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1 Introduction

In this paper we consider a single-input single-output system, with bounded control and

observation, on a Hilbert space X. Let the inner product on X be 〈·, ·〉, with associated

norm ‖ · ‖. Let A be the infinitesimal generator of a C0-semigroup T (t) on X. Let b and c

be elements of X. Let U = C and u(t) ∈ U . We consider the following system on X:

ẋ(t) = Ax(t) + bu(t), x(0) = x0, (1.1)

with the observation

y(t) = Cx(t) := 〈x(t), c〉. (1.2)

We sometimes refer to this system as (A, b, c). The transfer function for this system is

G(s) = 〈R(s, A)b, c〉, where R(s, A) := (sI − A)−1. The following is the standard definition

of A-invariance.

Definition 1.1. A subspace Z of X is A-invariant if A(Z ∩D(A)) ⊂ Z.

If we allow unbounded feedback, we obtain the following definition of feedback invariance.

Definition 1.2. A subspace Z of X is (A, b) feedback invariant if it is closed and there exists

an A-bounded feedback K such that Z is A + bK-invariant.

Our primary concern in this paper is to find the largest (A, b) feedback invariant subspace

of the kernel of C. The operator K is not specified as unique in the above definition.

However, if b /∈ Z, and there are two operators K1 and K2 that are both (A, b) feedback

invariant on Z, then b(K1x − K2x) ∈ Z and so K1x = K2x for all x ∈ Z. Even though we

assume that b and c are in X, in general the feedback K is not bounded and A + bK is in

not the generator of a strongly continuous semigroup. For finite-dimensional systems, the

largest invariant subspace in the kernel of C always exists. However, this is not the case for

infinite-dimensional systems.

Feedback invariant subspaces are important in several aspects of control and systems the-

ory. They are relevant to the topic of zero dynamics [5, 15]. Feedback-invariant subspaces are

critical in solving the disturbance decoupling problem; see for example [3, 10, 11, 12, 15, 19].

In Section 5 we briefly discuss disturbance decoupling and give an example. Also, suppose

that for a system (A, b, c) a largest feedback invariant subspace Z ⊆ c⊥ exists, and let K be

a feedback so that Z is A + bK-invariant. The system zeros are identical to the eigenvalues

of the operator A + bK on Z.

The work in this paper builds on the results of Curtain and Zwart in the 1980’s, see

[2, 17, 18]. In [17, 18] it is assumed that either the feedback K is bounded, or, if K is

unbounded, it is such that A + bK is a generator of a C0-semigroup. These conditions are

imposed in order to avoid difficulties about the generation of a semigroup by A+bK. In this

paper we consider unbounded K, with no assumption on semigroup generation. This paper

also extends the results in Byrnes and Gilliam [1], where the invariance problem in solved
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for (A, b, c) under the assumptions that b ∈ D(A), c ∈ D(A∗) and 〈b, c〉 6= 0. In this paper

we remove the restrictions b ∈ D(A) and c ∈ D(A∗), and, most significantly, also examine

the case where 〈b, c〉 = 0.

We denote the kernel of C by

c⊥ := {x ∈ X | 〈x, c〉 = 0}.

If b 6∈ c⊥, we show in Section 2 that a largest feedback invariant subspace in c⊥ exists and

it is in fact c⊥. We give an explicit representation of a feedback operator K for which c⊥ is

A+bK-invariant. If c ∈ D(A∗), the operator K is bounded. Otherwise, K is only A-bounded

and so A + bK need not generate a semigroup.

If 〈b, c〉 = 0, then we can still find the largest feedback invariant subspace in many cases.

This hinges upon the relative degree of (A, b, c).

Definition 1.3. (A, b, c) is of relative degree n for some positive integer n if

1. lim
s→∞, s∈R

snG(s) 6= 0 and

2. lim
s→∞, s∈R

sn−1G(s) = 0.

We show that if (A, b, c) has relative degree n+1 and c ∈ D(A∗n) then the largest invariant

subspace in c⊥ exists. This result is a generalization of the well-known feedback invariance

result for finite-dimensional systems [15].

There is no a priori guarantee that the closed loop system has a generalized solution.

