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ABSTRACT 

 
In this article, the modeling of magnetostrictive materials is studied. Magnetostrictive 

materials become longer in the presence of a magnetic field, and are used mostly as 
actuators. These materials are highly nonlinear, and hence, very difficult to control. Here, 
Terfenol-D, a magnetostrictive material is studied. A setup has been designed to measure 
different parameters of a Terfenol-D sample. Using experimental data, the classical 
Preisach model, a physical variation of the Preisach model, and the Jiles-Atherton model 
are evaluated. For each model, the parameters are fine-tuned for Terfenol-D. The ease of 
use and accuracy of the models in the prediction of Terfenol-D behavior are compared. 

 
1. INTRODUCTION 
 
In recent years, a growing demand for micropositioning devices has been seen in 

industry. Micropositioning actuators are now commonly used in optical fiber alignment, 
biological cell micromanipulation, scanning microscopes and chip manufacturing. 
Currently, most of the micropositioning actuators are made of piezoceramic materials 
because of their fast response time and linearity. 

 
There are demands for actuators with more force, larger stroke and faster response. 

For this purpose, the possibility of using other active materials for actuation is being 
examined. Among possible choices, Terfenol-D is a competitive choice. Terfenol-D, a 
magnetostrictive material, is an alloy of Iron, Terbium and Dysprosium. In comparison 
with other active materials, it has a very large force and displacement with a fast response 
time which makes it suitable for high-frequency applications. 

 
In spite of its superior response, its application is less common in micropositioning 

devices. Terfenol-D, like other magnetic materials, has hysteresis. This nonlinearity and 
hysteresis makes it difficult to control. For this purpose, extensive research in hysteresis 
modeling is underway. Since in many micropositioning tasks, sub-micron accuracy is 
required, an accurate hysteresis model and control system is required if Terfenol-D is to 
be used for micropositioning applications. 

 
Most of the literature for magnetostrictive hysteresis modeling is based on two main 

models: the Preisach model and the Jiles-Atherton model. The Preisach model is one of 
the earliest hysteresis models. This empirical model was developed in 1935 for magnetic 
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materials [1]. The Preisach model is explained in detail in [2]. In this model, the output is 
the weighted sum of the output of a continuum of hysteresis relays. The weight function 
for the relays depends on the material and needs to be identified. The Preisach model has 
been applied to many hysteretic systems, e.g. [3, 4, 5]. Many variations of this model 
have been developed. 

 
In [3], an energy-based version of the Preisach model is introduced. Unlike the 

classical Preisach model, this model is derived from a physical model of magnetic 
materials. In this model, the system equilibrium points are found by modeling the 
Helmholtz free energy for each dipole. This model is classified as a Preisach model. The 
weight function is no longer an arbitrary function, but an exponential function with a few 
free parameters. Experimental data is used to fine tune these parameters. In [6], this 
model was extended to generalized weight functions. This extension improves the 
accuracy of the model. 

 
In [7], the Preisach model is combined with a linear system to develop a hysteresis 

model for Terfenol-D that includes dynamical effects. In this model, a generalized weight 
function is used with an iterative identification algorithm. Experimental data and model 
results are compared at different frequencies. 

 
As stated before, the weight function for the Preisach model depends on the system 

and must be identified with experimental data. Several identification algorithms have 
been proposed for this task. In [8], the identification problem is reformulated using a 
least-squares technique. In [9], this approach is examined in more detail for ferroelectric 
materials. 

 
There are many implementations of the Jiles-Atherton model [10] for 

magnetostrictive materials. In the Jiles-Atherton model, the main magnetization 
mechanism is domain wall motion. Using an energy analysis, reversible and irreversible 
component of magnetization are modeled and a differential equation formulation for the 
system is obtained. This model has a few parameters to be identified. A major weakness 
of the Jiles-Atherton model is that it does not accurately reproduce the hysteresis curves 
in complex cases. This issue is fully discussed later in this paper. 

 
In [11, 12], the Jiles-Atherton model is extended. It is suggested that the effects of 

stress for magnetostrictive materials can be represented with an additional magnetic field. 
In [12], the Jiles-Atherton model with quadratic magnetostriction is used. The effect of 
stress on magnetization is also modeled. The model results are compared with 
experimental data from a Terfenol-D sample. 

