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PASSIVITY OF MAGNETOSTRICTIVE MATERIALS∗

SINA VALADKHAN† , KIRSTEN MORRIS‡ , AND AMIR KHAJEPOUR†

Abstract. Magnetostrictive materials display large force and displacement in response to an
applied field, as well as short response time. However, their nonlinear and hysteretic behavior has
hindered their use. We prove, using the physics of the material, that these materials are passive. The
corresponding energy storage function is shown to be the Helmholtz energy. This result is independent
of the model used. The effect of varying load is included. Passivity is important because it can be
used to obtain control systems that maintain stability despite uncertainties and disturbances. The
minima of the storage function are also obtained. The storage function is written explicitly in the
case of a common model for these materials, the Preisach model.
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1. Introduction. There has been a growing demand by industry in recent years
for micropositioning devices. Micropositioning actuators are now frequently seen in
scanning microscopes, chip manufacturing machines, biological cell micromanipula-
tion and optical fiber alignment devices. Currently, many of these micropositioning
tasks are done with piezoceramic actuators. Piezoceramic actuators exhibit almost
linear behavior and have a reasonably fast response time.

Still, there is a demand for actuators with a larger stroke and faster response
time. For this reason, the possibility of using other active materials for actuation is
being examined. Terfenol-D, an alloy of iron, terbium, and dysprosium, has many
advantages. Terfenol-D is a magnetostrictive material. Compared to other active
materials, it has very large force and displacement with a short response time that
makes it an attractive choice for actuation.

The use of magnetostrictive materials has been hindered by the fact that their
response is highly nonlinear and hysteretic. Because of this nonlinearity, Terfenol-D
actuators are difficult to control. In many micropositioning tasks, submicron accuracy
is required. To achieve the required performance, actuators need to be used in a
closed-loop feedback system. The controller in the feedback system must be able to
stabilize the system under all conditions.

Dependence of the hysteresis on many physical conditions together with the non-
linear nature of the system make it difficult to establish stability for the closed loop.
External physical conditions such as mechanical loading and temperature affect the
behavior of magnetostrictive materials. Stability and performance of the control sys-
tem must be maintained despite these system uncertainties and also despite distur-
bances. One of the most useful methods for showing stability of nonlinear systems is
passivity. There are many passive physical systems [1]. Passive systems are impor-
tant because the stability of closed-loop passive systems can be easily established. For
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many nonlinear systems, this approach is the only way to show stability. Passivity
has been used to obtain closed-loop stability for nonlinear systems in over 300 papers
published in the last 10 years.

The Preisach model [2] is among the oldest models for magnetic materials. This
model has been successfully applied to many hysteretic systems [3, 4]. In [5], the
Preisach model is used with a set of ordinary differential equations to develop a rate-
dependent hysteresis model. Open-loop stability and other properties of the model
are discussed. These results are used to develop a model inverse-based controller for
a magnetostrictive actuator [6].

In [7], an energy-based version of the Preisach model is introduced. Unlike the
classical Preisach model, this model is based on a physical model for the material.
In [3], it is shown that the Preisach operator is passive if the system output is the
time-derivative of the output. The associated storage function is also computed. The
result is applied to the control of a shape memory alloy actuator. In [8], this approach
is extended to position control. The passivity results [3] are used in [9] to establish
asymptotic stability of closed-loop systems containing hysteresis.

In the next section we give a brief review of standard material on passivity. It
is subsequently shown, using physics, that magnetostrictive materials are passive.
The storage function is identified to be the Helmholtz energy. No assumption on the
model is used. The effects of varying load are included. The Preisach model is then
introduced and the energy storage function is written explicitly using this model. The
system equilibrium points are identified and discussed.

2. Passivity. In this section, passivity is defined in a dynamical systems frame-
work. This framework will be used later for magnetostrictive materials. Consider a
system with input u ∈ U , output y ∈ U , and state x ∈ X. The following is a standard
definition for dynamical systems [1].

Definition 1. A dynamical system is defined through input, output and state
spaces U and X, a readout operator r, and a state transition operator φ. The readout
operator is a map from U × X to U . The state transition operator is a map from
R

2 × X × U to X. The state transition operator must have the following properties
for all x0 ∈ X, t0, t1, t2 ∈ R, u, u1, u2 ∈ U :

Consistency: φ(t0, t0, x0, u) = x0.
Determinism: φ(t1, t0, x0, u1) = φ(t1, t0, x0, u2) for all t1 ≥ t0 when u1(t) = u2(t)

for all t0 ≤ t ≤ t1.
Semigroup: φ(t2, t0, x0, u) = φ(t2, t1, φ(t1, t0, x0, u), u) when t0 ≤ t1 ≤ t2.
Stationarity: φ(t1+T, t0+T, x0, uT ) = φ(t1, t0, x0, u) for all t1 ≥ t0, T ∈ R when

uT (t) = u(t+ T ) for all t ∈ R.
Definition 2 (see [1]). Consider a dynamical system with state variables x, an

input u, and output y. If there is a real-valued function S(x) satisfying the following
relation for any ti ≤ tf and if S(x) is bounded from below, the dynamical system is
called passive:

S(x(ti)) +
∫ tf
ti

〈u, y〉 dt ≥ S(x(tf )).(1)

In this definition, 〈., .〉 is the inner product on U . The variables u and y are
vectors of the same dimension, so that 〈u, y〉 is defined. The scalar function S(x) is
called the storage function. Passive systems are frequently seen in engineering. The
storage function is often the energy.
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Fig. 1. A spring-mass-dashpot system.

