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Abstract

Position control of a wide class of hysteretic systems, iheltides those described by a Preisach
model, is considered. The main focus of this paper is stghifacking and the trajectories of a hysteretic
system controlled by a PI controller. The system output {tsodlerivative) is measured and controlled.
It is shown that, for arbitrary reference signals, the diskmp system is BIBO-stable with a finite gain
of one. Furthermore, the absolute value of the error deeseamnotonically for a constant reference
signal. In this case, provided that the desired output ihiwithe limits of the system output, zero
steady-state error is guaranteed. A bound on the time mdjtir achieve a specified error is obtained.
Only a simple condition on the controller parameters is iregu The results imply robust position

control, even if errors in the model exist.

I. INTRODUCTION

Hysteretic systems are seen in many applications. Smaerialgt such as piezoceramics,
shape-memory alloys and magnetostrictive materials, ar@ngortant group of hysteretic sys-
tems. Smart actuators are generally scalable, smallex,degensive and more efficient than
traditional actuators, and hence, a competitive choicarfany tasks in the industry.

Hysteresis nonlinearities are present in smart matemalsrying degrees. The hysteresis can
be complex and usually introduces additional memory ineosystem. Uncertainties seen in the
physical system together with complex nonlinear behavfuthe system make it difficult to

provide a robustly stabilizing controller.
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In many applications, it is desired for the smart actuatdoliow a given trajectory accurately.
For example in a scanning microscope where the microscppis tiriven by a smart actuator,
the tip has to move to predetermined positions. Trackingrercause distortions in the image
taken. The controller has to provide stability and accuteteking in these applications.

A popular approach for control of a hysteretic system isriedrize the system by incorporating
the inverse of the hysteresis, and then design a linearatartfor the resulting linear system
that is close to unity [1]-[3, e.g.]. In this approach, thedelomust of course be invertible.
Furthermore, an accurate model of the hysteretic systemqisired since modelling errors will
affect the overall performance and could lead to instabiliven small errors in the model can
lead to quite large errors in the inverse model. Also, thé&usion of the inverse of the hysteresis
model in the controller leads to a complex controller. In, [the Preisach model is coupled to
an ordinary differential equation to model a magnetostectictuator. The model is inverted
and used before the actuator to linearize the system. IfdR]a hysteretic system is linearized
by an inverse model antl, and H,, optimal control is used to provide robust stability for the
linearized system.

In [4], @ magnetostrictive actuator is controlled by a hghoptimal controller. The actuator
input is computed by a hysteresis model offline. A Pl congérols added to compensate for
unmodeled dynamics and other errors.

For a passive hysteretic system, the stability of the cdetisystem can be established using
the passivity theorem. The passivity of the Preisach magledhown in [5] when the system
output is the time-derivative of the Preisach model outpiiis result is used to establigh-
stability of a velocity controller. In [6], a physics-basagyjument is used to prove the passivity
of a magnetostrictive actuator. In this proof, no specificdelas used and the results apply
to any hysteresis model for magnetostrictive actuatorssiPdy is used in [7] to develop an
L,-stable velocity controller for the magnetostrictive attr.

In [8]—-[11], integral control of hysteretic systems is sedlusing techniques for nonlinear
dynamical systems. There is a common set of assumptionththhysteretic system must satisfy,
but different control system configurations are studied8lnpure integral control with a time-
varying gain is studied, with additional dynamics includedthe loop. Only constant inputs
are considered. It is shown that the system is well-posedtlaatd if certain conditions on the

time-varying gain are satisfied, the steady-state trackimgr is zero. In [9], a control system
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with pure integral control is studied, but this work is come with the asymptotic behaviour
of the system in the presence of external disturbance signal,. In [10], PID control of a
second-order system that includes a hysteretic compoeéhe( in the forcing or the damping
term) is studied. If the hysteretic component is in the fogdierm and the controller parameters
satisfy certain constraints that depend on the second-gsdgem, it is shown that the system
asymptotically tracks a constant input. In [11], it is shotimat a time-varying controller can
achieve tracking of a given signal with prescribed accuracg controlled system with input
hysteresis. No bound on the controller gains is given. Onedssumption in these results is
that the system has monotonic input/output behaviour. B, [[L3] monotonicity is also used
to analyse stability of systems, provided that the feedlsysitem is well-posed in some sense.
These works consider primarily systems with different@i@&ion models. The analysis for static
systems is restricted to systems where the static modeiggesvalued. This excludes hysteretic
systems which have a characteristic looping behaviour.