 
The outline of this paper is as follows: In the next section, the test rig used to obtain 

experimental data is described. The experiments and data interpretation procedures are 
explained. It is shown that due to a relation between magnetization and elongation, the 
models only need to reproduce the magnetization. The Preisach model, its identification 
algorithm and model validation are included in Section 3. Section 4 covers the physical 
Preisach model and its identification and validation by experimental data. In Section 5, 
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the Jiles-Atherton model and the algorithm used for proper minor loop handling are 
explained. The various models are compared in the final section. 

 
2. EXPERIMENTAL APPARATUS AND DATA COLLECTION 
 
A test rig was designed to measure different parameters of Terfenol-D under different 

stresses and magnetic conditions. This test rig is shown in Figure 1. A Terfenol-D rod is 
surrounded by a magnetic coil in the actuation unit. The rod and coil are enclosed in a 
cylinder. An optical encoder with a resolution of 10nm measures the displacement 
produced by the actuation unit. A set of washer springs are used to load the actuation 
unit. The applied force is measured with a load cell and can be adjusted with a bolt on top 
of the setup. A frame made of aluminium is used to hold different parts of the setup 
together. Aluminium was chosen because of its neutral magnetic properties, resulting in 
no interference with magnetic components. 

 
Terfenol-D cannot resist tension and should only be used in compression. This 

compression is supplied by the washer springs. The springs are soft enough so it can be 
assumed that the compression force is constant when the Terfenol-D changes size. The 
coil inside actuation unit is connected to a power supply controlled by a computer. There 
is a pickup coil in the actuation unit which measures the flux density inside the Terfenol-
D rod. Two temperature sensors measure the coil and Terfenol-D rod temperature. The 
coil temperature is measured to make sure that it is not overheated and the Terfenol-D 
rod temperature is measured to compensate for any effects of thermal expansion. It was 
observed that the temperature rise in each experiment is less than 1ºC and hence 
negligible. The current in the magnetic coil is measured in the power supply unit. 

 
 

 
 

Figure 1: The experimental setup 
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This setup is used to obtain the relation between magnetic field H and magnetization 
M experimentally inside the Terfenol-D rod. The magnetic field H is controlled by the 
coil current and is considered to be the hysteretic system input. The magnetization M is a 
function of the magnetic field H and it is considered to be the output. Neither of these 
parameters is directly measurable. 

The actuator case 

 
Figure 2: The magnetic circuit path. 

 
To find the magnetic field H, the magnetic circuit for the actuation unit needs to be 

analyzed. Fig. 2 shows a cross-section of the actuation unit. The magnetic circuit path is 
shown with dashed line. As shown in this figure, the magnetic circuit path goes through 
the Terfenol-D rod and is completed by the actuator case. Ampere’s law for this magnetic 
circuit can be written as: 

 

∫ ∫ +==
case TDlHdlHdlHni ..                   (1) 

 
where l is the length of Terfenol-D rod, HTD is the magnetic field inside the Terfenol-D 
sample, i is the electrical current and n is the number of turns of the winding. If  is 

known, one can use Equation (1) to compute the magnetic field H inside the Terfenol-D 
rod. Since the flux density B is measured by the pickup coil, the following equation can 
be used to compute magnetization M: 

∫case
dlH .

 
)(0 MHB += µ .                                       (2) 

 
To find , the hysteresis relation for the actuator case must be known. A set of 

experiments was performed with the Terfenol-D rod replaced by a rod of cold rolled steel 
with known magnetic properties. In this case, Ampere’s law can be written as: 

∫case
dlH .

 

∫ ∫ +==
case samplelHdlHdlHni .. .            (3) 

Terfenol-D 

The winding 
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Using the magnetic properties, Hsample can be computed by looking up in the 
hysteresis curve. Now Equation (3) can be used to obtain ∫ . It was found that  

is small compared to H
case

dlH . ∫case
dlH .

TDl (more than ten times smaller), that is, the computed magnetic 
field H is only slightly modified if  is assumed to be zero. ∫case

dlH .

