Feedback Invariance of SISO Infinite-Dimensional Systems

Kirsten Morris*
Dept. of Applied Mathematics
University of Waterloo

Richard Rebarber
Dept. of Mathematics
University of Nebraska

Abstract

We consider a linear single-input single-output system on a Hilbert space X, with infinitesimal generator A, bounded control element b, and bounded observation element c. We address the problem of finding the largest feedback invariant subspace of X that is in the space c^{\perp} perpendicular to c. If b is not in c^{\perp}, we show this subspace is c^{\perp}. If b is in c^{\perp}, a number of situations may occur, depending on the relationship between b and c.

Keywords: feedback invariance, closed loop invariance, feedback, infinite-dimensional systems, zero dynamics

1 Introduction

In this paper we consider a single-input single-output system, with bounded control and observation, on a Hilbert space X. Let the inner product on X be $\langle\cdot, \cdot\rangle$, with associated norm $\|\cdot\|$. Let A be the infinitesimal generator of a C_{0}-semigroup $T(t)$ on X. Let b and c be elements of X. Let $U=\mathbb{C}$ and $u(t) \in U$. We consider the following system on X :

$$
\begin{equation*}
\dot{x}(t)=A x(t)+b u(t), \quad x(0)=x_{0} \tag{1.1}
\end{equation*}
$$

with the observation

$$
\begin{equation*}
y(t)=C x(t):=\langle x(t), c\rangle . \tag{1.2}
\end{equation*}
$$

We sometimes refer to this system as (A, b, c). The transfer function for this system is $G(s)=\langle R(s, A) b, c\rangle$, where $R(s, A):=(s I-A)^{-1}$. The following is the standard definition of A-invariance.

Definition 1.1. A subspace Z of X is A-invariant if $A(Z \cap D(A)) \subset Z$.
If we allow unbounded feedback, we obtain the following definition of feedback invariance.
Definition 1.2. A subspace Z of X is (A, b) feedback invariant if it is closed and there exists an A-bounded feedback K such that Z is $A+b K$-invariant.

Our primary concern in this paper is to find the largest (A, b) feedback invariant subspace of the kernel of C. The operator K is not specified as unique in the above definition. However, if $b \notin Z$, and there are two operators K_{1} and K_{2} that are both (A, b) feedback invariant on Z, then $b\left(K_{1} x-K_{2} x\right) \in Z$ and so $K_{1} x=K_{2} x$ for all $x \in Z$. Even though we assume that b and c are in X, in general the feedback K is not bounded and $A+b K$ is in not the generator of a strongly continuous semigroup. For finite-dimensional systems, the largest invariant subspace in the kernel of C always exists. However, this is not the case for infinite-dimensional systems.

Feedback invariant subspaces are important in several aspects of control and systems theory. They are relevant to the topic of zero dynamics [5, 15]. Feedback-invariant subspaces are critical in solving the disturbance decoupling problem; see for example [3, 10, 11, 12, 15, 19]. In Section 5 we briefly discuss disturbance decoupling and give an example. Also, suppose that for a system (A, b, c) a largest feedback invariant subspace $Z \subseteq c^{\perp}$ exists, and let K be a feedback so that Z is $A+b K$-invariant. The system zeros are identical to the eigenvalues of the operator $A+b K$ on Z.

The work in this paper builds on the results of Curtain and Zwart in the 1980's, see $[2,17,18]$. In $[17,18]$ it is assumed that either the feedback K is bounded, or, if K is unbounded, it is such that $A+b K$ is a generator of a C_{0}-semigroup. These conditions are imposed in order to avoid difficulties about the generation of a semigroup by $A+b K$. In this paper we consider unbounded K, with no assumption on semigroup generation. This paper also extends the results in Byrnes and Gilliam [1], where the invariance problem in solved
for (A, b, c) under the assumptions that $b \in D(A), c \in D\left(A^{*}\right)$ and $\langle b, c\rangle \neq 0$. In this paper we remove the restrictions $b \in D(A)$ and $c \in D\left(A^{*}\right)$, and, most significantly, also examine the case where $\langle b, c\rangle=0$.

We denote the kernel of C by

$$
c^{\perp}:=\{x \in X \mid\langle x, c\rangle=0\} .
$$

If $b \notin c^{\perp}$, we show in Section 2 that a largest feedback invariant subspace in c^{\perp} exists and it is in fact c^{\perp}. We give an explicit representation of a feedback operator K for which c^{\perp} is $A+b K$-invariant. If $c \in D\left(A^{*}\right)$, the operator K is bounded. Otherwise, K is only A-bounded and so $A+b K$ need not generate a semigroup.

If $\langle b, c\rangle=0$, then we can still find the largest feedback invariant subspace in many cases. This hinges upon the relative degree of (A, b, c).

Definition 1.3. (A, b, c) is of relative degree n for some positive integer n if

1. $\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n} G(s) \neq 0$ and
2. $\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n-1} G(s)=0$.

We show that if (A, b, c) has relative degree $n+1$ and $c \in D\left(A^{* n}\right)$ then the largest invariant subspace in c^{\perp} exists. This result is a generalization of the well-known feedback invariance result for finite-dimensional systems [15].

There is no a priori guarantee that the closed loop system has a generalized solution. Additional assumptions are required. We now give a definition of "uniform relative degree" which strengthens condition 1 in Definition 1.3 to include a specification of the behaviour of the transfer function in some right-half-plane. For $\omega \in \mathbb{R}$, let

$$
C_{\omega}=\{z \in \mathbb{C} \mid \operatorname{Re} z>\omega\}
$$

The space H_{ω}^{∞} is the Hardy space of bounded analytic functions in C_{ω}.
Definition 1.4. (A, b, c) is of uniform relative degree n for some positive integer n if

1. the function $\left(s^{n} G(s)\right)^{-1}$ is in H_{γ}^{∞} for some $\gamma \in \mathbb{R}$;
2. $\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n-1} G(s)=0$.

In finite-dimensional spaces condition 1 in Definition 1.4 is equivalent to condition 1 in Definition 1.3, but they are not guaranteed to be equivalent in an infinite dimensional space. Suppose that $c \in D\left(A^{* n}\right)$ and (A, b, c) is of uniform relative degree $n+1$. Let K be an operator such that the largest feedback invariant subspace is $A+b K$-invariant. We show in Proposition 3.3 that the additional assumption of uniform relative degree is sufficient to ensure that the closed loop system

$$
\dot{x}(t)=A x(t)+b K x(t)
$$

with initial data in $D(A)$, has a generalized solution which satisfies the semigroup property. Furthermore, $A+b K$ generates an integrated semigroup; see Neubrander [9] for a detailed discussion of integrated semigroups, in particular Definition 4.1 in [9] for a definition of an integrated semigroup. There is no guarantee that the closed loop operator $A+b K$ generates a strongly continuous semigroup. We also show in Section 3 that if $A+b K$ does generate a C_{0}-semigroup on X, then it generates a C_{0}-semigroup on the largest feedback invariant subspace of c^{\perp}.

In Section 4 we consider the case where $\langle b, c\rangle=0$, but $c \notin D\left(A^{*}\right)$. We give an example which shows that the largest feedback invariant subspace of the kernel of C might not exist. We identify a natural feedback operator K and subspace $Z \subseteq c^{\perp}$ so that $(A+b K)(Z) \subset Z$, but we show that $A+b K$ is neither closed nor closable. In Section 5 we illustrate our results with a disturbance decoupling problem.

2 Feedback Invariance

We start with some additional notation needed in this paper. Let $\omega \in \mathbb{R}$ be such that \mathbb{C}_{ω} is a subset of the resolvent set $\rho(A)$. For $\lambda_{0}>\omega, R\left(\lambda_{0}, A\right)$ exists as a bounded operator from X into X. For any operator $A, \rho_{\infty}(A)$ is the largest connected subset of $\rho(A)$ that contains an interval of the form $[r, \infty)$.

The following result shows that (A, b) feedback invariance is equivalent to the notion of (A, b)-invariance, which is sometimes easier to work with.

Theorem 2.1. [18, Thm.II.26] A closed subspace Z is (A, b) feedback invariant if and only if it is (A, b)-invariant, that is,

$$
A(Z \cap D(A)) \subseteq Z \oplus \operatorname{span}\{b\}
$$

When the operators A and b are clear we will sometimes refer to (A, b) feedback invariance simply as feedback invariance, and to a subspace as invariant.

Theorem 2.2. If $Z \subseteq c^{\perp}$ is an (A, b) feedback invariant subspace and $b \in Z$, then the system transfer function is identically zero for $s \in \rho_{\infty}(A)$.