Example. Consider a spring-mass-dashpot system (Figure 1). The following equa-
tion describes this system:

M
d2z

dt2
+ b

dz

dt
+ kz = u,(2)

where u is the external force applied. The velocity of the mass ż is considered to be
the system output: y = ż. The state variables are z and ż. If both sides of (2) are
multiplied by ż and integrated from ti to tf , it becomes

M

2
(
ż2(tf )− ż2(ti)

)
+
∫ tf
ti

bż2dt+
k

2
(
z2(tf )− z2(ti)

)
=
∫ tf
ti

〈u, y〉 dt.(3)

In this example, total energy is

E(z, ż) =
1
2
kz2 +

1
2
Mż2.(4)

Using this definition, (3) can be rewritten as

E(z(ti), ż(ti)) +
∫ tf
ti

〈u, y〉 dt ≥ E(z(tf ), ż(tf )).(5)

The storage function E(z, ż) is always nonnegative and, hence, bounded from
below. As a result, this system is passive. When u = 0, the system goes to a state
which minimizes E. The energy E is minimized when z = 0, ż = 0. This is the global
system equilibrium point.

When the force applied to the system includes a constant force, such as gravity,
its effect can be included in the system storage function. If the force applied to the
mass is Fconst + u, the following storage function is minimized at the equilibrium
point:

Ē = E − Fconstz.(6)

In this case, the equilibrium point is z = Fconst
k , ż = 0.

Define the operator ‖.‖ to be the Euclidean norm; that is, for any vector v,
‖v‖2 = 〈v, v〉. The following definitions are used to establish stability for the system
[10, 11].

Definition 3. The set L2 is the set of functions x : R → R
n for which the

following expression is bounded: ∫ ∞
0
‖x(t)‖2 dt <∞.(7)
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Fig. 2. The standard feedback configuration.

Definition 4. The set L2e is the set of functions x : R → R
n for which the

following expression is bounded for all T ∈ R:∫ T
0
‖x(t)‖2 dt <∞.(8)

Definition 5. A mapping R : L2e → L2e is said to be L2-stable if x ∈ L2 implies
that Rx ∈ L2.

Suppose that a given system P is passive. Consider the general feedback control
configuration shown in Figure 2. If the controller H satisfies certain conditions, the
following result can be used to show the stability of the controlled system.

Theorem 6 (see [11, Theorem 10, p. 182]). Consider the feedback system shown
in Figure 2, where H and P map U to U . The set U is a subset of L2e. Assume that
for any r′ and d in L2 there are solutions e and u in L2e and there are constants α1,
α2, α3, β1, β2, and β3 such that for every real T and x ∈ L2e the following conditions
hold:

I

√∫ T
0
‖Hx‖2 dt ≤ α1

√∫ T
0
‖x‖2 dt+ β1,

II
∫ T

0
〈x,Hx〉 dt ≥ α2

∫ T
0
‖x‖2 dt+ β2,(9)

III
∫ T

0
〈Px, x〉 dt ≥ α3

∫ T
0
‖Px‖2 dt+ β3.

If α2 + α3 > 0, then r, d ∈ L2 implies that e, u, He, y ∈ L2.
A passive system satisfies the third condition with α3 = 0 and β3 = inf S(x) −

S(x(0)). The second and third conditions are similar to requiring that plant and
controller be passive, but slightly stronger since α2 + α3 has to be strictly positive.
The last line of the theorem states that the closed loop is L2-stable.

This theorem can be used to establish stability for a large class of nonlinear
systems. For many systems this theorem is the only way to establish stability. The
passivity results which will be shown later can be used with this theorem to show
stability for the magnetostrictive system.

3. Passivity for magnetostrictive materials. Since magnetostrictive mate-
rials dissipate energy, we expect them to be passive with some energy function as the
storage function. In this section, the physical parameters of magnetostrictive mate-
rials are introduced. Three different energy functions for magnetostrictive materials
and their suitability as a storage function are discussed. Finally, a proof of passivity
is given.

Magnetostrictive materials react to a magnetic field. Suppose that a magnetostric-
tive sample is excited in a magnetic field produced by a coil. If there is an electrical
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current in the coil, a nonzero magnetic field H is seen around the coil. Magnetic
field H is a vector field, and it depends on the electrical current and the geometry.
Magnetic field H acts on the magnetostrictive sample, and it is usually considered to
be the input for the hysteretic system. As a result of this magnetic field, a magne-
tization M is seen in the material. The magnetization M is also a vector field, and
it is considered to be the response or output of the hysteretic system. The relation
between H and M depends on the material.