 
When a magnetostrictive material is in a magnetic field H, in addition to 

magnetization, elongation is also seen. Both elongation and magnetization are also 
affected by the mechanical stress applied to the material. For most magnetostrictive 
materials under a constant stress, there exists a simple relation between magnetization M 
and elongation λ. Fig. 3 shows the elongation versus magnetization for all experimental 
data when the stress is 1.04KSI. It is seen that, ignoring experimental errors, an algebraic 
relation exists between the elongation λ and M which is independent of system history. 
The similarity between Fig. 3 and a parabola suggests that the function λ(M) can be 
approximated by a polynomial function of even powers of M [13]: 

 
L++= 4

4
2

2)( MMM γγλ                                               (4) 
 

where parameters γ2 and γ4 depend only on stress. Usually the terms higher than γ4 are 
not used. For the experimental data shown in Fig. 3, numerical values of γ2 and γ4 are: γ2 
= 3.374×10-15 2)( A

m  and γ4 = -1.9566×10-27 4)( A
m . In Fig. 3, the curve given by 

equation (4) is shown with a dashed line. This dashed line lies among the experimental 
data and cannot be clearly seen, which shows an excellent agreement between the curve 
and the experimental data. The relation λ(M)=γ2M2 represents the magnetization-
elongation relation with good accuracy. The elongation λ is measured by an encoder and 
magnetization M is obtained experimentally using equation (2). 

 
Figure 3: Elongation versus magnetization for Terfenol-D. The dashed curve is given by 

equation (4) 
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For magnetic materials, a hysteresis curve is a plot of magnetization versus magnetic 
field H. If the input is oscillating between the positive and negative saturation values for 
the material, the hysteresis curve is called the major loop, otherwise it is called a minor 
loop, especially if the curve is not symmetric about the origin. A first-order descending 
curve is a minor loop obtained when the input of the hysteretic system is between an 
arbitrary point and negative saturation of the material. For the Terfenol-D experiment, 
first-order descending curves are obtained for forty minor loops. These loops are shown 
in Fig. 4. 

 
Figure 4: Experimental data for Terfenol-D. 

 

Rr,s s 
+1 

u(t) s-r s+r 

-1 

2r 

 
Figure 5: The Preisach relay. 

 
 
 

 6



3. THE PREISACH MODEL 
 
The Preisach model [1] is the most common and probably the most important 

hysteresis model in the literature. This model is not based on any physical model of 
hysteretic materials and it is empirical. It was developed about seventy years ago for 
magnetic materials. 

 
In this model, the output is the weighted sum of the output of a continuum of 

hysteresis relays. The output of each relay can be either +1 or -1. In Fig. 5 a typical 
hysteresis relay is shown. Each relay is denoted with two parameters r and s. The 
parameters r and s are also known as the coercive field Hc and the interaction field HI  
respectively. 

 
The model output is: 
 

∫ ∫
∞ ∞

∞−
=

0 , ),())(()( dsdrsrtuRty sr µ .                               (5) 

 
Here, u(t) is the input, Rr,s is the output of the relay, y(t) is the model output and µ(r,s) is a 
weight function determined by experimental data. 

 
The Preisach model is easier to understand with the introduction of Preisach plane. In 

the Preisach plane, the variable for horizontal axis is r and s for the vertical axis. 
 

s 

-1 

r 

+1 
 

 
Figure 6: The Preisach plane. 

 
Each point in this plane is in a one-to-one relation with a Preisach relay. Figure 6 

shows the Preisach plane for a typical system. Because of physical reasons, the relays 
having large r or s values do not have a significant contribution to a change in the model 
output and their associated weight function is small. For simplicity, the relays outside the 
triangle in Fig. 6 are not considered and their weight function is assumed to be zero. 
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Each point inside the triangle in Fig. 6 represents a Preisach relay. The relays in +1 
state are separated from the relays in -1 state with a broken line. The state of the system is 
represented with this broken line [14]. 

 
In order to use this model, the weight function µ(r,s) needs to be determined. There 

are two general approaches to this problem. You can assume a general form for µ(r,s) 
with some free parameters, and then try to find the values for the parameters that best 
match modeled output and experimental data. This approach is used below in the physics-
based Preisach model. 

 
Another approach, e.g. [15] is to assume that µ(r,s) is equal to a constant value Tm,n in 

a small square defined by: 
 

)1(
)1(

+≤+<
+≤−<

ncrscn
mcrscm

                                                             (6) 

 
where m and n are integer parameters and c is a constant. (See Fig. 7(c).) Using this 
approach, the model weight function is represented by a two dimensional matrix Tm,n. 
This reduces the number of model parameters to a finite number. Now the experimental 
data can be used to find a set of optimum values for these parameters. 
 