Proof: Since Z is feedback invariant,

$$
A(Z \cap D(A)) \subset Z \oplus \operatorname{span}\{b\} \subset Z
$$

This implies that Z is A-invariant. This implies that every $z \in Z$ can be written $z=$ $(s I-A) \xi(s)$ where $\xi(s) \in D(A) \cap Z[18$, Lem. I.4], and $s \in[r, \infty)$ for some $r \in \mathbb{R}$. Since $b \in Z, R(s, A) b \in Z$ for all $s \in[r, \infty)$. Since $Z \subset c^{\perp}$, the system transfer function $G(s)$ is zero for $s \in[r, \infty]$. Since G is analytic on $\rho_{\infty}(A)$, it must be identically zero on $\rho_{\infty}(A)$.

We now show that if $b \notin c^{\perp}$, the largest feedback invariant subspace contained in c^{\perp} is c^{\perp}. We do this by easily constructing a feedback operator K such that $(A+b K)\left(c^{\perp} \cup D(A)\right) \subseteq c^{\perp}$.

If $c \in D\left(A^{*}\right)$, then the feedback K is bounded, and $A+b K$ is the generator of a semigroup on c^{\perp}. In general, $A+b K$ does not generate a C_{0}-semigroup.

Theorem 2.3. Suppose that $\langle b, c\rangle \neq 0$. Define

$$
\begin{equation*}
K x=-\frac{\langle A x, c\rangle}{\langle b, c\rangle}, \quad D(K)=D(A) \tag{2.3}
\end{equation*}
$$

and define $(A+b K) x=A x+b K x$ for $x \in D(A+b K)=D(A)$. Then $(A+b K)\left(c^{\perp} \cap D(A)\right) \subset$ c^{\perp} and so the largest feedback invariant subspace in c^{\perp} is c^{\perp} itself.

Proof: The operator K is clearly A-bounded. It is straightforward to see that for $x \in$ $D(A),\langle(A+b K) x, c\rangle=\langle A x, c\rangle-\langle A x, c\rangle=0$. Thus, $(A+b K) x \in c^{\perp}$, so c^{\perp} is feedback invariant.

If $\langle b, c\rangle=0$, we can still find the largest feedback invariant subspace in many cases. In finding the largest feedback invariant subspace, a difficulty occurs using Definition 1.1 that does not occur in finite dimensions. This is because Definition 1.1 allows, roughly speaking, arbitrary elements of $D(A)$ be be "appended" to a subspace Z without changing $Z \cap D(A)$, as illustrated by the following example.

Example 2.4. Let $X=\ell^{2}, c=[1,0,0,0, \ldots]^{T}$ and $b=[0,1,0,0, \ldots]^{T}$, and

$$
A=\left[\begin{array}{cc}
A_{0} & 0 \\
0 & A_{1}
\end{array}\right], \quad A_{0}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad A_{1}=\operatorname{diag}(k i)_{k=1}^{\infty} .
$$

Let

$$
v_{1}=[0,0,1,0,0, \ldots]^{T}
$$

and v_{2} be any element of c^{\perp} which is not in $D(A)$, and define subsets of c^{\perp} by

$$
Z=\operatorname{span}\left\{v_{1}\right\}, \quad \tilde{Z}=\operatorname{span}\left\{v_{1}, v_{2}\right\} .
$$

It is clear that Z is A-invariant. Since $v_{1} \in D(A)$ and $v_{2} \notin D(A), z \in \tilde{Z}$ is in $D(A)$ if and only if $z=c v_{1}$ for some scalar c. Hence $Z \cap D(A)=\tilde{Z} \cap D(A)$, so \tilde{Z} is also A-invariant, regardless of the choice of v_{2}.

To rule out the possibility of appending to Z arbitrary elements in $X \backslash D(A)$, as illustrated in Example 2.4, we will modify the definition of A-invariance as follows.

Definition 2.5. A subspace Z of X is A-invariant if $A(Z \cap D(A)) \subset Z$ and $Z \cap D(A)$ is dense in $D(A)$.

If $A+b K$ generates a C_{0}-semigroup on Z, this definition is the same as Definition 1.1, since in this case $D(A+b K) \cap Z=D(A) \cap Z$ is guaranteed to be dense in Z. In [18] the definition of a largest invariant subspace includes the assumption that $A+b K$ is the generator of a C_{0}-semigroup, so there is no need in [18] to include this denseness assumption.

Definition 1.2 is unchanged, except that this definition of A-invariance means that $Z \cap D(A)$ must be dense in Z in order for Z to be considered as a feedback invariant subspace.

If $c \in D\left(A^{* n}\right)$ for some integer $n \geq 1$, define

$$
Z_{n}=c^{\perp} \cap\left(A^{*} c\right)^{\perp} \cap \cdots\left(A^{* n} c\right)^{\perp}
$$

and define $Z_{0}=c^{\perp}$ and $Z_{-1}=X$.
Lemma 2.6. $Z_{n} \cap D(A)$ is dense in Z_{n}.
Proof: We first define a projection on Z_{n}. Let m be the dimension of $\operatorname{span}\left\{c, A^{*} c \ldots A^{* n} c\right\}$. Choose $\left\{\alpha_{j}\right\}_{j=1}^{m}$ to be a linearly independent subset of this span. Choose an m-dimensional subspace $W_{n} \subset D(A)$ so that $W_{n} \cap Z_{n}=\emptyset$ and $X=Z_{n} \oplus W_{n}$. Choose $\left\{\beta_{j}\right\}_{j=1}^{m}$ to be a basis for W_{n} and define the projection

$$
\begin{equation*}
Q_{n} x=\sum_{j=0}^{m} \frac{\left\langle x, \alpha_{j}\right\rangle}{\left\langle\beta_{j}, \alpha_{j}\right\rangle} \beta_{j} \tag{2.4}
\end{equation*}
$$

from X onto W_{n}. It is clear that Range $\left(Q_{n}\right) \subset D(A)$, and it can easily be checked that Range $\left(I-Q_{n}\right)=Z_{n}$.

For $z \in Z_{n}$, choose $\left\{z_{j}\right\} \subset D(A)$ such that $z_{j} \rightarrow z$. Then $\left(I-Q_{n}\right) z_{j} \in D(A)$. Since $z \in Z_{n}, Q z_{j} \rightarrow 0$. Hence $x_{j}=(I-Q) z_{j} \in Z_{n} \cap D(A)$ and $x_{j} \rightarrow z$.

Theorem 2.7. Suppose that an integer $n \geq 1$ is such that

$$
\begin{equation*}
c \in D\left(A^{* n}\right), \quad b \in Z_{n-1} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle b, A^{* n} c\right\rangle \neq 0 \tag{2.6}
\end{equation*}
$$

Then the largest feedback invariant subspace Z in c^{\perp} is Z_{n}. One feedback K such that Z_{n} is $A+b K$-invariant is

$$
\begin{equation*}
K x=\langle A x, a\rangle, \quad a=\frac{-A^{* n} c}{\left\langle b, A^{* n} c\right\rangle}, \quad D(K)=D(A) . \tag{2.7}
\end{equation*}
$$

Remark 2.8. As noted after Definition 1.2, changing K on $\left(Z_{n}\right)^{\perp}$ does not change the conclusion of Theorem 2.7.

Proof: We first prove that if (2.5) holds, then any feedback invariant subspace Z is contained in Z_{n}. We then show that Z_{n} is feedback invariant.
Claim. If (2.5) holds and Z is a feedback invariant subspace in c^{\perp}, then $Z \subseteq Z_{n}$.
Proof of the claim: Assume that Z is a feedback invariant subspace and $Z \subseteq c^{\perp}$. We will prove the claim by induction. Suppose that (2.5) holds for $n=1$. From Theorem 2.1, we see that

$$
\begin{equation*}
A(Z \cap D(A)) \subseteq Z \oplus \operatorname{span}\{b\} \subseteq c^{\perp} \tag{2.8}
\end{equation*}
$$

Hence for $z \in Z \cap D(A)$,

$$
\begin{equation*}
0=\langle A z, c\rangle=\left\langle z, A^{*} c\right\rangle \tag{2.9}
\end{equation*}
$$

Since Z is $A+b K$-invariant, by Definition $2.5, Z \cap D(A)$ is dense in Z, so (2.9) is true for all $z \in Z$, showing that $Z \subset Z_{1}$.

Assume the induction hypothesis that (2.5) implies that $Z \subseteq Z_{n}$. Suppose that $c \in$ $D\left(A^{*(n+1)}\right)$ and $b \in Z_{n}$, so (2.5) holds, and by the induction hypothesis $Z \subseteq Z_{n}$. From Theorem 2.1, we see that

$$
A(Z \cap D(A)) \subseteq Z \oplus \operatorname{span}\{b\} \subseteq Z_{n}
$$

Therefore, for $z \in D(A) \cap Z, A z \in\left(A^{* n} c\right)^{\perp}$, so

$$
0=\left\langle A z, A^{* n} c\right\rangle=\left\langle z, A^{*(n+1)} c\right\rangle
$$

Since $Z \cap D(A)$ is dense in Z, this implies that $Z \subseteq Z_{n+1}$, completing the induction step, proving the claim.