Additional assumptions are required. We now give a definition of “uniform relative degree”

which strengthens condition 1 in Definition 1.3 to include a specification of the behaviour of

the transfer function in some right-half-plane. For ω ∈ R, let

Cω = {z ∈ C | Re z > ω}.

The space H∞
ω is the Hardy space of bounded analytic functions in Cω.

Definition 1.4. (A, b, c) is of uniform relative degree n for some positive integer n if

1. the function (snG(s))−1 is in H∞
γ for some γ ∈ R;

2. lim
s→∞, s∈R

sn−1G(s) = 0.

In finite-dimensional spaces condition 1 in Definition 1.4 is equivalent to condition 1 in

Definition 1.3, but they are not guaranteed to be equivalent in an infinite dimensional space.

Suppose that c ∈ D(A∗n) and (A, b, c) is of uniform relative degree n + 1. Let K be an

operator such that the largest feedback invariant subspace is A + bK-invariant. We show

in Proposition 3.3 that the additional assumption of uniform relative degree is sufficient to

ensure that the closed loop system

ẋ(t) = Ax(t) + bKx(t),
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with initial data in D(A), has a generalized solution which satisfies the semigroup property.

Furthermore, A + bK generates an integrated semigroup; see Neubrander [9] for a detailed

discussion of integrated semigroups, in particular Definition 4.1 in [9] for a definition of an

integrated semigroup. There is no guarantee that the closed loop operator A+ bK generates

a strongly continuous semigroup. We also show in Section 3 that if A + bK does generate

a C0-semigroup on X, then it generates a C0-semigroup on the largest feedback invariant

subspace of c⊥.

In Section 4 we consider the case where 〈b, c〉 = 0, but c 6∈ D(A∗). We give an example

which shows that the largest feedback invariant subspace of the kernel of C might not exist.

We identify a natural feedback operator K and subspace Z ⊆ c⊥ so that (A + bK)(Z) ⊂ Z,

but we show that A+ bK is neither closed nor closable. In Section 5 we illustrate our results

with a disturbance decoupling problem.

2 Feedback Invariance

We start with some additional notation needed in this paper. Let ω ∈ R be such that Cω is

a subset of the resolvent set ρ(A). For λ0 > ω, R(λ0, A) exists as a bounded operator from

X into X. For any operator A, ρ∞(A) is the largest connected subset of ρ(A) that contains

an interval of the form [r,∞).

The following result shows that (A, b) feedback invariance is equivalent to the notion of

(A, b)-invariance, which is sometimes easier to work with.

Theorem 2.1. [18, Thm.II.26] A closed subspace Z is (A, b) feedback invariant if and only

if it is (A, b)-invariant, that is,

A(Z ∩D(A)) ⊆ Z ⊕ span{b}.

When the operators A and b are clear we will sometimes refer to (A, b) feedback invariance

simply as feedback invariance, and to a subspace as invariant.

Theorem 2.2. If Z ⊆ c⊥ is an (A, b) feedback invariant subspace and b ∈ Z, then the system

transfer function is identically zero for s ∈ ρ∞(A).

Proof: Since Z is feedback invariant,

A(Z ∩D(A)) ⊂ Z ⊕ span{b} ⊂ Z.

This implies that Z is A-invariant. This implies that every z ∈ Z can be written z =

(sI − A)ξ(s) where ξ(s) ∈ D(A) ∩ Z [18, Lem. I.4], and s ∈ [r,∞) for some r ∈ R. Since

b ∈ Z, R(s, A)b ∈ Z for all s ∈ [r,∞). Since Z ⊂ c⊥, the system transfer function G(s) is

zero for s ∈ [r,∞]. Since G is analytic on ρ∞(A), it must be identically zero on ρ∞(A). �

We now show that if b /∈ c⊥, the largest feedback invariant subspace contained in c⊥ is c⊥.

We do this by easily constructing a feedback operator K such that (A+bK)(c⊥∪D(A)) ⊆ c⊥.
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If c ∈ D(A∗), then the feedback K is bounded, and A + bK is the generator of a semigroup

on c⊥. In general, A + bK does not generate a C0-semigroup.

Theorem 2.3. Suppose that 〈b, c〉 6= 0. Define

Kx = −〈Ax, c〉
〈b, c〉

, D(K) = D(A), (2.3)

and define (A+bK)x = Ax+bKx for x ∈ D(A+bK) = D(A). Then (A+bK)(c⊥∩D(A)) ⊂
c⊥ and so the largest feedback invariant subspace in c⊥ is c⊥ itself.