Suppose that for a hysteretic system, a first-order descending curve between negative 
saturation and some input cn is obtained. Define ∆cm,cn to be the system output when the 
input is equal to cm and the input is decreasing. The quantity ∆cm,cn is obtained directly 
from experimental data. Fig. 7(a) shows the Preisach plane for this state. By comparing 

∆cm,cn and ∆c(m+1),cn (Fig. 7(b)), it is seen that )(
2
1

,),1( cncmcnmc ∆−∆ +  is equal to the integral 

of the weight function µ(r,s) over the shaded area. Using a similar argument 

)(
2
1

),1()1(,,)1(),1( cnmcnccmcncmncmc ++++ ∆−∆−∆+∆  is equal to the integral of the weight function 

µ(r,s) over the square defined by Equation (6) and shown in Fig. 7(c). Since the weight 
function is assumed to be constant in this region, this relation yields a solution for Tm,n 
which is the weight function in the square denoted by m and n: 

 

)(
2
1

),1()1(,,)1(),1(2, cnmcnccmcncmncmcnm c
T ++++ ∆−∆−∆+∆= .                          (7) 
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s s s 

c(n+1)
_ 

cncn cn r r r 
 

c(m+1) c(m+1)
 

+ cm cmcm

(a) (b) (c) 

 
Figure 7: The Preisach plane for a first-order descending curve. 

 

 
Figure 8: The Preisach weight function. 

 
Fig. 8 displays the identified weight function µ(r,s) for the Terfenol-D sample. To 

verify if the Preisach model with this weight function can predict Terfenol-D behaviour 
accurately, an additional experiment on Terfenol-D was performed. In the beginning of 
this experiment, the input is oscillating between negative and positive saturation values. 
The amplitude of the input is decreased gradually and finally the input settles down to 
zero. 
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Figure 9: Experimental data for the second experiment. 

 
Fig. 9 shows the actual output versus input for this experiment and Fig. 10 shows the 

Preisach model output for the same input. It is seen that the experimental data and model 
results are very similar, which shows the accuracy of the Preisach model prediction. The 
special curvature of Terfenol-D hysteresis curve is completely captured and reproduced. 

 
The major loop of the initial experimental data and the second experiment are not 

identical. Small variation of experimental parameters such as temperature, etc. is likely 
the reason for this difference. This is believed to be the main source of error. 

 
Figure 10: The Preisach model results for the second experiment. 
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4. THE PREISACH MODEL – A PHYSICAL APPROACH 
 
In the physical Preisach model [3], a physical model for magnetostrictive materials is 

used to develop a model similar to the Preisach model. The material is assumed to be 
composed of a large number of weakly interacting dipoles. For each dipole, the 
Helmholtz free energy is modeled and a hysteron similar to Fig. 5 is obtained. Because of 
crystal imperfections and impurities, the dipoles are not exactly similar. By assuming a 
Gaussian distribution for dipole parameters, it is shown that in this model, the 
magnetization M is: 

 

∫ ∫
∞ ∞

∞−

−
−−

=
 

0 

 

 

)( 22

),,()( cI
b
HH

b
H

cI dHdHeeHHHMCHM
ccI

        (8) 

 
where cHbb ,,  and C are model parameters. Other distributions for dipole parameters can 
be assumed. In [16], a log normal distribution for coercive force Hc is suggested. In this 
case, the magnetization M is: 
 

∫ ∫
∞ ∞

∞−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
=

 

0 

 

 

ln
2

2

),,()( cI
b
H
H

b
H

cI dHdHeeHHHMCHM
c

c

I

.       (9) 

 
 

A piecewise constant distribution can also be used which gives a model similar to that 
of the previous section. The following equation defines M : 
 

γεη
η

Y
MHRHH

HHHM RHHI
cI

Ic

2
)(

),,( ,

−

++
= .                                        (10) 

 
In this equation, η and MR are model parameters, Y is the Young modulus for the 
material, ε is strain and R is the Preisach relay defined in the previous section. It is 
assumed that the second term in Equation (4) can be ignored and λ(M) = γ2M2. In this 
case, the strain ε is given by the following equation: 
 

2
2M

Y
γσε +=                                                                         (11) 

 
where σ is the stress. This model is similar to the classic Preisach model, except that for 
this model, the output depends on strain ε. 