The main focus of this paper is stability, tracking and thegertories of a hysteretic system
controlled by a PI controller. The system is assumed to beotomic. The system output (not
its derivative) is measured and controlled. For smart aotsathis leads to position control.
We are concerned with obtaining a controller with reasamaains that can be implemented
experimentally. A Pl controller was chosen because of igglability and simplicity. It is shown
that, for arbitrary reference signals, the closed-loopesysis bounded-input-bounded-output
(BIBO) stable with a finite gain of one. Furthermore, the dbisovalue of the error decreases
monotonically for a constant reference signal. In this casevided that the desired output is
within the limits of the system output, zero steady-stateres guaranteed. A bound on the time
required to achieve a specified error is obtained. The espiply to a wide class of hysteretic
systems and only a simple condition on the controller patarags required. The results imply
robust position control, even if errors in the model existugation is generally considered to
be a destabilizing influence on a controlled system. Howewethis approach, it is shown to
assist stability.

The Preisach model [14] is one of the most important hysieraedels in the literature. While
originally developed to model magnetic hysteresis, thislehds frequently used for many smart
materials [15]-[19]. It is shown that, in general, Preisachdels satisfy the assumptions used

here.
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In the next section, definitions and the framework used ia fgaper are established. BIBO
stability of the closed-loop system is shown in Section tiSa 4 is concerned with tracking
of a constant input using a PI controller. In section 5, theotl in the preceding sections is
used to implement position control for a magnetostrictiggiator. The experimental results are

discussed.

[l. FRAMEWORK

DefineR, to be the set of non-negative real numbers. For any intdna@lR ., let Map(I)
indicate the set of real-valued functions defined/oRor7" > 0 in some interval, the truncation
of f € Map(I) to the intervall0,T] is

ft), 0<t<T,
0, T < t.

fr(t) =

DefineC(I) to be the set of continous functions on an interalThe norm of a functiory in
C(I)is
I flloe = sup | f(t)].
tel

Definition 1: [20] An operatorl’ : Map(R,) — Map(R,) has theVolterra propertyif, for
anyv,w € Map(R,) and any non-negativé, vy = wy implies that(I'v)r = (I'w)r.
Definition 2: [21] An operatorl" : Map(R,) — Map(R, ) is rate independenif
(T'v)op=T(voyp)
for all v € Map(R,) and all continuous monotone time transformatignsR ;, — R, satisfying
©(0) = 0 andlim;_,, p(t) = oc.
Definition 3: [21] An operatorl’ : Map(R.) — Map(R, ) is a hysteresis operatoif it is
rate independent and has the Volterra property.
The Volterra property states that the hysteretic systermpututoes not depend on future inputs;
that is, determinism. A deterministic, rate independerdrafor is a hysteresis operator.
For anyd > 0, 0 < t; < t3, and anyw € C([0, t;]) define
By(w,ty,ty) = {ueC([0,ta])| uy, = wy, } (1)
Bg(w,tl,tg,a) = {u 66([0,t2])| U, = Wy, (2)

,max lu(T) —w(ty)] < d}.
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Denote the hysteresis model input and output.landy, respectively. The following assumptions
are used throughout this paper.

(A1) If u(t) is continuous theny(¢) is continuous. That is" : C(I) — C(I) where[ is the
interval of interest.

(A2-i) (global Lipshitz property) There exists> 0 such that for every intervat,, ¢;] where
0 <t <ty and everyw € C([0,t,]), the following inequality holds for al;, uy € By (w, t1,ts).

sup [I'(u1)(7) = T(u)(T)| <A sup fua (1) = ua(7)]. 3)

t1<r<ts t1<7<ts

(A2-ii) (local Lipshitz property) There exists> 0 such that for eachy > 0 andw € C([0, t1]),
there isé > 0 andt, > t; such that for alku;, us € By(w, t1,ts,9), inequality (3) holds.

(Note by definition of By(w,t;,t2) and By(w, t1,ts,0), the Volterra property implies that
L(up)(7) =T(ug)(7) for 0 < 7 < ty.)

(A3) Consider an arbitrary intervad;, t¢]. If for every ¢t € [t;, t;], u(t;) > u(t), theny(t;) >
y(ts). Alternatively, if for everyt € [t;, tf], u(t;) < u(t), theny(t;) < y(ts).

(A4) (saturation) There exists some,, > 0, y, and y_ such that ifu(t) > wus then
(Pu)(t) =y, and (T(—u))(t) = y-.