Proof: The operator K is clearly A-bounded. It is straightforward to see that for x ∈
D(A), 〈(A + bK)x, c〉 = 〈Ax, c〉 − 〈Ax, c〉 = 0. Thus, (A + bK)x ∈ c⊥, so c⊥ is feedback

invariant. �

If 〈b, c〉 = 0, we can still find the largest feedback invariant subspace in many cases. In

finding the largest feedback invariant subspace, a difficulty occurs using Definition 1.1 that

does not occur in finite dimensions. This is because Definition 1.1 allows, roughly speaking,

arbitrary elements of D(A) be be “appended” to a subspace Z without changing Z ∩D(A),

as illustrated by the following example.

Example 2.4. Let X = `2, c = [1, 0, 0, 0, . . .]T and b = [0, 1, 0, 0, . . .]T , and

A =

[
A0 0

0 A1

]
, A0 =

[
0 1

1 0

]
, A1 = diag(ki)∞k=1.

Let

v1 = [0, 0, 1, 0, 0, . . .]T

and v2 be any element of c⊥ which is not in D(A), and define subsets of c⊥ by

Z = span{v1}, Z̃ = span{v1, v2}.

It is clear that Z is A-invariant. Since v1 ∈ D(A) and v2 6∈ D(A), z ∈ Z̃ is in D(A) if and

only if z = cv1 for some scalar c. Hence Z ∩ D(A) = Z̃ ∩ D(A), so Z̃ is also A-invariant,

regardless of the choice of v2. �

To rule out the possibility of appending to Z arbitrary elements in X \D(A), as illustrated

in Example 2.4, we will modify the definition of A-invariance as follows.

Definition 2.5. A subspace Z of X is A-invariant if A(Z ∩ D(A)) ⊂ Z and Z ∩ D(A) is

dense in D(A).

If A+bK generates a C0-semigroup on Z, this definition is the same as Definition 1.1, since

in this case D(A+ bK)∩Z = D(A)∩Z is guaranteed to be dense in Z. In [18] the definition

of a largest invariant subspace includes the assumption that A + bK is the generator of a

C0-semigroup, so there is no need in [18] to include this denseness assumption.
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Definition 1.2 is unchanged, except that this definition of A-invariance means that Z∩D(A)

must be dense in Z in order for Z to be considered as a feedback invariant subspace.

If c ∈ D(A∗n) for some integer n ≥ 1, define

Zn = c⊥ ∩ (A∗c)⊥ ∩ · · · (A∗nc)⊥,

and define Z0 = c⊥ and Z−1 = X.

Lemma 2.6. Zn ∩D(A) is dense in Zn.

Proof: We first define a projection on Zn. Let m be the dimension of span{c, A∗c...A∗nc}.
Choose {αj}m

j=1 to be a linearly independent subset of this span. Choose an m-dimensional

subspace Wn ⊂ D(A) so that Wn ∩Zn = ∅ and X = Zn ⊕Wn. Choose {βj}m
j=1 to be a basis

for Wn and define the projection

Qnx =
m∑

j=0

〈x, αj〉
〈βj, αj〉

βj (2.4)

from X onto Wn. It is clear that Range(Qn) ⊂ D(A), and it can easily be checked that

Range (I −Qn) = Zn.

For z ∈ Zn, choose {zj} ⊂ D(A) such that zj → z. Then (I − Qn)zj ∈ D(A). Since

z ∈ Zn, Qzj → 0. Hence xj = (I −Q)zj ∈ Zn ∩D(A) and xj → z. �

Theorem 2.7. Suppose that an integer n ≥ 1 is such that

c ∈ D(A∗n), b ∈ Zn−1 (2.5)

and

〈b, A∗nc〉 6= 0. (2.6)

Then the largest feedback invariant subspace Z in c⊥ is Zn. One feedback K such that Zn is

A + bK-invariant is

Kx = 〈Ax, a〉, a =
−A∗nc

〈b, A∗nc〉
, D(K) = D(A). (2.7)

Remark 2.8. As noted after Definition 1.2, changing K on (Zn)⊥ does not change the

conclusion of Theorem 2.7.