 
Root-mean-square error was computed as follows: For each value of magnetic field 

H, error is computed by subtracting model results from experimental data. Total model 
error is computed by taking the root-mean-square of these errors. 
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For the Terfenol-D experimental data, the best value for model parameters are found 
by numerically minimizing the root-mean-square error using Nelder-Mead simplex direct 
search method. The optimum values were found to be: η = 17.766, b = 
1.1591×109 2)( m

A , b  = 2.2540×108 2)( m
A , cH  = -136030 m

A , MR = 7417.7 m
A and C 

= 2.0996 2)( A
m  for Gaussian distribution and η = 0.47537, b = 10.837, b  = 

1.4567×108 2)( m
A , cH  = 0.81725 m

A , MR = 8.0029×105 m
A and C = 5.5034×10-7 

2)( A
m  for a log normal distribution. 

 
 

 
Figure 11: Minor loops produced by the physical Preisach model with Gaussian 

distribution. 
 
In Fig. 11, minor loops produced by this model are shown and Fig. 12 compares the 

model results and experimental data for a Gaussian distribution. It is seen that the model 
and experimental data are close, but the curvature in the middle is not accurately 
captured. In Fig. 13, the model results and experimental data are compared for a log 
normal distribution. The result for a log normal distribution is very similar to that of the 
Gaussian distribution. 
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(a) 

 
(b) 

Figure 12: (a) The experimental data and the physical Preisach model results with 
Gaussian distribution. (b) The experimental results are shifted for easier comparison. The 

model was unable to reproduce the middle of the curve correctly. 
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Figure 13: The experimental data and the physical Preisach model results with log 

normal distribution. The experimental results are shifted for easier comparison. The 
results are similar to that of the Gaussian distribution. 

 
5. THE JILES-ATHERTON MODEL 
 
The following equations describe the Jiles-Atherton model [10]: 
 

)(
)(

)(

MMcM
MMk

MM
dH

dM

anrev

irran

irranirr

−=
−−

−
=

αδ                                             (12) 

 
where c, α and k are model parameters, Mirr and Mrev are the irreversible and reversible 
components of magnetization respectively, and Mrev + Mirr = M. Parameter δ is equal to 
+1 when H is increased and -1 when H is decreased. The parameter Man is the 
anhysteretic magnetization. For this model, the Langevin equation is used for the 
anhysteretic magnetization: 
 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=

e

e
sean H

a
a

HMHM coth)(                              (13) 

 
where a and Ms are model parameters and He = H + αM. 

 
It is seen that, in some cases, the magnetization computed by this model is increased 

when H is decreased, which means negative differential susceptibility. This behaviour is 

not physical [17]. In [17], it is suggested that in this case, 
dH

dM irr  should be set to zero. 
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Some minor loops, especially small minor loops near saturation, are not produced 
correctly by this model. In Fig. 14, curve A is a portion of an ascending major loop. If the 
input is slightly decreased (Curve B) and then increased again (Curve C), the produced 
minor loop will not be closed. This behaviour is unphysical. To correct this problem, a 
solution is suggested in [18]. Define: 

 

∫

∫

+

−

+

−

−

−
=′

−−
−
−

=

−+

−+

H

H
irran

revrev
f

H

H
irran

irran

irrirr
f

dH
dH

dM
dH

dMc

HMHMv

dH
MMk

MM
HMHMv

)(

)()(
)(

)()(

αδ                            (14) 

 
where H+ and H- are the maximum and minimum value of magnetic field H in the minor 
loop respectively. In [18], it is suggested that equations (12) should be replaced by the 
following equations: 

 

).(

)(
)(

dH
dM

dH
dMcv

dH
dM

MMk
MMv

dH
dM

irran
f

rev

irran

irran
f

irr

−′=

−−
−

=
αδ                                             (15) 

 
This correction can produce closed minor loops if the loops are not nested. If the 

minor loops are inside each other, that is, if another minor loop begins before the current 
minor loop closes, this correction cannot be applied to close all of the loops. 

 

 
Figure 14: The closure of minor loops. 
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Unfortunately, Equations (14) and (15) do not yield a fast algorithm. Equations (14) 

and (15) are nonlinear equations that need to be solved simultaneously. This algorithm is 
computationally expensive. 