We now show that Z_{n} is feedback invariant. Assume that (2.5) and (2.6) are true. Let P_{n-1} be an orthogonal projection of X onto Z_{n-1}. If $z \in Z_{n-1}$, then, since (2.5) and (2.6) hold,

$$
\left\langle z, A^{* n} c\right\rangle=\left\langle P_{n-1} z, A^{* n} c\right\rangle=\left\langle z, P_{n-1} A^{* n} c\right\rangle
$$

so

$$
Z_{n}=Z_{n-1} \cap\left(A^{* n} c\right)^{\perp}=Z_{n-1} \cap\left(P_{n-1} A^{* n} c\right)^{\perp}
$$

We will apply Theorem 2.3, with:

- X replaced by Z_{n-1}, which is a Hilbert space with the same inner product;
- A replaced by $\left.P_{n-1} A\right|_{Z_{n-1}}$;
- The same b, which is in Z_{n-1};
- c replaced by $P_{n-1} A^{* n} c$.

Note that in general $\left.P_{n-1} A\right|_{Z_{n-1}}$ does not generate a semigroup on Z_{n-1}, but the feedback invariance in Theorem 2.3 does not require semigroup generation of A.

We need to verify that

$$
\begin{equation*}
\left\langle b, P_{n-1} A^{* n} c\right\rangle \neq 0 \tag{2.10}
\end{equation*}
$$

To this end, note that by using (2.5) and (2.6),

$$
\left\langle b, P_{n-1} A^{* n} c\right\rangle=\left\langle P_{n-1} b, A^{* n} c\right\rangle=\left\langle b, A^{* n} c\right\rangle \neq 0
$$

For $x \in Z_{n-1} \cap D(A)$, define

$$
K_{n} x=-\frac{\left\langle P_{n-1} A x, P_{n-1} A^{n *} c\right\rangle}{\left\langle b, P_{n-1} A^{n *} c\right\rangle}=-\frac{\left\langle P_{n-1} A x, A^{n *} c\right\rangle}{\left\langle b, A^{n *} c\right\rangle} .
$$

Theorem 2.3 implies that the space Z_{n} is an invariant subspace of $\left.P_{n-1} A\right|_{Z_{n-1}}+b K_{n}$.
Now, $A\left(Z_{n} \cap D(A)\right) \subseteq Z_{n-1}$, so

$$
\left.P_{n-1} A\right|_{Z_{n}}=\left.A\right|_{Z_{n}} .
$$

Hence Z_{n} is an invariant subspace of $\left.A\right|_{Z_{n-1}}+b K_{n}$. Since for any $x \in Z_{n} \cap D(A), A x \in Z_{n-1}$, we can rewrite $\left.K_{n}\right|_{Z_{n}}$ as

$$
\begin{equation*}
K_{n} x=-\frac{\left\langle A x, A^{n *} c\right\rangle}{\left\langle b, A^{n *} c\right\rangle} . \tag{2.11}
\end{equation*}
$$

We can extend $\left.K_{n}\right|_{Z_{n}}$ to an operator $K \in \mathcal{B}([D(A)], U)$ by letting

$$
K x=\langle A x, a\rangle, \quad a=\frac{-A^{n *} c}{\left\langle b, A^{n *} c\right\rangle}
$$

for $x \in D(A)$. Therefore Z_{n} is an invariant subspace of $A+b K$.
Note that (2.7) becomes (2.3) if $n=0$. The operator K is A-bounded. If $a \notin D\left(A^{*}\right), K$ is not bounded.

Example 2.4, continued. In this example $\langle b, c\rangle=0, c \in D\left(A^{*}\right)$ and, since $A^{*} c=b$, $\left\langle b, A^{*} c\right\rangle=1$. Therefore, Theorem 2.7 with $n=1$ is applicable. Hence the largest feedback invariant subspace is $Z_{1}=c^{\perp} \cap\left(A^{*} c\right)^{\perp}=c^{\perp} \cap b^{\perp}$, and the bounded feedback $K x=\langle x, c\rangle$ is such that Z_{1} is $A+b K$-invariant.

From this example we see why we cannot have a notion of a "largest feedback invariant subspace" while using Definition 1.1 of invariance. The subspace \tilde{Z} is feedback invariant when using Definition 1.1 of invariance, but is not when using Definition 2.5. If $\left\langle v_{2}, A^{*} c\right\rangle \neq 0$, then \tilde{Z} is not a subspace of Z_{1}, because of the elements of \tilde{Z} which are not in $D(A)$ or Z_{1}.

We can relate conditions (2.5) and (2.6) to Definition 1.3 of relative degree. In particular, (A, b, c) is of relative degree 1 if and only if $\langle b, c\rangle \neq 0$. Also, if $c \in D\left(A^{*}\right),(A, b, c)$ is of relative degree 2 if and only if $\langle b, c\rangle=0$ and $\left\langle b, A^{*} c\right\rangle \neq 0$.

Lemma 2.9. For a non-negative integer n, let $c \in D\left(A^{* n}\right)$. Then (A, b, c) is of relative degree $n+1$ if and only if $b \in Z_{n-1}$ and $\left\langle b, A^{* n} c\right\rangle \neq 0$.

Proof: We first show that if $c \in D\left(A^{* j}\right)$ where j is any positive integer,

$$
\begin{equation*}
\left\langle R(s, A) b, A^{* j} c\right\rangle=\left\langle-b, A^{*(j-1)} c\right\rangle+s\left\langle-b, A^{*(j-2)} c\right\rangle+\ldots s^{j-1}\langle-b, c\rangle+s^{j} G(s) . \tag{2.12}
\end{equation*}
$$

Since

$$
\left\langle R(s, A) b, A^{*} c\right\rangle=\langle A R(s, A) b, c\rangle=-\langle b, c\rangle+s\langle R(s, A) b, c\rangle,
$$

the statement is true for $j=1$. It is easy to see that

$$
\left\langle R(s, A) b, A^{* j} c\right\rangle=\left\langle A R(s, A) b, A^{*(j-1)} c\right\rangle=-\left\langle b, A^{*(j-1)} c\right\rangle+s\left\langle R(s, A) b, A^{*(j-1)} c\right\rangle .
$$

The statement (2.12) now follows by induction.

Now assume that for a non-negative integer $n, c \in D\left(A^{* n}\right), b \in Z_{n-1}$ and $\left\langle b, A^{* n} c\right\rangle \neq 0$. Equation (2.12) becomes, for $j=n$,

$$
\begin{equation*}
\left\langle R(s, A) b, A^{* n} c\right\rangle=s^{n} G(s) \tag{2.13}
\end{equation*}
$$

Taking limits yields,

$$
\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n} G(s)=0
$$

For $j=n+1$ we obtain from (2.12)

$$
\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n+1} G(s)=\left\langle b, A^{* n)} c\right\rangle \neq 0 .
$$

Thus the system has relative degree $n+1$.
Now assume that for some non-negative integer n, the system has relative degree $n+1$ and $c \in D\left(A^{* n}\right)$. Since $\lim _{s \rightarrow \infty, s \in \mathbb{R}} s R(s, A) x=x$ for all $x \in X$,

$$
\lim _{s \rightarrow \infty, s \in \mathbb{R}} s G(s)=\langle b, c\rangle .
$$

This completes the proof if $n=0$. Suppose now that $n>0$. We obtain from (2.12), setting $j=n$ and using $\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n} G(s)=0$,

$$
\lim _{s \rightarrow \infty, s \in \mathbb{R}}\left\langle-b A^{*(n-1)} c\right\rangle+s\left\langle-b, A^{*(n-2)} c\right\rangle+\ldots s^{n-1}\langle-b, c\rangle=0 .
$$

Since each coefficient of s^{i} is a constant, this implies that

$$
\left\langle b, A^{* i} c\right\rangle=0, i=0 \ldots n-1
$$

Thus, $b \in Z_{n-1}$. Now substitute $j=n+1$ into (2.12) to obtain

$$
\lim _{s \rightarrow \infty, s \in \mathbb{R}} s^{n+1} G(s)=\left\langle b, A^{* n} c\right\rangle \neq 0
$$

This completes the proof.
The following theorem follows immediately from Theorem 2.7 and Lemma 2.9.
Theorem 2.10. Suppose that (A, b, c) is of relative degree $n+1$, where n is a non-negative integer, and that $c \in D\left(A^{* n}\right)$. Then the largest feedback invariant subspace Z in c^{\perp} is Z_{n}.

3 Closed-Loop Invariance

If a feedback operator K is unbounded there is no a priori guarantee that the system obtained by setting $u(t)=K x(t)$,

$$
\dot{x}(t)=A x(t)+b K x(t)
$$

has solutions.