The global Lipshitz property (A2-i) is stronger that thedbtipshitz property (A2-ii). There is
a close connection between assumption (A3) and monotgmitihe hysteretic system, in a sense
that an increasing input results in increasing output aedsdime for decreasing inputs/outputs.
By settingt = t;, it is seen that if assumption (A3) holds, the hysteretidesysis monotonic.
The converse is not true. In Figure 1(a), a hysteretic systé@ma clockwise hysteresis loop is
shown. This plant is monotonic, but does not satisfy assiom@A3). In Figure 1(b), a plant
with a counter-clockwise hysteresis loop is shown. The tgmonotonic and assumption (A3)

is satisfied.

A. Hysteretic systems represented by the Preisach model

While the results presented in this paper hold for any hgstermodel satisfying the assump-
tions, the Preisach model is considered here because daénesa@ structure and applications in
many hysteretic systems. In this subsection, this modetigiyp explained and it is shown that
the assumptions given above are satisfied. For more debmlst she Preisach model, see [14],
[20].
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Fig. 1. (a) A clockwise hysteresis loop, and (b) a counteckvise hysteresis loop.
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Fig. 2. The Preisach relay.

The basis of the Preisach model is the hysteresis relay shofigure 2. Model input, shown
on the horizontal axis, is directly fed to this relay. Thepuitof the relay, shown on the vertical
axis, is used to compute the model output. Each relay is ddnoy two parameters: half width
r and shifts.

The output of this relay is either1 or —1. The relay retains its state unless the input passes
s+ r ors—r. If the relay is in the+1 state and the input becomes less tkan r, the relay
switches to—1, and if the relay is in the-1 state and the input becomes greater thanr, the
relay switches to the-1 state, otherwise, the output remains the same. The relgubist only
defined for a continuous input(t). As a result, the Preisach model is only valid for continuous
inputs. LetR, ([u(-)](t) be the output of the relay with half-width and shifts and u(r, s) a

locally integrable weight function. The outpytt) of the model is

y(t) = / N / " RenluC))(u(r, s)drds. @)

An infinite number of relays with different andr are used. Each relay output, multiplied by a
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weight functionu(r, s), contributes to form the output of the model. The weight fiorcu(r, s)
is determined by experimental data for the hysteretic ayste
The Preisach model is a hysteresis operator [20], [21]. BHewing theorems show that the
Preisach model satisfies the assumptions under certainticosd
Theorem 4: [20, Prop. 2.4.9,Prop. 2.4.11] If the Preisach weight fiomci.(r, s) satisfies
A= 2/00 sup |p(r, s)|dr < oo 5)
0

seR

then for initial Preisach boundaries in
{6 € Map(R,) | |p(r1) — d(ra)| < |r1 — ro| for all 1,79 > 0}

the Preisach operator maps inputsCifit,, t2]) to outputs inC([t1, t2]) for any interval|ty, ¢o]

where0 < t; < ty. For anyw € C([0,t1])

max [y () — y2(t)] <A max |us(t) — ua(t)] (6)

t1<t<ts t1<t<ts
for all uy,us € By(w,ty,t2) Where By (w, t1,t,) is defined by equation (1).
The inequality (6) means that the global Lipshitz propeA2-) is satisfied.

Many smart materials exhibit saturation [5], [15], [22]aths, the output does not change
if the absolute value of the input is larger than some limj, > 0. In this case, the weight
function . has compact support; that ig(r, s) = 0 for all » + s andr — s greater thani,,. In
all physical situations, the value of the input is constedifty actuator limitations tQu| < wq,.
In this situation as well, we can assume the weight functobd zero for all- + s andr — s
greater thanu,;.

Theorem 5:If u(r, s) is bounded with compact support then assumptions (A1) a@diyAre
satisfied with the Lipshitz constantgiven by (5).

Proof: The assumptions on imply that (5) is satisfied. The conclusions then followsniro
Theorem 4. [ |

For many hysteretic systems, the weight functigm, s) is also nonnegative [5], [15], [22].

Theorem 6:If the weight functionu(r, s) is nonnegative, assumption (A3) holds.

Proof: Assume that for every € [t;,¢s], u(t;) is greater than or equal w@(¢). Define ),
to be the set of Preisach relays that are in thestate at;; and the+1 state att;. Define)_
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Fig. 3. Preisach relays with+ r > u(t;).

to be the set of Preisach relays that are in thiestate att; and the—1 state att;. From the

definition of the Preisach model,

it —ut) =2 [ | i, syirds =2 | utrsyaras (7)

From¢t; to ¢:

« For relays withs+r > u(t;): as seen in Figure 3, a transition froai to +1 cannot happen
because for ne, s + r = u(t). These relays cannot be i, .

. For relays withs + r < u(t;): as seen in Figure 4, at= ¢;, all of these relays are in1
state. None of these relays can befin.