Proof: We first prove that if (2.5) holds, then any feedback invariant subspace Z is

contained in Zn. We then show that Zn is feedback invariant.

Claim. If (2.5) holds and Z is a feedback invariant subspace in c⊥, then Z ⊆ Zn.

Proof of the claim: Assume that Z is a feedback invariant subspace and Z ⊆ c⊥. We

will prove the claim by induction. Suppose that (2.5) holds for n = 1. From Theorem 2.1,

we see that

A(Z ∩D(A)) ⊆ Z ⊕ span{b} ⊆ c⊥. (2.8)
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Hence for z ∈ Z ∩D(A),

0 = 〈Az, c〉 = 〈z, A∗c〉. (2.9)

Since Z is A + bK-invariant, by Definition 2.5, Z ∩D(A) is dense in Z, so (2.9) is true for

all z ∈ Z, showing that Z ⊂ Z1.

Assume the induction hypothesis that (2.5) implies that Z ⊆ Zn. Suppose that c ∈
D(A∗(n+1)) and b ∈ Zn, so (2.5) holds, and by the induction hypothesis Z ⊆ Zn. From

Theorem 2.1, we see that

A(Z ∩D(A)) ⊆ Z ⊕ span{b} ⊆ Zn.

Therefore, for z ∈ D(A) ∩ Z, Az ∈ (A∗nc)⊥, so

0 = 〈Az, A∗nc〉 = 〈z, A∗(n+1)c〉.

Since Z ∩ D(A) is dense in Z, this implies that Z ⊆ Zn+1, completing the induction step,

proving the claim.

We now show that Zn is feedback invariant. Assume that (2.5) and (2.6) are true. Let

Pn−1 be an orthogonal projection of X onto Zn−1. If z ∈ Zn−1, then, since (2.5) and (2.6)

hold,

〈z, A∗nc〉 = 〈Pn−1z, A
∗nc〉 = 〈z, Pn−1A

∗nc〉,

so

Zn = Zn−1 ∩ (A∗nc)⊥ = Zn−1 ∩ (Pn−1A
∗nc)⊥.

We will apply Theorem 2.3, with:

• X replaced by Zn−1, which is a Hilbert space with the same inner product;

• A replaced by Pn−1A|Zn−1 ;

• The same b, which is in Zn−1;

• c replaced by Pn−1A
∗nc.

Note that in general Pn−1A|Zn−1 does not generate a semigroup on Zn−1, but the feedback

invariance in Theorem 2.3 does not require semigroup generation of A.

We need to verify that

〈b, Pn−1A
∗nc〉 6= 0. (2.10)

To this end, note that by using (2.5) and (2.6),

〈b, Pn−1A
∗nc〉 = 〈Pn−1b, A

∗nc〉 = 〈b, A∗nc〉 6= 0.

For x ∈ Zn−1 ∩D(A), define

Knx = −〈Pn−1Ax, Pn−1A
n∗c〉

〈b, Pn−1An∗c〉
= −〈Pn−1Ax, An∗c〉

〈b, An∗c〉
.
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Theorem 2.3 implies that the space Zn is an invariant subspace of Pn−1A|Zn−1 + bKn.

Now, A(Zn ∩D(A)) ⊆ Zn−1, so

Pn−1A|Zn = A|Zn .

Hence Zn is an invariant subspace of A|Zn−1 +bKn. Since for any x ∈ Zn∩D(A), Ax ∈ Zn−1,

we can rewrite Kn|Zn as

Knx = −〈Ax, An∗c〉
〈b, An∗c〉

. (2.11)

We can extend Kn|Zn to an operator K ∈ B([D(A)], U) by letting

Kx = 〈Ax, a〉, a =
−An∗c

〈b, An∗c〉

for x ∈ D(A). Therefore Zn is an invariant subspace of A + bK. �

Note that (2.7) becomes (2.3) if n = 0. The operator K is A-bounded. If a 6∈ D(A∗), K

is not bounded.

Example 2.4, continued. In this example 〈b, c〉 = 0, c ∈ D(A∗) and, since A∗c = b,

〈b, A∗c〉 = 1. Therefore, Theorem 2.7 with n = 1 is applicable. Hence the largest feedback

invariant subspace is Z1 = c⊥ ∩ (A∗c)⊥ = c⊥ ∩ b⊥, and the bounded feedback Kx = 〈x, c〉 is

such that Z1 is A + bK-invariant.