In Definition 1.4 we gave a definition of uniform relative degree that is slightly stronger than the definition of relative degree. We will see that if (A, b, c) is of uniform relative degree n for some nonnegative integer n, then the closed loop system is guaranteed to have a generalized solution which stays in the feedback invariant subspace and satisfies a semigroup property. We rely on the following result from Lasiecka and Triggiani [7].

Proposition 3.1. [7, pg. 647-649,Prop. 2.4] Let $K x=\langle A x, a\rangle$ for $a \in X$ and $D(K)=$ $D(A)$. If there exist some $m>0$ and $\delta \in \mathbb{R}$ such that

$$
\begin{equation*}
|1-\langle A R(s, A) b, a\rangle|\rangle \mid \geq m \text { for } s \in \mathbb{C}_{\delta} \tag{3.14}
\end{equation*}
$$

then for each $x_{0} \in D(A)$, and any $T>0$ there exists a unique solution $x(t) \in C([0, T] ; X)$ of the integral equation

$$
\begin{equation*}
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} b K x(s) d s \tag{3.15}
\end{equation*}
$$

where $K x(s) \in L_{2}(0, t)$ for any $x_{0} \in D(A)$. This solution satisfies the semigroup property: $x\left(t+\tau, x_{0}\right)=x\left(\tau, x\left(t, x_{0}\right)\right)$ for any $t, \tau \geq 0$. Furthermore, the solution $x(t)$ is Laplace transformable with convergence in some right-half-plane.

The solution to (3.15) does not in general yield a strongly continuous semigroup. The next result shows that if the hypotheses of Proposition 3.1 hold, then $A+b K$ generates an integrated semigroup. Integrated semgigroups are a generalization of strongly continuous semigroups. See [9] for details. In this case, if the initial data is smooth enough, then the solution given by this semigroup is a classical solution to the Cauchy problem $\dot{x}(t)=$ $(A+b K) x(t)$; see Theorems 4.2 and 4.5 in [9] for a description of the relationship between the integrated semigroup and the solution to the Cauchy problem.

Proposition 3.2. Let $K x=\langle A x, a\rangle$ for $a \in X$ and $D(K)=D(A)$. If there exist some $m>0$ and $\delta \in \mathbb{R}$ such that (3.14) holds, then $A+b K$ generates an integrated semigroup.

Proof: In Theorem 4.8 of [9] it is shown that a densely defined linear operator A generates an integrated semigroup if and only if there exist real constants M, w, and $k \in \mathbb{N}_{0}$ such that $R(s, A)$ exists and satisfies

$$
\|R(s, A)\| \leq M(1+|s|)^{k} \quad \text { for all } s \in \mathbb{C}_{w}
$$

From [7, equation (2.13)], for $s \in C_{\delta}$ where C_{δ} is as in the previous proposition,

$$
\begin{equation*}
R(s, A+b K)=R(s, A)+\frac{R(s, A) b K R(s, A)}{1-\langle A R(s, A) b, a\rangle} \tag{3.16}
\end{equation*}
$$

Note that

$$
\begin{equation*}
K R(s, A) x=\langle A R(s, A) x, a\rangle=s\langle R(s, A) x, a\rangle-\langle x, a\rangle \tag{3.17}
\end{equation*}
$$

and that there exists real constants M_{1} and w_{1} such that

$$
\begin{equation*}
\|R(s, A)\| \leq \frac{M_{1}}{\operatorname{Re}(s)-w_{1}} \tag{3.18}
\end{equation*}
$$

Combining (3.16), (3.17) and (3.18),

$$
\|R(s, A+b K)\| \leq M(1+|s|)^{k} \quad \text { for all } s \in \mathbb{C}_{w}
$$

is satisfied with $k=1$, completing the proof.
Proposition 3.3. Assume that (A, b, c) has uniform relative degree $n+1$ and $c \in D\left(A^{* n}\right)$ for some non-negative integer n. Defining K by (2.7), the solution to (1.1) with initial condition $x_{0} \in D(A)$ and $u(t)=K x(t)$ satisfies (3.15). Furthermore, if $x_{0} \in D(A) \cap Z_{n}$, the solution $x(t)$ of (3.15) remains in Z_{n} for all t.

Proof: The first part of this result is a simple consequence of Proposition 3.1. Using the definition of K given by (2.7),

$$
\begin{aligned}
1-K R(s, A) b & =1-\langle A R(s, A) b, a\rangle \\
& =1+\frac{\left\langle A R(s, A) b, A^{n *} c\right\rangle}{\left\langle b, A^{n *} c\right\rangle} \\
& =s \frac{\left\langle R(s, A) b, A^{n *} c\right\rangle}{\left\langle b, A^{n *} c\right\rangle} .
\end{aligned}
$$

From (2.13),

$$
s\left\langle R(s, A) b, A^{n *} c\right\rangle=s^{n+1} G(s) .
$$

Thus,

$$
|1-K R(s, A) b|=\frac{\left|s^{n+1} G(s)\right|}{\left\langle b, A^{n *} c\right\rangle}
$$

which satisfies (3.14) since (A, b, c) has uniform relative degree $n+1$.
Indicate the unique solution of (3.15) by $S_{K}(t) x_{0}$ for any $t \geq 0$ and $x_{0} \in D(A) \cap Z^{n}$. We will show that $\left\langle S_{K}(t) x_{0}, c\right\rangle=0$ for all such t and x_{0}. This is equivalent to showing that the Laplace transform of $\left\langle S_{K}(t) x_{0}, c\right\rangle$ is identically zero in some right-half-plane. Since $\langle\cdot, c\rangle$ is a continuous operation on X we can interchange this with the Laplace transform $L\left(s, x_{0}\right):=\mathcal{L}\left(S_{K}(t) x_{0}\right)$. From [7, eqn 2.13],

$$
\begin{equation*}
L\left(s, x_{0}\right)=R(s ; A) x_{0}+\frac{R(s ; A) b\left\langle A R(s ; A) x_{0}, a\right\rangle}{1-\langle A R(s, A) b, a\rangle} \tag{3.19}
\end{equation*}
$$

where a is defined in (2.7). Rewriting,

$$
L\left(s, x_{0}\right)=\frac{\left[R(s, A) x_{0}-\langle A R(s, A) b, a\rangle R(s, A) x_{0}+R(s, A) b\left\langle A R(s, A) x_{0}, a\right\rangle\right]}{1-\langle A R(s, A) b, a\rangle} .
$$

It is now straightforward to verify that if $n=0$ in (2.7), $\left\langle L\left(s, x_{0}\right), c\right\rangle=0$. Similarly, if $n>0$, $\left\langle L\left(s, x_{0}\right), A^{* j} c\right\rangle=0$ for $1 \leq j \leq n$. Thus, $L\left(s, x_{0}\right) \in Z_{n}$. This implies that $x(t) \in Z_{n}$ for all $t>0$.

If the conditions of Proposition 3.3 are satisfied, there is still no guarantee that that the solution semigroup is strongly continuous. It is well-known that a relatively bounded perturbation of a generator of a C_{0}-semigroup is not necessarily the generator of a C_{0}-semigroup, see for instance the example in [7, section 2.2 .2 , pg. 652]. In fact, this example can be modified in order to obtain a system with uniform relative degree 1 for which $A+b K$ generates a semigroup, yet the semigroup is not strongly continuous.

Definition 3.4. A closed subspace Z of X is closed-loop invariant if the closure of $Z \cap D(A)$ in X is Z, there exists an A-bounded feedback K such that $(A+b K)(Z \cap D(A)) \subseteq Z$, and the restriction of $A+b K$ to Z generates a C_{0}-semigroup on Z.

The condition that $(A+b K)(Z \cap D(A)) \subset Z$ allows arbitrary elements of $X \backslash D(A)$ to be appended to Z. The additional condition that the closure of $Z \cap D(A)$ is Z eliminates this ambiguity.

There are many results in the literature that give sufficient conditions for a relatively bounded perturbation of a generator of a C_{0}-semigroup to be the generator of a C_{0}-semigroup. For instance, if for any $T>0$ and some $M_{T}>0, K$ satisfies for all $x_{0} \in D(A)$,

$$
\left\|K S(t) x_{o}\right\|_{L_{2}(0, T)} \leq M_{T}\left\|x_{0}\right\|_{X}
$$

[14, Chap. 5], or if A generates an analytic semigroup [6, Chap. 9, sect. 2.2], then $A+b K$ generates a C_{0} semigroup.

Assume now that $A+b K$ is the generator of a C_{0}-semigroup on X. In general, feedback invariance does not imply closed-loop invariance [18, Eg. 1.6]. However, in the case where K is given by (2.7), Z_{n} is closed-loop invariant under the semigroup $e^{(A+b K) t}$ generated by $A+b K$.