Thus, (2, is an empty set. Sincg(r,s) > 0, the integrals in equation (7) are non-negative.

Thus, as was to be shown,

vits)—u(t) =<2 [ [ trsyirds <o

If for every t € [t;,tf], u(t;) is less than or equal to(t), a similar argument shows thatt;)
is less than or equal tg(ty). u
Theorem 7:Assume that the weight functign(r, s) is zero when-+ s or r — s is larger than

some valueu,,; > 0. Definey, andy_ to be

w = [ /OOOM(T,S)de& ®)
g = /_ Z /0 i, s)drds. )
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Fig. 4. Preisach relays with+ r < u(t;).

If u(t) > usar Oru(t) < —usq, the model outpug(t) is equal to constantg, or y_, respectively;
and therefore assumption (A4) holds.
Proof: Suppose that
u(t) > gy (10)

If the inputw(t) is larger than or equal ta,,, all relays with non-zero weight function are in
+1 state. (See Figure 2.) Since the relays with zero weighttiomalo not contribute to the
output, the output ig., .

Similarly, if u(t) < —us,, the output isy_. [ |

[Il. STABILITY OF THE CLOSED-LOOP SYSTEM

In this section, the trajectories of the solutions for theseld-loop system are examined. It is
shown that the system is bounded-input-bounded-outpB@Bistable.
Definition 8: A mappingR : C(I) — C(I) is BIBO-stable if for everyu € C(I), Ru € C(I)

and there exists a finite constansuch that
[(Ru)(t) oo < pllulloo, Vu € C(I) (11)

The smallest such constantis the gain.
Consider the closed-loop feedback system shown in FiguréhBre the plant is represented

by a hysteresis modéil.
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Fig. 5. The closed-loop system.

The following PI controller is used for position control:
CA'(S) = —+Kp 12)

where K; and Kp are constants. The controller parameters are assumedmsbtisfy
(B1) For the controller in (12)) < KpA < 1 and K; > 0 where\ > 0 is the Lipchitz constant
in assumption (A2-i) or (A2-ii).

The following additional assumption is needed to guaratiteeexistence of a solution for the
closed loop.
(B2) The reference signal(t) is a continuous function of time; that is(t) € C(I) where[ is
the interval of interest.

The closed-loop system shown in Figure 5 is described bydhewing equations:

e(t) = r(t) =y, (13)
fit) = /O te(T)dT, (14)
u(t) = Kpe(t)+ K f(t), (15)
y() = Tul)] @) (16)

We first show that the closed loop is well-posed; that is fantcmous reference inputs)
the above equations have a unique solution for continuomstitns«(¢) andy(t).
Theorem 9:Assume that for a hysteretic systéim(A3) and (A4) hold. Then_ < y(t) <y,
for everyt.
Proof: Let u(t;) andy(t;) = (I'u)(t;) be the input and output respectively at some arbitrary
point ¢;. Suppose the input is increased monotonically froft}) to u(t;) = us,. Assumption
(A3) states thay/(t;) < y(ts). Since assumption (A4) states that,) =y,

y(ti) <yg.
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Similarly, y(t;) > y_. [ |
We now show that the equations (13-16) have a unique conisgolution. The following
existence proof uses a standard argument in differentizhteans.
Lemma 10:(Existence Lemma) Assume that (Al), (A2-ii), (B1), and (B2) hold. For any
to > 0 such that equations (13-16) have a unique solution:for [0, #,], there exists > 0 such
that equations (13-16) have a unique solutionda C([to, to +t)). Furthermore, if assumption

(A2-i) is satisfied,
1— KpA
2AK;

Proof: Using (13-16), it is sufficient to show that for amye C([0, c0))

f= (17)

G(u) = K[/O r(T)dr + Kpr(t)

K, /O (Pu)(r)dr — Kp(Tu)(t)

is a contraction or([to, to + t)) for somet > 0. Assumption (A2-ii) implies the existence of a
t >0 ando > 0 such that for anyw € C([0,t]) anduy, us € Ba(w,to, to + £, 0)

maxy, <i<to+i | (Gu1) (1) — (Guz)(t)] < (18)
(K1t + Kp) Amaxg,<i<ori [ua(t) — ua(t)].

Since0 < KpA < 1 and K; > 0, we can obtain K;t + Kp)\ < 1 by choosingt sufficiently
small. It follows thatG is a contraction orC([ty, ¢y + t)). The Contraction Mapping Principle
then implies that, = G(u) has a unique solution far € C([to, to +1)).