The magnetization M is not the only parameter affected by an external magnetic
fieldH. The mechanical variables are also affected. For a material where the magnetic
and mechanical responses are decoupled, the stress σ is usually considered to be the
input for the mechanical part, and the strain ε, the response. For magnetostrictive
materials, a magnetic field affects both magnetization and strain, and similarly for the
stress. For magnetostrictive materials, generalized force and displacement are defined
as follows:

F =
(

µ0H
σ

)
,(10)

X =
(

M
ε

)
.(11)

Generalized force F is the system input and time-derivative of generalized dis-
placement Ẋ, the output. The constant µ0 is a physical constant to ensure that
µ0 〈H,M〉 has the unit of energy per unit volume.

Various energy functions can be associated with magnetostrictive materials. Here
these energy functions are introduced and their suitability as a storage function is
discussed.

3.1. The internal energy. The internal energy U is the total potential energy
stored in the material. The first law of thermodynamics holds for this energy function:

dU

dt
=
dQ

dt
+
dW

dt
,(12)

where dQdt is the rate of thermal energy supplied to the material and
dW
dt is the rate

of magnetic/mechanical work done on the system. The inequality of Clausius [12, p.
205] states that for any process dSdt ≥

1
T
dQ
dt , where T is the temperature and S is the

entropy. Using this inequality, the first law can be written as

dU

dt
≤ T

dS

dt
+
dW

dt
.(13)

A relation similar to the passivity inequality can be obtained by integrating both
sides of (13) from ti to tf :

Ui +
∫ tf
ti

(
T
dS

dt
+
dW

dt

)
dt ≥ Uf .(14)

It is seen that thermal terms should appear in the system input/output; i.e., u

should be
(µ0H

σ
T

)
and y should be

(Ṁ
ε̇
Ṡ

)
. Since the energy stored in the material is

limited, the amount of energy which can be pulled out of the material is also limited.
This means that the energy function U has a lower bound. As a result, the internal
energy U can be used as a storage function.
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Thermal variables are usually difficult to work with, and for magnetostrictive
materials they are difficult to measure. Extra thermal input and output are disad-
vantages to using internal energy as a storage function. For this reason, the internal
energy is not chosen as the storage function.

3.2. The Gibbs energy. The following relation defines the Gibbs energy:

G = U − TS − 〈F,X〉 .(15)

Using the relation dW
dt =

〈
F, dXdt

〉
and (10), (11) and (13), we obtain

dG

dt
≤ −S dT

dt
− µ0

〈
M,

dH

dt

〉
− εdσ

dt
.(16)

The Gibbs energy is a function of H. This means that H has to be included in
the system states. This is awkward for several reasons. First, in this application H
is an input. Second, consider a situation in which ε = 0 and H has a large value.
The Gibbs energy can be made arbitrarily small by increasing H. This means that
the Gibbs energy does not have a lower bound, and hence it is not a suitable storage
function.

3.3. The Helmholtz energy. The Helmholtz free energy ψ is defined as

ψ = U − TS,(17)

where T and S are the temperature and total entropy, respectively, of the system.
Using the inequality of Clausius, the first law of thermodynamics can be written as

dψ

dt
≤ −S dT

dt
+
dW

dt
.(18)

Under constant temperature, this equation simplifies to

dψ

dt
≤ dW

dt
.(19)

This relation states that the work provided is more than the rate at which
Helmholtz free energy is increased. It can be said that part of the work energy
provided is absorbed by the system and added to the stored energy, while the rest is
wasted in energy dissipation. It seems that the Helmholtz free energy is the energy
actually stored in the system. In this respect, the Helmholtz energy is comparable to
the energy storage function E in the mechanical example. Since the energy E is the
storage function for the mechanical example, this comparison suggests the Helmholtz
energy as the storage function. In the next subsection, a detailed proof of passivity,
with the Helmholtz free energy as the storage function, is given.

3.4. Proof of passivity. It is assumed that, during any process discussed here,
no phase transition occurs; for example, the material is not melting. This guarantees
the existence of partial derivatives. All of the processes are under constant air pres-
sure. Work done by the air pressure is neglected. For simplicity, from now on, it is
also assumed that the thermal connection between the material and the surrounding
environment is so good that the temperature of the material is always close to the
room temperature T0 and constant.

In a magnetic material, the ratio between the dipole magnetic energy and the
energy of thermal fluctuations plays an important role. If the dipole magnetic energy
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is small compared to thermal fluctuations, the material is called paramagnetic. In
this case, the dipoles are mostly affected by thermal fluctuations and the external
magnetic field H. Dipole-dipole interaction is weak. Because of thermal fluctuations,
paramagnetic materials are memoryless and have no hysteresis. On the other hand,
if the dipole magnetic energy is large compared to thermal fluctuations, the material
is called ferromagnetic. Dipoles in a ferromagnetic sample retain their state, and the
material has memory. These materials are hysteretic. Because of strong dipole-dipole
interactions in ferromagnetic materials, the models available for these materials are
complex and difficult to use. The energy of thermal fluctuations depends linearly on
temperature. For this reason if a ferromagnetic material is heated, in a certain tem-
perature it becomes paramagnetic. This transition temperature is called the Curie
temperature Tc. Curie temperature is fairly high for most of the ferromagnetic mate-
rials. For iron Tc = 1043K.

When a ferromagnetic material is heated beyond Tc, it becomes paramagnetic,
and during this heating process, the entropy of the materials is increased. In the
following lemmas, this fact is used together with entropy relations for a paramagnetic
material to show an upper bound for the entropy in a ferromagnetic material. The
first lemma is used to show that the Helmholtz free energy has a lower bound.