Theorem 3.5. Assume that an integer $n \geq 0$ is such that (2.5) and (2.6) hold, and define K as in (2.7). Also assume that $A+b K$ generates a C_{0}-semigroup on X. Then the restriction of $A+b K$ to Z_{n} generates a C_{0}-semigroup on Z_{n}. Hence Z_{n} is closed-loop invariant under $A+b K$.

Proof: We will show that for $\lambda \in \rho_{\infty}(A+b K)$ the image of Z_{n} under $(\lambda I-(A+b K))$ is all of Z_{n}. This will imply, by [18, Lem. I.4], that Z_{n} is $e^{(A+b K) t}$ invariant.

We will use the projection Q_{n} defined in (2.4), which we will denote here by Q for convenience, to decompose X into $X_{1} \oplus X_{2}$, where $X_{1}=Z_{n}$ and $X_{2}=W_{n}$. Any element of X can be written $x=x_{1}+x_{2}$, where $x_{1}=(I-Q) x \in X_{1}$ and $x_{2}=Q x \in X_{2}$. Because $Q x \in D(A)$ for every $x \in X$, if $x \in D(A)$ then $x_{1} \in D(A)$ and $x_{2} \in D(A)$. The operator A can be decomposed as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{3.20}\\
A_{21} & A_{22}
\end{array}\right]
$$

where

$$
\begin{equation*}
A_{11}=\left.(I-Q) A\right|_{X_{1}}, \quad A_{12}=\left.(I-Q) A\right|_{X_{2}}, \quad A_{21}=\left.Q A\right|_{X_{1}}, \quad A_{22}=\left.Q A\right|_{X_{2}} \tag{3.21}
\end{equation*}
$$

Let $b_{1}=(I-Q) b$ and $b_{2}=Q b$. Let K be as in (2.7), so $(A+b K)\left(X_{1} \cap D(A)\right) \subset X_{1}$. Let $K_{1}=K(I-Q)$ and $K_{2}=K Q$, so with $\tilde{A}_{12}=A_{12}+b_{1} K_{2}$ and $\tilde{A}_{22}=A_{22}+b_{2} K_{2}$, we can write

$$
(\lambda I-(A+b K)) x=\left[\begin{array}{c}
\left(\lambda I-A_{11}-b_{1} K_{1}\right) x_{1}-\tilde{A}_{12} x_{2} \tag{3.22}\\
\left(\lambda I-\tilde{A}_{22}\right) x_{2}
\end{array}\right] .
$$

Since $\lambda \in \rho(A+b K)$, the range of $(\lambda I-(A+b K))$ is all of X. Since $\left\{\beta_{j}\right\}_{j=1}^{n}$ is a basis of X_{2}, the image of X_{2} under \tilde{A}_{12} is span $\left\{\tilde{A}_{12} \beta_{j}\right\}_{j=1}^{n}$. Thus, the image of X_{1} under $(A+b K)$ contains X_{1} if the image of X_{1} under $\left(\lambda I-\left(A_{1,1}+b_{1} K_{1}\right)\right)$ contains $\left\{\tilde{A}_{12} \beta_{j}\right\}$ for each $j=1,2, \ldots n$. To show this, for each $j=1,2, \ldots n$ note that there exists unique x_{1} and x_{2} that solve

$$
\left[\begin{array}{c}
\left(\lambda I-A_{11}-b_{1} K_{1}\right) x_{1}-\tilde{A}_{12} x_{2} \tag{3.23}\\
\left(\lambda I-\tilde{A}_{22}\right) x_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\left(\lambda I-\tilde{A}_{22}\right) \beta_{j} .
\end{array}\right]
$$

From (3.22) we see that if $\lambda \in \rho(A+b K)$ and (3.23) holds, then $x_{2}=\beta_{j}$. Plugging this into the first row of the matrix equation (3.23) we obtain that

$$
\left(\lambda I-A_{11}-b_{1} K_{1}\right) x_{1}-\tilde{A}_{12} \beta_{j}=0
$$

This shows that the image of X_{1} under $A+b K$ contains span $\left\{\tilde{A}_{12} \beta_{j}\right\}$. Hence the image of X_{1} under $A+b K$ contains X_{1}, so X_{1} is closed-loop invariant.

Example 3.6.

We consider the following one dimensional heat equation with Dirichlet boundary conditions, which was also discussed in [18, Eg. IV.22]:

$$
\begin{align*}
\frac{\partial x}{\partial t}(r, t) & =\frac{\partial x^{2}}{\partial r^{2}}(r, t)+b(r) u(t), \quad r \in(0,1), \quad t>0 \tag{3.24}\\
x(0, t)=0, & x(1, t)=0 \tag{3.25}\\
y(t) & =\int_{0}^{1} x(r, t) c_{i}(r) d r . \tag{3.26}
\end{align*}
$$

For this system, the state space is $X=L_{2}(0,1)$ and the infinitesimal generator is

$$
A=\frac{\partial^{2}}{\partial r^{2}}, \quad D(A)=\left\{x \in H_{2}(0,1) ; x(0)=x(1)=0\right\}
$$

Note that for this generator $A^{*}=A$. We choose b to be the characteristic function on $\left[0, \frac{2}{\pi}\right]$:

$$
b(r)=\chi_{\left[0, \frac{2}{\pi}\right]}(r)
$$

We consider two observation elements. The first is

$$
c_{1}(r)= \begin{cases}-100 r^{2}+20 r ; & 0 \leq r \leq .1 \tag{3.27}\\ 1 ; & .1<r \leq \frac{1}{\pi}-.1 \\ 2000\left(r-\frac{1}{\pi}\right)^{3}+300\left(r-\frac{1}{\pi}\right)^{2} ; & \frac{1}{\pi}-.1<r \leq \frac{1}{\pi} \\ 0 & \frac{1}{\pi}<r \leq 1\end{cases}
$$

In [18, Example IV.22] it is shown that in this case the largest feedback invariant subspace in c_{1}^{\perp} exists. However, these earlier results did not identify this largest subspace, nor the appropriate feedback. It is easy to check that $\left\langle b, c_{1}\right\rangle \neq 0$, so the largest closed-loop invariant subspace in c_{1}^{\perp} is c_{1}^{\perp}. Since $c_{1} \in D\left(A^{*}\right)=D(A)$, the feedback $K_{1} x=\left\langle A x, c_{1}\right\rangle /\left\langle b, c_{1}\right\rangle$ is bounded, and can be written

$$
K_{1} x=\left\langle x, k_{1}\right\rangle
$$

where

$$
\begin{align*}
k_{1} & =\frac{-1}{\left\langle b, c_{1}\right\rangle} A c_{1} \\
& =\frac{-1}{\left\langle b, c_{1}\right\rangle} \frac{\partial^{2} c_{1}}{\partial r^{2}} \\
& =-4.25 \begin{cases}-200 ; & 0 \leq r<.1 \\
0 ; & .1 \leq r<\frac{1}{\pi}-.1 \\
12000\left(r-\frac{1}{\pi}\right)+600 ; & \frac{1}{\pi}-.1 \leq r \leq \frac{1}{\pi} \\
0 & \frac{1}{\pi} \leq r \leq 1\end{cases} \tag{3.28}
\end{align*}
$$

Consider now the observation element

$$
c_{2}(r)=\chi_{\left[0, \frac{1}{\pi}\right]}(r),
$$

which is close in the X-norm to c_{1}, but is not in $D(A)$. We still have that $\left\langle b, c_{2}\right\rangle \neq 0$ and so the largest feedback- invariant subspace in c_{2}^{\perp} is c_{2}^{\perp}. Since A generates an analytic semigroup, this subspace is also closed-loop invariant. However, because $c_{2} \notin D\left(A^{*}\right)$, the feedback operator is unbounded. Numerical investigations in [18, Example IV.22] indicated that no largest feedback invariant subspace of c_{2}^{\perp} existed, but the definition used in [18] only allowed bounded feedback operators.

4 The Case When $\langle b, c\rangle=0$ and $c \notin D\left(A^{*}\right)$

The previous sections dealt with invariance for relative degree $n+1$ systems that satisfy an assumption that $c \in D\left(A^{* n}\right)$. If this assumption on c is not satisfied, the situation is quite different. The following example illustrates that if $\langle b, c\rangle=0$ and $c \notin D\left(A^{*}\right)$ a largest feedback invariant subspace as defined in Definition 1.2 might not exist.

Example 4.1.