If assumption (A2-i) is satisfied, for evety> 0, w € C([0, to]), anduy, us € By(w, to, to+1),

1-KpA
INK]

and (Kt + Kp)X < 1. It follows thatu = G(u) has a unique solution far € C([to, to+1)). B
Lemma 11:Assume that (Al), (A2-ii), (B1), and (B2) hold. if; is a continuous solution of

inequality (18) is satisfied. Let be . Since0 < KpA < 1 and K; > 0, we havet > 0

(13-16) on[0,¢;] andus, is a continuous solution off), 5], thenw, (t) = uy(t) for t < t, where
to = min(ty, to).

Proof: First, by the above lemma, there exists an intef0ak,) on which the solution is
unique. Ifa, > t,, thenu,(t) = uy(t) for t < ¢, as required. Ifa, < t,, then by continuity of
u; andus,

li = li .
oy ) = e
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Call this limit u,. Thus, there is an unique solution to the system of equationg), a,|. It
follows from the existence lemma above that there exXistach that there is a unique solution
on (a, — d,a, + 0). Sincew,(t) = uq(t) on this larger intervall0, a,] is not the largest interval
on which the solution is unique. It follows that(¢) = us(t) for t < t,. The solutionu(t) does
not depend on the interval of solution. [ |

The following result is the main existence theorem for Pltominof hysteretic systems that
satisfy a local Lipshitz condition (A2-ii). Saturation assption (A4) is used.

Theorem 12:Assume that (Al), (A2-ii), (A4), (B1), and (B2) hold. Then3(l6) have a
unique solution forw € C([0,00)) andy € C([0, c0)).

Proof: Let 7 be the set of all- > 0 such that there exists a solution ¢h7|. By the

existence lemma7 is not the empty set. Defin€ = sup 7 andu*[0,¢*) — R by
u (t) =u.(t), tel0,7), 7 <t

Lemma 11 implies that*(¢) is well-defined and unique off), ¢*). Clearly, this is a maximal
solution. The maximal interval is open. If not, antd < oo, we could extend the solution to
[0,¢* + §) for somed > 0 using the existence lemma.

Consider now finite*. Fort < t*, sinceu € C([0,t*)), the outputy(t) = (I'u)(¢) is also de-
fined and assumption (A1) implies that it is@f[0, ¢*)). By Theorem 9]y(¢)| < max {|y+|, |y—|}
for all ¢t < t*. Define

* — limy(t
Yy tglgy()

and extendy(t) to C(]0,t*]) by definingy(t*) = y*. Define

t* ¢
ut = KI/ r(r)dr + K,r(t") — KI/ y(r)dr — Kpy*.
0 0

Thenw* = lim+ u(t) and we can extend(t) to C([0,t*]). We can then extend the solution
to [0,t* + o) for somed > 0. This contradicts the maximality of. Hence, we must have a
solutionu € C([0,00)). It follows thaty(t) = ['u(t) is defined on0, co) and (A1) implies that
y(t) is in C([0, 00)). n

If the hysteretic system satisfies a global Lipshitz assionpfA2-i), then saturation (A4) is
not required to show existence of a unique continuous soluti

Theorem 13:Assume that (Al), (A2-i), (B1), and (B2) hold. Then (13-1&vk a unique
solution foru € C([0,00)) andy € C([0, c0)).
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Proof: Let 7 be the set of all- > 0 such that there exists a solution ¢h7|. By the

existence lemma7 is not the empty set. Defin€ = sup 7 andu*[0,¢*) — R by
u (t) =u.(t), tel0,7), 7<t".

Lemma 10 states that > ¢, wheret is defined by equation (17). Lemma 11 implies thatt)

is well-defined and unique of, t*). Clearly, this is a maximal solution. The maximal interval
is open. If not, and* < oo, we could extend the solution {0, ¢* + §) for somed > 0 using
the existence lemma.

Consider now finite*. Sincet* > ¢, we havet* — % > (0. This means that there is a unique
solution in [0, t* — g]. By using Lemma 10, the solution can be extendedoOto* + g). This
contradicts the maximality of*. Hence, we must have a solutianc C([0, c0)). It follows that
y(t) = Tu(t) is defined on0, co) and (A1) implies that(¢) is in C([0,0)). n

The following theorem establishés/ BO-stability of the closed loop. Furthermore, the system
possesses unity gain for any choice of controller parammeter

Theorem 14:Assume that the closed-loop system has a unique solution, fpe C([0, 00))
and assumptions (A3), (B1), and (B2) hold. Furthermoreymssthat.(0) = 0. If |y(0)| < ||7]|cc,
then ||y||« < ||7]|«- That is, the closed loop system is BIBO-stable with ghain