Lemma 7. For a paramagnetic material at a constant temperature, the entropy
S has an upper bound.

Proof. The strength of a magnetic dipole is denoted by a constant positive half-
integer J . This constant depends on the material under discussion. The following
equations define entropy for a single dipole in a paramagnetic sample [13, pp. 213,
215, and 259]:

β =
1
kT

,

η = cβ ‖H‖ ,

Z =
sinh

[
(J + 1

2 )η
]

sinh
[ 1

2η
] ,(20)

S = k

(
lnZ − β ∂ lnZ

∂β

)
,

where c is a positive constant and k is the Boltzmann constant k = 1.38e− 23 J
K .

In a paramagnetic sample with N dipoles, total magnetic entropy is simply N
times the entropy of a single dipole. Total magnetic entropy is maximized whenH = 0.
(See the appendix.) This result is consistent with physics since in the presence of an
external magnetic field, dipoles become oriented and the overall system disorder is
reduced. Thus,

Smax = SH=0 = kN ln(2J + 1).(21)

Thus, at a constant temperature, the magnetic portion of entropy has an upper
bound, Smax.

The nonmagnetic portion of the entropy is a function of temperature and external
load. At any temperature, this entropy is maximized for the highest possible (tensile)
external load. This means that at any temperature, the nonmagnetic portion of the
entropy has an upper bound. Thus at any temperature, the total entropy has an
upper bound.
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The paramagnetic state is usually obtained at a high temperature. In order to
have an upper bound for entropy in normal working conditions of the material, the
lemma above should be extended to ferromagnetic materials.

Lemma 8. For any magnetic material at a constant temperature, the entropy S
has an upper bound.

Proof. Lemma 7 states that the entropy has an upper bound for the paramagnetic
state. Here we are interested in the ferromagnetic state.

To obtain a relation for entropy in the ferromagnetic state, consider a process in
which the ferromagnetic material is heated from an arbitrary initial state to a state in
which the material is paramagnetic. The entropy and temperature for the initial state
are Si and Ti, respectively. For the paramagnetic state, the entropy and temperature
are Sp and Tp, respectively. From Lemma 7, it is known that Sp has an upper bound.

The entropy is a function of the system states [12, p. 217]. The difference between
any two arbitrary states is only a function of the states. This difference is independent
of the process which connects the two states. This fact holds for the process mentioned
above. The difference Sp − Si does not depend on the process as long as the initial
and final conditions remain the same. For simplicity, consider a process in which the
temperature is increased monotonically.

Since the temperature is always increasing during this process, there should be a
nonnegative heat flow to the material during the process:

dQ

dt
≥ 0.(22)

The inequality of Clausius states that for any process dSdt ≥
1
T
dQ
dt . As a result, in

this process dSdt ≥ 0 or Sp−Si ≥ 0. Since Sp has an upper bound, Si is bounded from
above. This concludes the proof.

The following is an immediate result of the lemma above.
Theorem 9. For a constant temperature, the Helmholtz free energy ψ = U −TS

is bounded from below.
Proof. Lemma 8 states that the entropy has an upper bound. This means that

−TS has a lower bound. The internal energy U has a lower bound. This results in ψ
being bounded from below.

Theorem 10. The following passivity condition is satisfied when the storage
function is the Helmholtz free energy ψ:

ψi +
∫ tf
ti

〈
F,

dX

dt

〉
dt ≥ ψf .(23)

Here, subscripts i and f denote initial and final conditions, respectively; F is the
generalized force applied to the system;

(
µ0H
σ

)
, X is the generalized system output;(

M
ε

)
; and σ and ε are stress and strain, respectively.
Proof. If the temperature is constant, (18) can be written as

dψ

dt
≤ dW

dt
,(24)

where dWdt =
〈
F, dXdt

〉
is the rate of magnetic/mechanical work done on the system.

If both sides are integrated from ti to tf , we obtain

ψf − ψi ≤
∫ tf
ti

〈
F,

dX

dt

〉
dt(25)
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Fig. 3. The Preisach relay.

or

ψi +
∫ tf
ti

〈
F,

dX

dt

〉
dt ≥ ψf .(26)

Theorem 9 shows that the Helmholtz free energy is bounded from below, which
means that it is a valid storage function. This concludes the proof.

The proof above shows the passivity of a magnetostrictive system with a three-
dimensional magnetic field and a one-dimensional stress-strain. In this proof, no model
for the magnetostrictive material is assumed. Passivity is shown with fundamental
laws of physics only. In fact, the theorem above can be applied to any model for
magnetostrictive materials.

4. The Preisach model. The Preisach model [2] is a very common model in
the smart materials literature; for examples, see [3, 4, 14, 15]. In [15], it is used to
model magnetostrictive materials. It has been shown that this model can represent
magnetostrictive materials accurately [16]. This model is briefly explained here; for
a detailed description, see [2]. In this model, a one-dimensional magnetic field is
assumed, which results in the magnetic field H and magnetization M being scalars.
It is assumed that the output is the weighted sum of the output of a continuum of
hysteresis relays. The output of each relay can be either +1 or −1, determined by the
previous relay value and the input, magnetic field H. In Figure 3 a typical hysteresis
relay is shown.