The following example of a controlled delay equation first appeared in Pandolfi [12]:

$$
\begin{align*}
\dot{x}_{1}(t) & =x_{2}(t)-x_{2}(t-1) \\
\dot{x}_{2}(t) & =u(t) \tag{4.29}\\
y(t) & =x_{1}(t)
\end{align*}
$$

The transfer function for this system is

$$
\begin{equation*}
G(s)=\frac{1-e^{-s}}{s^{2}} \tag{4.30}
\end{equation*}
$$

The system of equations (4.29) can be written in a standard state-space form (1.1), (1.2), see [4]. Choose the state-space

$$
X=R \times R \times L_{2}(-1,0) \times L_{2}(-1,0)
$$

A state-space realization on X is

$$
\begin{gathered}
b=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad c=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right], \\
D(A):=\left\{\left[r_{1}, r_{2}, \phi_{1}, \phi_{2}\right]^{T} \mid \phi_{1}(0)=r_{1}, \phi_{2}(0)=r_{2}, \phi_{1} \in H^{1}(-1,0), \phi_{2} \in H^{1}(-1,0)\right\},
\end{gathered}
$$

and for $\left[r_{1}, r_{2}, \phi_{1}, \phi_{2}\right]^{T} \in D(A)$,

$$
A\left(r_{1}, r_{2}, \phi_{1}, \phi_{2}\right)=\left(\begin{array}{c}
\phi_{2}(0)-\phi_{2}(-1) \\
0 \\
\dot{\phi}_{1} \\
\dot{\phi}_{2}
\end{array}\right)
$$

In this example $\langle b, c\rangle=0$ and $c \notin D\left(A^{*}\right)$. From the transfer function (4.30) we can see that the system has relative degree 2 .

Pandolfi [12] showed that the largest feedback invariant subspace $Z \subset c^{\perp}$, if it exists, is not a delay system. We now show that this system does not have a largest feedback invariant subspace in c^{\perp}. Define

$$
e_{k}(t)=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\exp (2 \pi i k t)
\end{array}\right] \in D(A) \cap c^{\perp}
$$

For each k the subspace span $\left\{e_{k}\right\}$ is (A, b)-invariant and hence feedback invariant [19]. Define

$$
V_{n}=\operatorname{span}_{-n \leq k \leq n} e_{k}
$$

Each subspace V_{n} is feedback invariant. Define also the union of all finite linear combinations of e_{k},

$$
V=\bigcup V_{n}
$$

By well-known properties of the exponentials, the closure of $\{\exp (2 \pi i k t)\}_{k=-\infty}^{\infty}$ is $L^{2}(0,1)$. Consider a sequence of elements in $V,\left[0,1,0, z_{n}\right]$ where $z_{n}(0)=1$ and $\lim _{n \rightarrow \infty} z_{n}=0$.

This sequence converges to $[0,1,0,0]$ and so we see that the closure of V in X is $\bar{V}=$ $0 \times R \times 0 \times L_{2}(-1,0)$. If there is a largest feedback invariant subspace Z in c^{\perp}, then $Z \supset \bar{V}$. The important point now is that although $b \notin V, b \in \bar{V}$. Since b cannot be contained in any feedback invariant subspace (Theorem 2.2), \bar{V} is not feedback invariant. Hence no largest feedback invariant subspace exists for this system.

We end this paper with further consideration of the case where $\langle b, c\rangle=0$ and $c \notin D\left(A^{*}\right)$. Theorem 2.1 implies that any element $x \in D(A)$ of an (A, b)-invariant subspace of c^{\perp} is contained in the set

$$
\begin{equation*}
Z=\left\{z \in c^{\perp} \cap D(A) \mid\langle A z, c\rangle=0\right\} . \tag{4.31}
\end{equation*}
$$

The closure of Z is a natural candidate for the largest feedback invariant subspace of c^{\perp}; in fact, if $c \in D\left(A^{*}\right)$, the closure of Z in X is $Z_{1}=c^{\perp} \cap\left(A^{*} c\right)^{\perp}$, the largest feedback invariant subspace if $\left\langle b, A^{*} c\right\rangle \neq 0$. The situation if $c \notin D\left(A^{*}\right)$ is quite different.

Theorem 4.2. If $c \notin D\left(A^{*}\right)$, the set Z is dense in c^{\perp}. Furthermore, $Z \neq c^{\perp} \cap D(A)$.
Proof: This will be proved by showing that if Z is not dense in c^{\perp} then $c \in D\left(A^{*}\right)$. Let $\lambda \in \rho(A)$ and $A_{\lambda}=A-\lambda I$, so $D\left(A_{\lambda}\right)=D(A) . D(A)$ is a Hilbert space with the graph norm, and the graph norm is equivalent to

$$
\begin{equation*}
\|x\|_{1}:=\left\|A_{\lambda} x\right\| . \tag{4.32}
\end{equation*}
$$

The corresponding inner product on $D(A)$ is

$$
\begin{equation*}
\langle x, y\rangle_{1}:=\left\langle A_{\lambda} x, A_{\lambda} y\right\rangle \tag{4.33}
\end{equation*}
$$

Define $e=\left(A_{\lambda}{ }^{*}\right)^{-1} c \in X$. For $x \in D(A)$, the condition $\langle c, x\rangle=0$ can be written as

$$
\begin{equation*}
0=\langle x, c\rangle=\left\langle A_{\lambda} x, e\right\rangle=\left\langle A_{\lambda} x, A_{\lambda} A_{\lambda}^{-1} e\right\rangle=\left\langle x, A_{\lambda}^{-1} e\right\rangle_{1} . \tag{4.34}
\end{equation*}
$$

For $x \in c^{\perp} \cap D\left(A_{\lambda}\right)$, the condition $\langle A x, c\rangle=0$ is equivalent to $\left\langle A_{\lambda} x, c\right\rangle=0$. Hence for such x we have

$$
\begin{equation*}
0=\left\langle A_{\lambda} x, c\right\rangle=\left\langle A_{\lambda} x, A_{\lambda} A_{\lambda}^{-1} c\right\rangle=\left\langle x, A_{\lambda}^{-1} c\right\rangle_{1} . \tag{4.35}
\end{equation*}
$$

We can write Z as

$$
\left\{x \in D(A) \mid\left\langle x, A_{\lambda}^{-1} e\right\rangle_{1}=0 \text { and }\left\langle x, A_{\lambda}^{-1} c\right\rangle_{1}=0\right\} .
$$

We now introduce the notation

$$
(y)_{1}^{\perp}:=\left\{x \in D(A) \mid\langle x, y\rangle_{1}=0\right\} .
$$

Using this notation,

$$
Z=\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(A_{\lambda}^{-1} c\right)_{1}^{\perp}
$$

Now suppose that Z is not dense in c^{\perp} (as a subspace of X). Then there exists $v \in c^{\perp}$ such that $\langle x, v\rangle=0$ for all $x \in Z$. Define $w=\left(A_{\lambda}{ }^{*}\right)^{-1} v$. As in (4.34), for $x \in D(A)$, the condition $\langle x, v\rangle=0$ is equivalent to

$$
\begin{equation*}
\left\langle x, A_{\lambda}^{-1} w\right\rangle_{1}=0 \tag{4.36}
\end{equation*}
$$

Hence we see that

$$
\begin{equation*}
Z \subseteq\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(A_{\lambda}^{-1} w\right)_{1}^{\perp} \tag{4.37}
\end{equation*}
$$

Let R be the orthogonal projection from $D(A)$ onto $\left(A_{\lambda}{ }^{-1} e\right)_{1}^{\perp}$ (using the inner product $\left.\langle\cdot, \cdot\rangle_{1}\right)$. Then

$$
Z=\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(R A_{\lambda}^{-1} c\right)_{1}^{\perp}
$$

and

$$
\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(A_{\lambda}^{-1} w\right)_{1}^{\perp}=\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(R A_{\lambda}^{-1} w\right)_{1}^{\perp} .
$$

Hence (4.37) becomes

$$
\begin{equation*}
\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(R A_{\lambda}^{-1} c\right)_{1}^{\perp} \subseteq\left(A_{\lambda}^{-1} e\right)_{1}^{\perp} \cap\left(R A_{\lambda}^{-1} w\right)_{1}^{\perp} . \tag{4.38}
\end{equation*}
$$

This implies that there is a scalar γ such that

$$
R A_{\lambda}^{-1} c=\gamma R A_{\lambda}^{-1} w
$$

We obtain that

$$
A_{\lambda}^{-1} c=\alpha A_{\lambda}^{-1} w+\beta A_{\lambda}^{-1} e
$$

Applying A_{λ} to both sides of this equation,

$$
c=\alpha w+\beta e
$$

Since $w=\left(A_{\lambda}{ }^{*}\right)^{-1} v$ and $e=\left(A_{\lambda}{ }^{*}\right)^{-1} c$, we see that $c \in D\left(A_{\lambda}{ }^{*}\right)=D\left(A^{*}\right)$. Thus, if Z is not dense in c^{\perp} then $c \in D\left(A^{*}\right)$.