Proof: Define
L=|r|,. (19)

Assume that for somey,
y(ty) > L. (20)

Define t,.x, t0 be the time at whichu(t) is maximized on[0, ¢]:
U(tmaxwu) > u(t),Vt € [0, ty]. (21)
Definet,,.x y to be the time at whiclf(t) defined in equation (14) is maximized @ ¢|:
f(tmax ) = f(1),VE € [0, 24]. (22)

The plant output(t) is continuous. Assumption (B2) implies thdt) is continuous. Equations
(19) and (20) imply that(t;) < 0. Using continuity ofe(t), there is a neighborhood aroung

DRAFT



14

on whiche(t) < 0. Sincef(t) = e(t), f is strictly decreasing in this neighborhood. As a result,

f(t) is not maximized at:

tmaxf 7& tf

Since e(t) is continuous andf(t) = e(t), f(t) is continuously differentiable. If,,..; #
0, maximization of f(¢) at t,.. implies thatf(tmaxf) = 0 or, e(tmaxy) = 0. Equivalently,
e(tmax r) 7 0 implies thatt,,.. f = 0.

Casel Kp>0

Using assumption (A3) and equation (21), we see that
Y(tmaxu) = y(ty)-
With equation (20), this implies that
e(tmaxu) = T (tmaxu) — Y (tmaxu) < 0. (23)

By definition of ¢,ax v,

u(tmaxu) 2 u(tmaxf)7

or from (15),
Klf<tmaxu) + KPe<tmaxu) Z Klf<tmaxf) + KPe(tmaxf>- (24)

By definition of ¢,,,.« ,
f(tmaxf> Z f(tmaxu)- (25)

Since K;, Kp > 0, (24) and (25) imply that
e(tmaxu) = €(tmax f)- (26)
Comparing (26) with equation (23), we obtain
e(tmax r) < 0.

Sincee(tmax £) # 0, tmax f = 0. From the definition off, (14), we obtain thaf(0) = 0. Using

the definition ofu, (15), we conclude that
U(O) = er(O) < 0.

Thus, ify(t;) > L for somet;, u(0) < 0. Similarly, if y(t;) < —L, w(0) > 0. ThusKp > 0
andu(0) = 0 imply that |y < |rl|..-
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Case 2: Kp=0
Equation (15) simplifies to
u(t) = Krf(t) (27)

where f(t) is defined in (14). Using (22) and (27),
U(tmax £) > u(t), ¥t € [0,ty].

Since assumption (A3) holds, this implies that

Y(tmax g) = y(ty)- (28)

Using (20), we conclude that
e(tmaxs) = T(tmax f) — Y(tmaxs) <0 (29)

and soe(tmax r) # 0. It follows thatt,,.. ; = 0. Combining equations (20) and (28), leads to

y(0) > y(t;) > L.

Similarly, if y(t;) < —L, y(0) < —L. Thus, Kp = 0 and |y(0)| < ||r||,, imply that ||y| <

17/l
Thus, for any value of<p > 0, |y(0)| < ||r|,, implies that||y||_, < ||r]... The closed loop
is BIBO-stable with gainl. [ |

Theorem 14 implies not only stability, but also that an okierst, such as the one shown in
Figure 6, cannot occur in the closed-loop response of thesyd$-or hysteretic systems satisfying
the saturation assumption (A4), boundedness of the oututbe shown using Theorem 9.
Theorem 14 extends this result to hysteretic systems thabtlsatisfy the saturation assumption.
Also, whether or not saturation is present, the closed-Bgiem has a gain of 1. Even when

saturation is present, the gain is determined by the abadist result, not the saturation level.

IV. TRACKING

In this section we show that PI controllers provide a closexplsystem that tracks a constant
input with zero steady-state error and no overshoot. A baamthe time required to achieve a
specified error is obtained.

The following result guarantees that the tracking errorrel@ses monotonically.
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y(t)

r(t)

v

Fig. 6. An example of an overshoot.

Theorem 15:Assume thatr is a constant in some intervédy, 7], the closed-loop system
has a unique solution fot,y € C([0,7]), and assumptions (A3) and (B1) hold. If for some
nonnegativep, |r — y(to)| < p, then|r —y(t1)| < p forall t, <t; <T.