The model output is

M(t) =
∫ ∞

0

∫ ∞
−∞

Rr,s[H(·)](t)µ(r, s)dsdr.(27)

Here, Rr,s is the output of the relay defined by r and s, and µ(r, s) is a weight
function determined by experimental data.

Consider a two-dimensional coordinate system with variables r and s as shown
in Figure 4. Each point r, s in this coordinate system is in a one-to-one relation
with a Preisach relay Rr,s and its corresponding weight µ(r, s). The plane defined by
variables r and s is called the Preisach plane. Because the system input is limited,
the relays with a large r or s do not change and cannot contribute to a change in the
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Fig. 4. A typical Preisach plane boundary.

model output. For simplicity, it is assumed that the weight function µ(r, s) is zero
for these relays. In Figure 4, these relays are outside of the bold triangle. Since the
output is not affected by these relays, they are not considered.

If, in the Preisach plane, the relays equal to −1 are separated with a line from
the relays at +1, a boundary s = τ(t, r) will be produced, as shown in Figure 4. This
boundary is important since if τ(t, r) is available, the output of all relays are known.
Thus, knowledge of τ(t, r) and the input H(t) determines future values of τ(t, r) and
henceM(t). In other words, τ(t, r) contains the memory of the system. The Preisach
model is a dynamical system with τ(t, r) as the state [17]. The model output can be
rewritten in terms of the boundary:

M(t) = 2
∫ ∞

0

∫ τ(t,r)

−∞
µ(r, s)dsdr −

∫ ∞
0

∫ ∞
−∞

µ(r, s)dsdr.(28)

Note that the Preisach boundary τ(t, r) and the vertical axis r = 0 in Figure 4
intersect at the current input value; that is,

τ(t, 0) = H.(29)

4.1. Energy-based Preisach model. In this model, a physical model for mag-
netostrictive materials is used to develop a special type of Preisach model that is based
on energy considerations [7, 16]. Here, the material is assumed to be composed of a
large number of weakly interacting dipoles. The Helmholtz free energy for a single
dipole can be modeled by three parabolas [7], [15, p. 188] (Figure 5):

ψ(M, ε) =
1
2
Y ε2 − Y γεM2 +




µ0η
′

2 (M +MR)2, M ≤ −MI ,
µ0η
′

2 (M −MR)2, M ≥MI ,
µ0η
′

2 (MR −MI)(MR − M2

MI
), |M | < MI ,

(30)
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Fig. 5. The Helmholtz free energy.

where the variable M is the magnetization for the dipole, the parameter η′ is a
constant, γ is the magnetomechanical coupling constant, and Y is Young’s modulus.
The parameter MR is the remanence magnetization. In the absence of strain ε, ±MR

are the minima of ψ. The parameter MR is assumed to be the same for all dipoles.
The parameter MI is the inflection point where the second derivative of ψ changes
sign. Unlike MR, because of the nonhomogeneities and imperfections in the material,
MI is different for each dipole. For a valid Helmholtz free energy MR > MI . This
ensures that the Helmholtz free energy has two distinct minima, as shown in Figure 5.

Define H0 to be the local magnetic field at a dipole. Because of the imperfections
and nonhomogeneities in the material, the local magnetic field H0 might not be equal
to the external magnetic field H. It is assumed that the difference s = H − H0 is
constant over time for each dipole.

The parameters s and MI describe each dipole. Define

r = η′(MR −MI) +
2
µ0
Y γεMI .(31)

It will be shown later that it is easier to use r as defined in (31) to describe each
dipole instead of MI . This definition of r is consistent with r for a Preisach relay, as
shown in Figure 3.

For a dipole, the Gibbs energy is

Gr,s(H0,Mr,s, σ, ε) = ψr,s(Mr,s, ε)− µ0H0Mr,s − σε,(32)

as shown in Figure 6.
Consider a single dipole in a process in which the temperature, magnetic field H,

and stress are constant. In this case, (16) simplifies to

dGr,s
dt
≤ 0.(33)

This relation states that during this process, G has to either stay constant or
decrease. At a stable equilibrium point, the Gibbs energy is minimized [15, pp. 65
and 184]. In this case, the derivative of Gibbs energy has to be zero with respect to
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Fig. 6. (a) Gibbs energy when H0 = 0, (b) Gibbs energy for a positive H0, (c) if H0 is further
increased, at some point, only one minimum exists.

unconstrained variables: (
∂Gr,s(H0,Mr,s, σ, ε)

∂Mr,s

)
T,H0,σ,ε

= 0,(34)

(
∂Gr,s(H0,Mr,s, σ, ε)

∂ε

)
T,H0,σ,Mr,s

= 0.(35)

By combining (32) and (34), the following relation is obtained:

µ0H0 =
(

∂ψ

∂Mr,s

)
T,ε

.(36)

In a magnetic system with many dipoles, the dipole dynamics are very fast. If the
magnetic field is not very rapidly changing, the magnetic field appears to be almost
constant for each dipole over the time constant of the dipole. The magnetization for
a dipole is a minimum of the Gibbs energy.