Now assume that $Z=c^{\perp} \cap D(A)$. Then $\left(A_{\lambda}{ }^{-1} e\right)_{1}^{\perp} \cap\left(A_{\lambda}{ }^{-1} c\right)_{1}^{\perp}=\left(A_{\lambda}{ }^{-1} e\right)_{1}^{\perp}$, so, as above, $c=\beta e$, which would imply that $c \in D\left(A^{*}\right)$.

Lemma 4.3. Suppose that $q \in X$ and $c \notin D\left(A^{*}\right)$. Then $q^{\perp} \cap Z$ is dense in $q^{\perp} \cap c^{\perp}$. Furthermore, $q^{\perp} \cap Z \neq q^{\perp} \cap c^{\perp} \cap D(A)$.

Proof: If $q=\lambda c$ for some scalar λ, then $q^{\perp} \cap Z=Z$ and $q^{\perp} \cap c^{\perp}=c^{\perp}$, and the result follows immediately from Theorem 4.2.

Assume now that q is not parallel to c. Let P be the orthogonal projection of X onto c^{\perp}, and $\tilde{q}=P q$, so $\tilde{q} \neq 0$. Let $\tilde{X}=(\tilde{q})^{\perp}$, and let Q be the orthogonal projection of X onto $(\tilde{q})^{\perp}$. By construction, $c=Q c \in \tilde{X}$. Let

$$
\tilde{A}=\left.Q A\right|_{\tilde{X}}, D(\tilde{A})=D(A) \cap \tilde{X}, \quad \tilde{Z}=\{x \in D(\tilde{A}) \mid\langle x, c\rangle=0 \text { and }\langle\tilde{A} x, c\rangle=0\}
$$

We wish to show that $c \notin D\left(\tilde{A}^{*}\right)$. Note that for $x \in \tilde{X}$,

$$
\begin{equation*}
\langle\tilde{A} x, c\rangle=\langle\tilde{Q} A x, c\rangle=\langle A x, Q c\rangle=\langle A x, c\rangle \tag{4.39}
\end{equation*}
$$

Therefore $c \notin D\left(A^{*}\right)$ if the functional $x \rightarrow\langle A x, c\rangle$ is unbounded on \tilde{X}. To show this let $q_{0} \in D(A) \cap \tilde{X}$ and let Q_{0} be the (possibly not orthogonal) projection onto \tilde{X} given by

$$
Q_{0} x=x-\frac{\langle x, \tilde{q}\rangle}{\left\langle q_{0}, \tilde{q}\right\rangle} q_{0} .
$$

Then $\langle A x, c\rangle$ is unbounded on \tilde{X} if $\left\langle A Q_{0} x, c\right\rangle$ is unbounded on X. Since

$$
\left\langle A Q_{0} x, c\right\rangle=\langle A x, c\rangle-\frac{\langle x, \tilde{q}\rangle}{\left\langle q_{0}, \tilde{q}\right\rangle}\left\langle A q_{0}, c\right\rangle .
$$

The second term on the right is clearly bounded on X, and the first term on the right is unbounded on X since $c \notin D\left(A^{*}\right)$, so $\left\langle A Q_{0} x, c\right\rangle$ is not a bounded operator on X, hence $c \notin D\left(\tilde{A}^{*}\right)$.

Now we can apply Theorem 4.2 to \tilde{X}, \tilde{A}, c and \tilde{Z} and conclude that $\tilde{X} \cap \tilde{Z}$ is dense in $\tilde{X} \cap c^{\perp}$ and $\tilde{X} \cap \tilde{Z} \neq \tilde{X} \cap c^{\perp} \cap D(A)$.

For $x \in c^{\perp},\langle x, P q\rangle=\langle x, q\rangle$ and so

$$
\begin{aligned}
\tilde{X} \cap c^{\perp} & =\{x \in X \mid\langle x, c\rangle=0,\langle x, P q\rangle=0\} \\
& =\{x \in X \mid\langle x, c\rangle=0,\langle x, q\rangle=0\} \\
& =q^{\perp} \cap c^{\perp} .
\end{aligned}
$$

Similarly,

$$
\begin{equation*}
\tilde{X} \cap \tilde{Z}=\{x \in D(A) \mid\langle x, c\rangle=0,\langle x, q\rangle=0,\langle\tilde{A} x, c\rangle=0\} . \tag{4.40}
\end{equation*}
$$

This can be written

$$
\begin{aligned}
\tilde{X} \cap \tilde{Z} & =\{x \in D(A) \mid\langle x, c\rangle=0,\langle x, q\rangle=0,\langle A x, c\rangle=0\} \\
& =q^{\perp} \cap Z
\end{aligned}
$$

Thus we have shown that $q^{\perp} \cap Z$ is dense in $q^{\perp} \cap c^{\perp}$, and that the two spaces are not equal.

If $\langle b, c\rangle=0, c \in D\left(A^{*}\right)$, and $\left\langle b, A^{*} c\right\rangle \neq 0$, the largest invariant subspace in c^{\perp} is $Z_{1}=$ $c^{\perp} \cap\left(A^{*} c\right)^{\perp}$, and defining $\alpha=-1 /\left\langle b, A^{*} c\right\rangle$,

$$
A+b K=A+\alpha b\left\langle A x, A^{*} c\right\rangle, \quad D(A+b K)=\left\{z \in c^{\perp} \cap D(A) \mid\langle A z, c\rangle=0\right\}
$$

is Z_{1}-invariant. In many cases, this operator generates a C_{0}-semigroup on Z_{1}. It is tempting to hope, that even if $c \notin D\left(A^{*}\right)$, the operator (with some value of α)

$$
A+b K=A+\alpha b\left\langle A^{2} x, c\right\rangle, \quad D(A+b K)=\left\{z \in c^{\perp} \cap D\left(A^{2}\right) \mid\langle A z, c\rangle=0\right\}
$$

is a generator, or has an extension which is a generator. However, we see from the next result that this operator is not closable, so that no extension of it is a generator of a C_{0}-semigroup, or even an integrated semigroup (see [9, Theorem 4.5]).

Theorem 4.4. Suppose that $b \in X$ and $c \notin D\left(A^{*}\right)$. Then the operator

$$
A_{F} x:=A x+b\left\langle A^{2} x, c\right\rangle, \quad D\left(A_{F}\right)=\left\{x \in c^{\perp} \cap D\left(A^{2}\right) \mid\langle A x, c\rangle=0\right\}
$$

is not closable.
Proof: Let $\lambda \in \rho(A)$ and $A_{\lambda}=A-\lambda I$, as above. From Corollary 4.3 we see that $\left(\left(A_{\lambda}^{-1}\right)^{*} c\right)^{\perp} \cap Z$ is dense in $\left(\left(A_{\lambda}^{-1}\right)^{*} c\right)^{\perp} \cap c^{\perp}$. Let

$$
T x:=\left\langle A_{\lambda} x, c\right\rangle, \quad D(T)=\left(\left(A_{\lambda}^{-1}\right)^{*} c\right)^{\perp} \cap c^{\perp} \cap D(A) .
$$

We will now show that T is not closable. From Corollary 4.3, $\left(\left(A_{\lambda}^{-1}\right)^{*} c\right)^{\perp} \cap Z \neq D(T)$. Thus we can choose $f \in D(T)$ such that $f \notin\left(\left(A_{\lambda}^{-1}\right)^{*} c\right)^{\perp} \cap Z$, and there exists $\left(f_{n}\right) \subset\left(\left(A_{\lambda}^{-1}\right)^{*} c\right)^{\perp} \cap Z$ such that $\lim f_{n}=f$. From the definition of $Z, T f_{n}=0$ for all n. Let $x_{n}=f-f_{n}$, so

$$
\begin{equation*}
\lim x_{n}=0, \text { and } \lim T x_{n}=T f \neq 0 \tag{4.41}
\end{equation*}
$$

which shows that T is not closable [16, Section II.6, Proposition 2]. It then follows that $I+b T$ with domain $D(T)$ is not closable.

Now note that $y \in D\left(A_{F}\right)$ if and only if $A_{\lambda} y \in D(T)$, and that for $y \in D\left(A_{F}\right)$

$$
A_{F} y=(I+b T) A_{\lambda} y+\lambda y
$$

so A_{F} is closable if and only if $(I+b T) A_{\lambda}$ is closable. Using the sequence $\left(x_{n}\right) \subset D(T)$ defined above, define $y_{n}=A_{\lambda}^{-1} x_{n}$. Note that $\left(y_{n}\right) \subset D\left(A_{F}\right)$ and

$$
\lim y_{n}=0 \text { and } \lim (I+b T) A_{\lambda} y_{n}=b T f \neq 0
$$

Hence $(I+b T) A_{\lambda}$ is not closable, so A_{F} is not closable.