 
The solution proposed in [18] is not used here. To obtain closed minor loops, each 

branch is scaled vertically to produce a closed loop. For example in Fig. 14, branch C is 
replaced by branch C’. Similar to the solution proposed in [18], the scaling is done 
separately for the reversible and irreversible components of magnetization. The scaling 
used here is computationally trivial and yields an efficient solution for closing the minor 
loops. 

 
 

 
Figure 15: The minor loops produced by the Jiles-Atherton model. 

 
The optimum model parameters were found to be: α = 1.9903×10-8, a = 6200.2 m

A , 

Ms = 690380 m
A , k = 2476.6 m

A and c = 5.7080×10-4. 
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(a) 

 
(b) 

Figure 16: (a) The experimental data and the Jiles-Atherton model results. (b) The 
experimental results are shifted for easier comparison. The model was unable to 

reproduce the middle of the curve correctly. 
 

In Fig. 15 the minor loops produced by this model is shown. Experimental data and 
model results are compared in Fig. 16. Similar to the previous section, it is seen that the 
model is close to experimental data, but the twisted section of the experimental data is not 
captured. 

 17



 
6. CONCLUSIONS 
 
For all of the models discussed in this paper, experimental data is needed for model 

identification. This data is different for each model. The Preisach model needs at least a 
set of first-order descending curves. For the physics-based Preisach and Jiles-Atherton 
models, since they have only a few free parameters, a single loop is sufficient; e.g. the 
major loop. 

 
The Preisach model could reproduce the experimental data with least error. The 

physical Preisach and Jiles-Atherton models had about the same accuracy; and could not 
capture the twisted section in the middle of the hysteresis curve. 

 
The identification of the Preisach model was the fastest. The physical Preisach and 

Jiles-Atherton models were slower because of their iterative identification algorithm. The 
identification of the Jiles-Atherton model was particularly slow, because of the 
implementation issues when computing the root-mean-square error. 

 
Minor loops have a special importance in control applications. In a typical control 

system, usually the major loop is not experienced, for example, it is frequently seen that 
the input is oscillating about an operating point. In this case, a minor loop near that point 
is experienced. If the oscillation amplitude decays with time, complex nested loops may 
be produced. For this reason, it is important to have a hysteresis model capable of 
handling complex minor loops for control applications. The Preisach and physical 
Preisach models can handle minor loops properly. The minor loop handling for the Jiles-
Atherton model is not done correctly for complex cases. If Figs. 10, 12 and 16 are 
compared, it is seen that the minor loops for the Jiles-Atherton model join the major loop 
faster than the experimental data. In contrast, for the physical Preisach model, the minor 
loops join the major loop much slower than the experimental data. It can be said that the 
Jiles-Atherton model underestimates the amount of input variation required to forget past 
history and the physical Preisach model overestimates this amount. The Preisach model is 
the most accurate in this matter. 

 
Table 1: Summary 

 
Parameter 

The classic 
Preisach 

model 

The physical 
Preisach model 

(Gaussian) 

The physical 
Preisach model 

(log normal) 

The Jiles-
Atherton 

model 
Fitting error 

(Tesla) 
0 0.0356 0.0322 0.0254 

Prediction error 
(Tesla) 

0.0172 0.0569 0.0562 0.0426 

Identification 
 time 

1 minute ~1 hour ~1 hour ~10 hours 

Reproduction 
 time 

Instantaneous Instantaneous Instantaneous ~10 seconds 

Number of model 
parameters 

820 6 6 5 

Minor loop 
handling 

√ √ √ × 
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In Table 1, the model comparison is summarized. Fitting error is the best error found 

during the model identification process and prediction error is the accuracy of the 
predicted output for the second experiment. 

 
The Preisach model has 820 parameters to describe the material. This number is six 

for the physical Preisach model and five for the Jiles-Atherton model. The accuracy of 
the Preisach model is partially due to the large number of parameters. Where high 
accuracy is crucial, this model is the best. The Jiles-Atherton model and physical 
Preisach model had similar accuracy and required similar number of parameters. 
However, the Jiles-Atherton model does not handle minor loops properly. Furthermore, 
its use requires solving coupled nonlinear differential equations and is considered more 
computationally intensive that either Preisach model. The physical Preisach model is 
preferable to Jiles-Atherton. Also, as discussed in [16], the accuracy of the physical 
Preisach could be improved in some applications by assuming a different distribution. 
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