By combining (30), (32), and (36), the equilibrium magnetization for a dipole is
obtained:

M∗r,s =
H − s+Rr,sη

′MR

η′ − 2Y γε
µ0

.(37)

If the dipole is in the left minimum in Figure 6(a), Rr,s = −1, and if the dipole
is in the right minimum, Rr,s = +1.

As seen in Figure 6, if H0 = 0, two minima exist. For a small positive H0 as
shown in Figure 6(b), still two minima exist, but if H0 is further increased, at some
point, one disappears, as shown in Figure 6(c). At this time, dipole magnetization
moves to the new minimum. This transition is shown with an arrow in Figure 6(c).

Using (31), it can be shown that if H ≥ s + r, the R = −1 minimum does not
exist. Similarly, for H ≤ s−r, the R = +1 minimum vanishes. For s−r < H < s+r,
two minimums exist, which means that both R = −1 and R = +1 are possible. It is
seen that for the Preisach relay introduced in Figure 3, the output −1 is nonexistent
if H ≥ s+ r, and +1 vanishes if H ≤ s− r. For the values between s− r and s+ r,
both outputs are possible. This similarity between the dipole and a Preisach relay
shows that the definition of r and s are consistent with r and s of a Preisach relay.
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For a large magnetic field, the dipole magnetization is the right minimum. At
this minimum, the Gibbs energy is

Gr,s =
1
2
Y ε2 +

µ0

2
ηM2

R −
µ0(H − s+ ηMR)2

2(η − 2Y γε
µ0

)
− σε.(38)

It is seen that, if ε = 0, the Gibbs energy can be made arbitrarily small by
increasing H. This means that the Gibbs energy is unbounded from below.

Assuming a distribution µ(r, s) for the dipoles, the overall magnetization can be
obtained:

MTot = C

∫ ∞
0

∫ ∞
−∞

M∗r,sµ(r, s)dsdr.(39)

Define In to be

In =
∫ ∞

0

∫ ∞
−∞

snµ(r, s)dsdr,(40)

where n = 0, 1, or 2. Using (37), MTot can be written as follows:

MTot =
C

η′ − 2Y γε
µ0

[
I0(H −MRη

′)− I1 + 2MRη
′
∫ ∞

0

∫ τ(t,r)

−∞
µ(r, s)dsdr

]
,(41)

where C is a constant and τ(t, r) is the Preisach boundary for the relay configuration
Rr,s. The experimental data can be used to find the optimum weight function µ(r, s).
A few common choices for µ(r, s) can be found in [16, 18].

Unlike the Preisach model, magnetization in this model depends on ε. In this
model, σ and H are the inputs. The Preisach plane boundary τ(t, r) and ε are the
system states. The outputs are ε and M . The magnetization is determined by (41).
Combining (30), (32), and (35), we obtain

ε =
σ

Y
+ γM2,(42)

which determines strain ε.

4.2. Helmholtz free energy using the Preisach model. In this section,
the total Helmholtz free energy for a magnetostrictive material is calculated using
the physical Preisach model. Since this function is the system storage function, it is
written as a function of system states τ(t, r) and ε.

As stated before, the local magnetic field H0 might not be equal to the external
magnetic field H. This difference between H and H0 should have some effect on the
energy functions. For example, consider a dipole with a negative s when the dipole
magnetization is increased by dM and the external magnetic field H is constant:
Work done by the external magnetic source is HdM , and work done on the dipole is
H0dM = HdM − sdM . It is seen that the work done on the dipole is more that the
work done by the external magnetic field. This extra work is not done by the external
field. The imperfections and nonhomogeneities which are the source of the difference
between H and H0 should have done this work on the dipole. As a result, they need
to be considered when the overall system Helmholtz free energy is computed.

From (32), we have Gr,s(H0,Mr,s) = ψr,s(Mr,s) − µ0H0Mr,s − σε. Define
ψ̄r,s(Mr,s) and Ḡr,s(H,Mr,s) to be the Helmholtz free energy and Gibbs energy, re-
spectively, written in terms of external variables. When the system is viewed from an
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external point of view, the combined effect of the dipole and the imperfections is seen.
To find ψ̄r,s(Mr,s) and Ḡr,s(H,Mr,s), an assumption for the imperfections and non-
homogeneities must be made and, based on that, the contribution to the Helmholtz
free energy computed. Another approach is to construct ψ̄r,s(Mr,s) by studying the
equilibrium points of the system for a constant magnetic field.

The equilibrium points for a constant magnetic field in terms of the external
variables (H,Mr,s) can be obtained via two methods:

1. The equilibrium condition can be written for Ḡr,s(H,Mr,s).
2. The system parameters can be transformed to the local variables (H0, Mr,s).
The equilibrium condition is written for Gr,s(H0,Mr,s), and the results are
transformed back to the external variables.

These two methods must be equivalent.
The equilibrium conditions for Ḡr,s(H,Mr,s) and Gr,s(H0,Mr,s) are(

∂Ḡr,s(H,Mr,s)
∂Mr,s

)
T,H

= 0,
(
∂Gr,s(H0,Mr,s)

∂Mr,s

)
T,H0

= 0,(43)

where H = H0 + s and s is assumed constant. Further,(
∂G(H0,Mr,s)

∂Mr,s

)
T,H0

=
(

∂

∂Mr,s

)
T,H

(ψ(Mr,s)− µ0H0Mr,s − σε)

=
(

∂

∂Mr,s

)
T,H

(ψ(Mr,s)− µ0HMr,s + µ0sMr,s − σε)(44)

= 0.