5 Disturbance Decoupling

Consider the controlled, observed system with disturbance $v(t)$

$$
\begin{align*}
\dot{x}(t) & =A x(t)+b u(t)+d v(t) \tag{5.42}\\
y(t) & =\langle x(t), c\rangle
\end{align*}
$$

where b, d and c are in the state-space X.
Disturbance Decoupling Problem (DDP): Find a feedback K so that (1) $A+b K$ generates a C_{0}-semigroup; and (2) with $u(t)=K x(t)$, the output $y(t)$ in (5.42) is independent of the disturbance $v(t)$.

Solution of the DDP implies the existence of a feedback such that the output y is entirely "decoupled" from the disturbance. This problem is closely connected to the invariant
subspace problem considered in this paper. Previous work on the disturbance-decoupling problem for infinite-dimensional systems assumed that the feedback operator K was bounded $[2,3,10,11,19]$. Also, in previous work it was not known a priori which systems possessed a largest invariant subspace in the kernel of C. In [11], for instance, the existence of such a subspace was required as an additional assumption on the system. Note that although the control and observation operators are bounded we do not require the feedback K to be bounded. The use of unbounded feedback extends the class of systems for which disturbance decoupling is possible, since the results in this paper lead to a characterization of single-input single-output systems which possess a largest invariant subspace within the kernel of C.

The following theorem is an immediate consequence of the results in Sections 2 and 3.
Theorem 5.1. Assume that (A, b, c) has relative degree $n+1$ for some $n \in \mathbb{N}, c \in D\left(A^{* n}\right)$ and the operator $A+b K$ where K is defined in (2.7) generates a C_{0}-semigroup on X. The system can be disturbance decoupled if and only if $d \in Z_{n}$.

Proof: Theorem 2.10 implies that Z_{n} is a feedback invariant subspace inside c^{\perp}. The assumption that $A+b K$ generates a C_{0}-semigroup on X implies that Z_{n} is closed-loop invariant, by Theorem 3.5. Thus, if $d \in Z_{n}$, the closed loop system

$$
\dot{x}(t)=(A+b K) x(t)+d v(t)
$$

with initial condition in Z_{n} can be viewed as a system in Z_{n}, so the system state remains in Z_{n}. Since $Z_{n} \subset c^{\perp}$, the output y is identically zero.

Conversely, suppose the DDP is solvable. That is, there exists a feedback K such that (1) $A+b K$ generates a C_{0}-semigroup, $S_{K}(t)$, and (2) for all $t>0$ and all $v \in L_{2}(0, t)$,

$$
C \int_{0}^{t} S_{K}(t-s) D v(s) d s=0
$$

Equivalently, define the subspace of all reachable states $\mathbb{R}\left(S_{K}, D\right)$ consisting of the closure of

$$
\left\{x \in X \mid x=\int_{0}^{t} S_{K}(t-s) D v(s) d s, t \geq 0, v \in L_{2}(0, t)\right\} .
$$

Solvability of the DDP means that $\mathbb{R}\left(S_{K}, D\right) \subset c^{\perp}$. Also, since

$$
D=\lim _{t \rightarrow 0} \frac{1}{t} \int_{0}^{t} S_{K}(t-s) D d s
$$

$D \in \mathbb{R}\left(S_{K}, D\right)$. The subspace $\mathbb{R}\left(S_{K}, D\right)$ is invariant under the semigroup $S_{K}(t)$; hence $A+b K$-invariant. Thus, $\mathbb{R}\left(S_{K}, D\right)$ is (A, b) feedback invariant. Since Z_{n} is the largest (A, b) feedback invariant subspace in c^{\perp}, follows that

$$
Z_{n} \supset \mathbb{R}\left(S_{K}, D\right) \supset D
$$

Thus, solvability of the DDP implies that $D \in Z_{n}$.

Example 3.6 continued: With both choices of observation, the control system is a relative degree 1 system. The largest feedback invariant subspace in c^{\perp} is exactly c^{\perp}.

First consider c_{1}. Since the observation element $c_{1} \in D\left(A^{*}\right)$, the feedback operator is bounded and the feedback operator is

$$
K_{1} x=\left\langle x, k_{1}\right\rangle,
$$

where $k_{1} \in L_{2}(0,1)$ is defined in (3.28). Since K_{1} is bounded, c^{\perp} is also closed-loop invariant. The disturbance decoupling problem has a solution if and only if $\left\langle d, c_{1}\right\rangle=0$.

Consider the second observation element $c_{2} \notin D\left(A^{*}\right)$. The feedback operator is only A bounded. Since A generates an analytic semigroup, $A+b K$ generates a C_{0}-semigroup and c^{\perp} is again closed loop invariant. The disturbance decoupling problem is solvable for any d such that $\left\langle d, c_{2}\right\rangle=0$.

The eigenfunctions of A form a basis for the state space $L_{2}(0,1)$. The operator K_{2} can be calculated by computing its effect on each eigenfunction in this basis. Projections of the system and feedback operators onto the span of the first n eigenfunctions yield a finitedimensional model of order n. Figure 1 shows the norm of the feedback gain k_{n} against model order n, for both the first and second observation operator. These numerical results illustrate the theory: in the first case $\left(c_{1} \in D\left(A^{*}\right)\right)$ is bounded, while it is unbounded for the second observation operator $\left(c_{2} \notin D\left(A^{*}\right)\right)$. Figures 2 shows the norm of $A_{n}^{-1} k_{n}$ for both observation operators. As predicted by the theory, both feedback operators are A-bounded.

Acknowledgement: The research of K.A. Morris was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The research of R. Rebarber was partially supported by National Science Foundation Grant DMS-0206951. The authors also thank Hans Zwart for several discussions on this topic; and the reviewers for suggesting improvements to the original manuscript.

References

[1] C. Byrnes, I. Lauko, D. Gilliam and V. Shubov, "Zero Dynamics for Relative Degree One SISO Distributed Parameter Systems", 37th IEEE Conference on Decision and Control, Vol. 3, pg. 2390-2391, 1998.
[2] R.F. Curtain, "Invariance Concepts in Infinite Dimensions", SIAM Jour. on Control and Optimiz., Vol. 24, No. 5, pg. 1009-1031, 1986.
[3] R.F. Curtain, "Disturbance Decoupling by measurement feedback with stability for infinite-dimensional systems", Int. J. Control, Vol. 43, No.6, pg. 1723-1743, 1986.
[4] R.F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 1995.

Figure 1: Norm of feedback gain vector k_{n} versus approximation order n. Observation c_{1} (solid), $c_{2}(\ldots)$

Figure 2: Norm of feedback gain vector k_{n} versus approximation order n. Observation c_{1} (solid), $c_{2}(\ldots)$
[5] A. Isidori, Nonlinear Control Systems, Springer-Verlag, 2001.
[6] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1980.
[7] I. Lasiecka and R. Triggiani, "Finite Rank, Relatively Bounded Perturbations of Semigroup Generators, Part I: Well-Posedness and Boundary Feedback Hyperbolic Dynamics", Annali Scuola Normale Superiore-Pisa, Classe di Scienze, Serie IV, Vol. XII, No. 4, 1985.
[8] K.A. Morris, Introduction to Feedback Control, Academic Press, 2001.
[9] F. Neubrander, "Integrated Semigroups and Their Applications to the Abstract Cauchy Problem", Pacific J. of Mathematics, Vol. 135, No. 1, 1988, pp. 111-155.
[10] N. Otsuka and H Hinata, "Generalized Invariant Subspaces for Infinite-Dimensional Systems", Jour. of Math. Anal. and Appns, Vol. 252, 2000, pg. 325-341.
[11] N. Otsuka and H. Inaba, "Decoupling by State Feedback in Infinite-Dimensional Systems", IMA Jour. of Mathematical Control and Information, Vol. 7, pg. 125-141, 1990.
[12] L. Pandolfi, "Disturbance Decoupling and Invariant Subspaces for Delay Systems", $A p$ plied Mathematics and Optimization, Vol. 14, 1986, pg. 55-72.
[13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[14] D. Salamon, Control and Observation of Neutral Systems, Pittman Advanced Publishing Program, Boston, 1984.
[15] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, 1985.
[16] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980.
[17] H. Zwart, "Equivalence Between Open-Loop and Closed-Loop Invariance for InfiniteDimensional Systems: A Frequency Domain Approach", SIAM J. on Control and Optimization, Vol. 26, No. 5, pg. 1175-1199, 1988.
[18] H. Zwart, Geometric Theory for Infinite Dimensional Systems, Lecture Notes in Control and Information Sciences, Vol. 115, Springer Verlag, 1989.
[19] H. Zwart, "On the Solution of the DDP in Infinite-Dimensional Systems", Signal processing, scattering and operator theory and numerical methods, Progr. Systems Control Theory, Vol. 5, Birkhauser Boston, pg. 363-372, 1990.