Proof: Assume that for some, r — y(t1) < —p. Forr — y(t1) > p, the proof is similar.

e(ty) < —p. (30)
Definet,.x. to be the time at whichu(t) is maximized onty, t,]:
U(tmaxu) = u(t),Vt € [to, t1]. (31)
Definet,.x r to be the time at whiclf(t) is maximized onty, ¢,]:
f(tmax ) > f(1),Vt € [to, t1].
Since the plant outpug(¢) is continuous,f(t) is continuously differentiable. Inequality (30)
implies that f(t;) = e(t;) < 0, and sof(t) is strictly decreasing in the vicinity of;. This
implies that
tmax f 7 t1-
If tmax r 7 to, maximization of f(¢) at t,,.x r implies thatf(tmaxf) =0, or,
e(tmax £) = 0, if tmax f # to- (32)
By definition of ¢,,.x y andt,ax .
U(tmax ) < U(tmaxu), (33)

f(tmaxf) 2 f(tmaxu)~ (34)
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Using (15) and (33)
Kpe(tmaxf) + Krf(tmax ) < Kpe(tmaxu) + Krf (tmaxu)-
But inequality (34) implies that
Kpe(tmax 1) < Kpe(tmaxu)- (35)
Using assumption (A3) and (31) we obtain that

y<tmaxu> > y(tl)a

and so,
e(tmaxu) < e(t1). (36)

Casel Kp>0
By combining (30), (35), and (36) we have

e(tmaxf) < —p< 0. (37)
Sincee(tmax r) # 0, (32) implies thatt,,.. f = to. Rewriting inequality (37) leads to
e(to) =1 —y(to) < —p

as required.
Case 2. Kp=0
Equation (15) simplifies to
u(t) = K1f(t).

Since K; > 0, any choice foft,,ax,, IS also a choice fot . r. At tiax r, u(t) is maximized. By

repeating the argument above for (36) we obtain that

e(tmax r) < e(t1).

Using inequality (30) leads to

e(tmaxf) < —p< 0.

Similar to the previous case(t,.xr) # 0 and (32) imply that,,.. ; = to and so

e(to) =r —y(to) < —p.
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&(t)

v

-&

Fig. 7. The errore(t) versus time.

The proof is complete. [ |
Theorem 15 states that during a period where the input istaofjghe absolute value of the
error is never increased. As a result, an oscillatory respar an overshoot cannot be seen.
The following theorem proves that, if in addition to the asgtions of the previous theorem,

the saturation assumption (A4) holds, then the error can &da@enarbitrarily small.

Theorem 16:Let ¢, be a non-negative real number. Assume th@) is a constanty, in
[to, 00), the closed-loop system has a unique solutionufay € C([0, c0)), and that assumptions
(A3), (A4), and (B1) hold. Ify_ <r <y, then for every: > 0,

Ir —y(t)| <e,Vt >t +t,

where

B I) -

Consequentlylim; ., y(t) = r.
Proof: Assume that for some andt > t + ¢y, r — y(¢t) > . The proof for the case
y(t) —r > ¢ is identical.

Theorem 15 implies that for al € [to, ],
=y ()] = le()] > e (39)

This is illustrated in Figure 7.
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Integrating fromt, to t, + ¢, we have

to-i—f _
/ e(t)dt' > et.
to

Using the definition off, (14), it follows that

f(to+1) > flto) + et. (40)
Sincet is defined by (38),
el > 22— f(ty). (41)
K

Substituting this into (40) leads to

Usat
t t) > .
fto+1) > K,

Sincet > t + to, (39) implies that
6(t0 + E) > €. (42)

By using equation (15), a bound arit, + ) can be obtained:
u(to +1t) > Kpe + s > Usar-
Using assumption (Ad)y(to + t) = y,. From (42),
>y

Thus, if r — y(t) > ¢ for somet > ¢ + tog, » > y,. Similarly, if y(t) —r > ¢, thenr < y_.
Hence,y_ <r <y, implies that|r — y(¢)| < e for all t > ¢ + t, as was to be shown.
It was shown that for every > 0, there is & such thatlr — y(¢)| < e for all ¢t > t +to. This
is the definition of limit. Thuslim; ., y(t) = r. [ ]
Theorem 16 gives an upper limit for the time required to aahigny accuracy. Theorem 9
shows that an output smaller than or larger thany, is not feasible. The conditiop. <r <y,
is just that the desired reference point is within theseratiin limits. The above theorem states
that if the input to the closed loop is within the saturatiomils, zero steady-state error is
guaranteed.
Theorem 14 can be used to design a controller for positiotralorThe controller must only
satisfy assumption8 < AKp < 1 and K; > 0. In the next section, a position controller is

designed and evaluated experimentally.
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V. EXPERIMENTAL RESULTS

In the previous sections, tracking and stability for pasitcontrol of hysteretic systems were
shown for a PI controller. In this section, these resultsus@d to develop a stabilizing position
controller for a magnetostrictive actuator.