Now, Ḡr,s(H,Mr,s) equals Gr,s(H − s,Mr,s) or

Ḡr,s(H,Mr,s) = ψ(Mr,s)− µ0HMr,s + µ0sMr,s − σε.(45)

It can be shown that the equilibrium conditions (43) are identical. Defining
ψ̄r,s(Mr,s) so that Ḡr,s(H,Mr,s) = ψ̄r,s − µ0HMr,s − σε, analogously with (32), we
have

ψ̄r,s(Mr,s) = ψ(Mr,s) + µ0sMr,s.(46)

Equation (37) gives the equilibrium magnetization for a dipole. By combining
(30), (37), and (46), the equilibrium value of ψ̄r,s for each dipole is obtained:

ψ̄∗r,s =
1
2
Y ε2 +

µ0
2 (H

2 − s2)− η′MR(Y γεMR − µ0sRr,s)

η′ − 2Y γε
µ0

.(47)

Similar to (39), by assuming a distribution for r and s, the Helmholtz free energy
for the entire system can be found using the superposition principle:

ψTot(τ(t, r), ε) = C

∫ ∞
0

∫ ∞
−∞

ψ̄∗r,sµ(r, s)dsdr.(48)

By combining (29), (47), and (48), the following equation is obtained:

ψTot(τ(t, r), ε) =
CI0

2
Y ε2 +

C

η′ − 2Y γε
µ0

(
µ0I0τ

2(t, 0)
2

− η′Y γεM2
RI0

+ η′MRµ0A−
µ0

2
I2

)
,(49)

where A =
∫∞

0

∫∞
−∞Rr,ssµ(r, s)dsdr = 2

∫∞
0

∫ τ(t,r)
−∞ sµ(r, s)dsdr − I1.
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This is the value of the Helmholtz free energy, the storage function for the mag-
netostrictive system, for any ε and Preisach boundary τ(t, r). The only nontrivial
aspect of calculating ψTot(τ(t, r), ε) is efficient computation of A. It is seen that the
double integral of A is very similar to the double integral used for computing M (27).
In fact, any efficient algorithm used for the computation of M can be used here, for
example that on [2, p. 37]; only the weight function is slightly different.

4.3. Minimum of the storage function. In this section, the Preisach bound-
ary that globally minimizes the storage function is obtained.

Suppose that when τ(t, r) = τ∗(t, r) and ε = ε∗, ψTot(τ(t, r), ε) is globally mini-
mized. If ε is held fixed at ε = ε∗ and τ(t, r) is changed, ψTot(τ(t, r), ε∗) is minimized
when τ(t, r) = τ∗(t, r). This means that τ∗(t, r) globally minimizes the following
function:

ψTot(τ(t, r), ε∗) =
CI0

2
Y ε∗2 +

C

η′ − 2Y γε∗
µ0

(
µ0I0τ

2(t, 0)
2

− η′Y γε∗M2
RI0

+ η′MRµ0A−
µ0

2
I2

)
.(50)

The following terms are the only variable parts of the storage function:

F1(τ(t, r)) =
µ0I0τ

2(t, 0)
2

,(51)

F2(τ(t, r)) = A.

Assume that the weight function µ(r, s) is nonnegative for all r and s. Since
η′ − 2Y γε∗

µ0
is a positive quantity, if F1 and F2 are minimized at the same time, the

storage function is minimized. Function F1 is minimized when τ(t, 0) = 0. Function
F2 is minimized when A is minimized:

A = 2
∫ ∞

0

∫ τ(t,r)

−∞
sµ(r, s)dsdr − I1.(52)

The sign of the integrand equals the sign of s. This integration is minimized when
the region of integration is the subset of the Preisach plane on which the integrand
is negative. This is the lower half of the Preisach plane. Thus, the integration is
minimized when the boundary τ(t, r) = 0. This Preisach plane boundary is shown in
Figure 7.

Function F2 is globally minimized with the boundary τ(t, r) = 0. Since for this
boundary τ(t, 0) = 0, this boundary also globally minimizes F1. This results in global
minimization of the storage function.

It is commonly seen that the weight function µ(r, s) is an even function of s; that
is, µ(r, s) = µ(r,−s) for all r and s [16, 18]. If this condition holds, by substituting
the Preisach boundary τ(t, r) = 0 into (41), it is seen that the resulting magnetization
is zero. In this case there is no magnetic field H, magnetization M , or flux density
B. This state is called the demagnetized state and is the state of lowest “energy” for
the system.
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Fig. 7. The global minimum Preisach boundary.

5. Storage function in the presence of a constant input. When the stress
and magnetic field applied to the system include a constant portion, the system can
be simplified by redefining the input as ū =

(
µ0(H −Hconst)
σ − σconst

)
, while the output is not

changed. In this case, the system is passive with the following storage function:

ψF = ψTot − µ0 〈Hconst,MTot〉 − σconstε,(53)

where ψTot is the system Helmholtz free energy andMTot is the system magnetization.
This situation is analogous to the example of a spring with a constant imposed force,
such as gravity, discussed in section 2.

