs
~mDs21dDs1kD!,

ZL5pa2
~R11R2!Ms1R1R2MCs2

~R11R2!1~M1R1R2C!s1R1MCs2 ,

and g~s!5
Bl

Rcoil
ED .
Fig. 9 Measured „dashed … and calculated „solid … canceller speaker to mid microphone frequency responses.
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To eliminate the first two terms on the right-hand side of E
~31!, we choose the following conditions onG

G~L,x!
r0s

ZL~s!
1Gz~L,x!50, (32)

G~0,x!
r0sAD

Z0~s!
2Gz~0,x!50. (33)

Now, examine the equation

Gzz~z,x!2k2G~z,x!5d~z2x!,

which when integrated fromz5x2 to x1 gives

Gz~z,x!ux2

x12k2E
x2

x1

G~z,x!dz51.

Since we assume thatG(z,x) is continuous atz5x, the second
term on the left equals zero, and thus we have the condition

Gz~z,x!ux2

x151. (34)

Equations~33!, ~32!, and~34! respectively imply that

2~A1B!
r0sAD

Z0~s!
1k~A2B!50, (35)

~CekL1De2kL!
r0s

ZL~s!
1k~CekL2De2kL!50, (36)

Ckekx2Dke2kx2Akekx1Bke2kx51. (37)

The continuity ofG(z,x) at z5x implies

Aekx1Be2kx5Cekx1De2kx. (38)
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q.From Eqs.~35! and ~36! we obtain that

B5a0A, where a05
Z0~s!2r0cAD

Z0~s!1r0cAD
(39)

and

C5aLe22LkD, where aL5
ZL~s!2r0c

ZL~s!1r0c
. (40)

From Eqs.~37! and ~38! it follows that

~C2A!5
1

2k
e2kx (41)

and

~B2D !5
1

2k
ekx. (42)

Combining the above equations, we solve forA, B, C, D to
obtain

A5
aLe22Lkekx1e2kx

2k~a0aLe22Lk21!
,

B5
a0~aLe22Lkekx1e2kx!

2k~a0aLe22Lk21!
,

C5
aLe22Lk~ekx1a0e2kx!

2k~a0aLe22Lk21!
,

D5
ekx1a0e2kx

2k~a0aLe22Lk21!
.

Thus
G~z,x!5
1

2k~a0aLe22Lk21! H ~aLe22Lkekx1e2kx!~ekz1a0e2kz! 0<z<x

~aLe22Lkekz1e2kz!~ekx1a0e2kx! x<z<L
. (43)
s

So, from Eq.~31!,

p~x!5
2G~0,x!r0s

Z0
g~s!1E

0

L

f ~z!G~z,x!dz. (44)

From Eq. ~44! it can be seen that the transfer function th
relates the pressure measured atx to the voltage applied to the
disturbance loudspeaker atx50 is

p~x!uVc50

ED~s!
5Gd~s,x,0!,

where Gd~s,x,0!5
r0c

Z0

Bl

Rcoil

~11a0!~aLekx1e2kx!

2~12a0aL!
.

Similarly, the transfer function that relates pressure measure
x to the total volume velocityVc generated by the canceller loud
speaker atx5xc is

Gcv~s,x,xc!5
p~x!ug50

Vc
,

where, lettingV̂ indicate the Laplace transform ofV(x,t),

Gcv~s,x,xc!Vc5E
0

L 2r0s

pa2 V̂~z,s!G~z,x!dz. (45)

We now evaluate the integral~45!. Substituting in the definition
of V̂(z,s), we obtain
at

d at
-

Gcv~s,x,xc!5
2r0s

pa2pr c
2 E

xc2r c

xc1r c

2Ar c
22~z2xc!

2G~z,x!dz,

(46)

where G is as defined in Eq.~43!. For xc1r c<x, substitute
G(z,x) into Eq. ~46! to obtain, writingk5 s/c,

Gcv~s,x,xc!

Vc
5

r0c

pa2pr c
2

1

2~12a0aLe22Lk!

3~aLe22Lkekx1e2kx!I,

where

I5E
xc2r c

xc1r c

2Ar c
22~z2xc!

2~ekz1a0e2kz!dz. (47)

We need to calculate the integralI. Using the change of variable

z5xc1r c cosu, dz52r c sinudu, (48)

I52r c
2exckE

0

p

ekr cosu sin2udu

12r c
2e2xcka0E

0

p

e2kr cosu sin2udu. (49)

From a standard table of integrals
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E
0

p

eikq cosu sin2 udu5
p

kq
J~1,kq!, (50)

whereJ(1,x) is the Bessel function of the first kind of order
evaluated atx. Thus,

I5pr c
2Fexck2

J~1,2 ikr c!

2 ikr c
1a0e2xck2

J~1,ikr c!

ikr c
G . (51)

Similarly, for x<xc2r c , we need to evaluate

I5E
xc2r c

xc1r c

2Ar c
22~z2xc!

2~e2kz1aLe22Lkekz!dz.
a

u

,

i
e

e

o

l

n
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Using the substitution~48!, we obtain as above

I5pr c
2FaLe22Lkexck2

J~1,2 ikr c!

2 ikr c
1e2xck2

J~1,ikr c!

ikr c
G .

(52)

Define J(z)52J(1,z)/z. Substituting Eqs.~51! or ~52! as ap-
propriate into Eq.~46!, we obtain that

Gcv~s,xc!5
r0c

2pa2~12a0~s!aL~s!e22L s/c!
G̃~s!,

where
G̃~s!5H ~aL~s!e(22L1x) ~s/c!1e2 ~s/c! x!S exc ~s/c!JS 2 ir c

s

cD1a0~s!e2xc ~s/c!JS ir c

s

cD D 0,xc<x

S aL~s!e(xc22L) ~s/c!JS 2 ir c

s

cD1e2 ~s/c! xcJS ir c

s

c D D ~ex~s/c!1a0~s!e2x ~s/c!! x<xc,L

. (53)

Using the loudspeaker model~21!, we obtain the overall transfer function from canceller speaker voltage to acoustic pressure~26!.
se-

r for

for

d

al

n-
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