To evaluate the position controller experimentally, a nedgstrictive actuator is used. In this
actuator, a rod made of Terfenol-D, a magnetostrictive naigprovides actuation. This material
reacts to a magnetic field. In the presence of a magnetic fielsi, material generates a small
mechanical displacement. The displacement is measured bptecal encoder with a resolution
of 10nm.

To provide the requested magnetic field, the Terfenol-D sagsed inside an electrical magnet.
The magnet is powered by a programmable electrical curreantce. The current source is
controlled by a PC computer. Several sensors are includétiactuator to measure flux density
and temperature. The sensors’ measurements are sent t€ tbentputer. MATLAB Real-Time
Workshof® is used with the PC computer. The controller is implementétinMATLAB.

Terfenol-D cannot withstand tension and should be in cosgioa for proper operation. The
compression is provided by a set of washer springs. Theggpane soft enough that it can be
assumed that the compression force is constant when thend&D rod changes size. The force
of the springs can be adjusted. The force is measured by ackihd

For a magnetostrictive material, magnetic fiéldand magnetizatiod/ are the input and out-
put, respectively. The relation between magnetic figldnd magnetization/ can be represented
by a Preisach model with a positive weight function with caetpsupport [15]. Assumptions
(Al1)-(A4) are satisfied.

In most applications, it is desired to control the displaeati\ produced by the actuator. The

following equation relates magnetizatidi to displacement [15], [23]:
X =mnM? 4+, M* (43)

where~; and~, are constants at a constant mechanical load. Using thisorel@osition control
is achieved by controlling the magnetization.
To find the magnetization in the magnetostrictive actuatiog, displacement produced is

measured and equation (43) is used to compute magnetizatie same relation is used to
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compute the desired magnetization and hence, errors in dd3hot affect the closed-loop
performance.

Theorem 14 states that any PI controller satisfying assiomgB1) provides stability. To find
the optimal gains for the controller, a performance crétésineeded. Here, tracking performance
is used; that is, an optimal set of controller parametersilshminimize the cost function

to
7= [

th
wherer is the reference inpuy, is the closed-loop output arjti, ¢,] is the time range of interest,
subject to the parameter constraints (B1). A smaller valug means a closer match between
the actual and desired outputs.

Because of the nonlinear and complex structure of the systeonly method for minimizing
J is numerical optimization. For this purpose, the closemplés simulated by using a Preisach
model with a general weight function. The model is identified[15]. Using the Preisach
model,y is computed as a function of controller parameters. The foosttion .J is numerically
minimized using Nelder-Mead simplex direct search mett2dd Jvith a reference signalchosen
as a series of step inputs. Formally, the ideal version df sueference input is not continuous.
However, in experiment there is a rapid but continuous chdregween values and so the signal
is continuous. (Furthermore, due to the nature of a hystemserator, there is no difference
between the output of a hysteretic system with a step disugtyt and one with a smooth
monotonic change between the same values [20].)

The optimum values for the controller gains ai€; = 38.02s ! and Kp = 0.0785. The
optimal gains were tested experimentally for differenerefce signals.

In Figure 8, the closed-loop response of the system to stayt is shown for the optimized
controller. Excellent tracking is seen. As predicted bydreen 16, there is no steady-state error.
In Figures 9 and 10, portions of the response are magnifiegl.ndhlinear nature of the system
exhibits different responses in different conditions. Blgstem settles te-10nm of the reference
signal in0.175s and 0.122s in Figures 9 and 10, respectively. This is within the accurat
the sensor used. A small overshoot is seen in Figures 9 anbh Fdgure 9, some oscillations
are also observed. Theorem 15 implies that there is no aoyl response or overshoot. The
overshoots and oscillations are likely caused by some upladdnass in the system. Simulation

results are also shown in Figures 9 and 10. Since unmodeleandgs are not present in the

DRAFT



Displacement ( pm

22

- - - Reference input ]
—— Controlled output

Time (s)
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Fig. 9. Transient response after a step. The effects of angaviass are seen.

simulation, no overshoot or vibrations are seen. This issisb@nt with the results of Theorem

15.

In Figure 11, the system response to a sinusoidal input vétlsing amplitude is displayed.

In the previous sections, it was shown that the closed-lggpem is BIBO-stable for variable

reference signals. Stability is observed and the referérsgectory is followed accurately. In

Figure 12, the tracking error for the same experiment is shdvine root-mean-square tracking
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Fig. 11. Tracking response of the closed loop.

error is0.11um, a relative error of 1.1%.
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