Theorem 11. In the presence of a constant input, the following passivity condi-
tion is satisfied when the storage function is ψF :

ψFi +
∫ tf
ti

〈
ū,
dX

dt

〉
dt ≥ ψFf .(54)

Subscripts i and f denote initial and final conditions, respectively, and X =
(
M
ε

)
is

the generalized displacement.
Proof. If the definition of ū and ψF is substituted into the result of Theorem 10,

the result is

ψFi + µ0 〈Hconst,MTot,i〉+ σconstεi +
∫ tf
ti

〈
ū+

(
µ0Hconst
σconst

)
,
dX

dt

〉
dt

≥ ψFf + µ0 〈Hconst,MTot,f 〉+ σconstεf .(55)

This simplifies to

ψFi +
∫ tf
ti

〈
ū,
dX

dt

〉
dt ≥ ψFf .(56)

Since both MTot and ε have a lower bound and an upper bound, existence of a lower
bound for ψTot implies that ψF has a lower bound. The proof is complete.
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Fig. 8. The global minimum Preisach boundary in the presence of a constant input.

The storage function ψF can be written as a function of the Preisach boundary
τ(t, r) and ε by combining (49) and (53):

ψF (τ(t, r), ε) =
CI0

2
Y ε2 +

C

η′ − 2Y γε
µ0

(
µ0I0(τ(t, 0)−Hconst)2

2
− µ0I0H

2
const

2

− η′Y γεM2
RI0 + µ0HconstMRη

′I0 + µ0HconstI1

− η′MRµ0I1 + µ0η
′MRĀ−

µ0

2
I2

)
− σconstε,

(57)

where Ā = 2
∫∞

0

∫ τ(t,r)
−∞ (s − Hconst)µ(r, s)dsdr. Using an argument similar to that

of the previous section, it can be shown that the following boundary minimizes the
storage function:

τ(t, r) = Hconst.(58)

This boundary is shown in Figure 8. For a constant input, this is the state of minimum
energy. The magnetization in this state is the anhysteretic magnetization.

6. Conclusions. In this article, magnetostrictive transducers were introduced
in a dynamical system framework. Passivity of this system was shown using fun-
damental physical relations. For the energy-based Preisach model, the system states
were defined, and the storage function was computed. System equilibrium points were
also identified and discussed.

The passivity results discussed in this paper can be used to show the stability of
a closed-loop system. Future work includes the design and optimization of a robustly
stabilizing controller for magnetostrictive transducers.

Appendix. The maximization of entropy. In this appendix, it is shown that
the entropy function (20) is maximized when H = 0.
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From subsection 3.4, the following relations define entropy for a paramagnetic
sample with N dipoles:

Z =
sinh

[
(J + 1

2 )η
]

sinh
[ 1

2η
] ,

S = kN

(
lnZ − β ∂ lnZ

∂β

)
,(59)

η = cβ ‖H‖ ,

β =
1
kT

,

where c is a positive constant.
Define D = η

2 =
cβ
2 ‖H‖ and q = 2J + 1. Since J is a positive half-integer, q is

an integer greater than one. We can write

S = kN

(
ln
sinh qD
sinhD

− qD coth qD +D cothD
)
.(60)

This function is not defined at D = 0, but limD→0 S(D) exists:

lim
D→0

S(D) = lim
D−→0

kN

(
ln
sinh qD
sinhD

+
D coshD sinh qD − qD cosh qD sinhD

sinhD sinh qD

)

= lim
D−→0

kN

(
ln
qD + h.o.t.

D + h.o.t.
+
D4

6 (2q − 2q3) + h.o.t.

qD2 + h.o.t.

)
(61)

= kN ln q.

For D �= 0, S(D) = S(−D); i.e., this is an even function. We do not need to
analyze this function for both positive and negative values of D. For simplicity D > 0
is studied.

If D > 0,

dS

dD
= kN

(
q2D

sinh2 qD
− D

sinh2 D

)
.(62)

It will be shown that for D > 0, dSdD < 0. Consider the Taylor series of the
following expression:

sinh qD − q sinhD = qD +
q3D3

3!
+
q5D5

5!
+ · · · − qD − qD3

3!
− qD5

5!
− · · ·

= q

(
(q2 − 1)D

3

3!
+ (q4 − 1)D

5

5!
+ · · ·

)
.(63)

Since q > 1 and D > 0 all of the terms in the Taylor series are positive. It follows
that

sinh qD − q sinhD > 0.(64)

This inequality can be written as

1 <
sinh qD
q sinhD

(65)
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or

1 <
sinh2 qD

q2 sinh2 D
.(66)

This inequality can be further written as

q2

sinh2 qD
− 1
sinh2 D

< 0.(67)

This terms appears in the derivative of S with respect to D:

dS

dD
= kND

(
q2

sinh2 qD
− 1
sinh2 D

)
.(68)

Since D > 0, this implies that dSdD < 0.
Since dSdD < 0, S can be increased by lowering D, or

sup
D>0

S(D) = lim
D→0

S(D) = kN ln q.(69)

Since S(D) is an even function, this result can be extended to all values of D �= 0:
kN ln q is an upper bound for S(D).
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