From this example we see why we cannot have a notion of a “largest feedback invariant

subspace” while using Definition 1.1 of invariance. The subspace Z̃ is feedback invariant when

using Definition 1.1 of invariance, but is not when using Definition 2.5. If 〈v2, A
∗c〉 6= 0, then

Z̃ is not a subspace of Z1, because of the elements of Z̃ which are not in D(A) or Z1. �

We can relate conditions (2.5) and (2.6) to Definition 1.3 of relative degree. In particular,

(A, b, c) is of relative degree 1 if and only if 〈b, c〉 6= 0. Also, if c ∈ D(A∗), (A, b, c) is of

relative degree 2 if and only if 〈b, c〉 = 0 and 〈b, A∗c〉 6= 0.

Lemma 2.9. For a non-negative integer n, let c ∈ D(A∗n). Then (A, b, c) is of relative

degree n + 1 if and only if b ∈ Zn−1 and 〈b, A∗nc〉 6= 0.

Proof: We first show that if c ∈ D(A∗j) where j is any positive integer,

〈R(s, A)b, A∗jc〉 = 〈−b, A∗(j−1)c〉+ s〈−b, A∗(j−2)c〉+ . . . sj−1〈−b, c〉+ sjG(s). (2.12)

Since

〈R(s, A)b, A∗c〉 = 〈AR(s, A)b, c〉 = −〈b, c〉+ s〈R(s, A)b, c〉,

the statement is true for j = 1. It is easy to see that

〈R(s, A)b, A∗jc〉 = 〈AR(s, A)b, A∗(j−1)c〉 = −〈b, A∗(j−1)c〉+ s〈R(s, A)b, A∗(j−1)c〉.

The statement (2.12) now follows by induction.
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Now assume that for a non-negative integer n, c ∈ D(A∗n), b ∈ Zn−1 and 〈b, A∗nc〉 6= 0.

Equation (2.12) becomes, for j = n,

〈R(s, A)b, A∗nc〉 = snG(s). (2.13)

Taking limits yields,

lim
s→∞, s∈R

snG(s) = 0.

For j = n + 1 we obtain from (2.12)

lim
s→∞, s∈R

sn+1G(s) = 〈b, A∗n)c〉 6= 0.

Thus the system has relative degree n + 1.

Now assume that for some non-negative integer n, the system has relative degree n + 1

and c ∈ D(A∗n). Since lims→∞, s∈R sR(s, A)x = x for all x ∈ X,

lim
s→∞, s∈R

sG(s) = 〈b, c〉.

This completes the proof if n = 0. Suppose now that n > 0. We obtain from (2.12), setting

j = n and using lims→∞, s∈R snG(s) = 0,

lim
s→∞, s∈R

〈−bA∗(n−1)c〉+ s〈−b, A∗(n−2)c〉+ . . . sn−1〈−b, c〉 = 0.

Since each coefficient of si is a constant, this implies that

〈b, A∗ic〉 = 0, i = 0...n− 1.

Thus, b ∈ Zn−1. Now substitute j = n + 1 into (2.12) to obtain

lim
s→∞, s∈R

sn+1G(s) = 〈b, A∗nc〉 6= 0.

This completes the proof. �
The following theorem follows immediately from Theorem 2.7 and Lemma 2.9.

Theorem 2.10. Suppose that (A, b, c) is of relative degree n + 1, where n is a non-negative

integer, and that c ∈ D(A∗n). Then the largest feedback invariant subspace Z in c⊥ is Zn.

3 Closed-Loop Invariance

If a feedback operator K is unbounded there is no a priori guarantee that the system obtained

by setting u(t) = Kx(t),

ẋ(t) = Ax(t) + bKx(t),

has solutions.
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In Definition 1.4 we gave a definition of uniform relative degree that is slightly stronger

than the definition of relative degree. We will see that if (A, b, c) is of uniform relative

degree n for some nonnegative integer n, then the closed loop system is guaranteed to have a

generalized solution which stays in the feedback invariant subspace and satisfies a semigroup

property. We rely on the following result from Lasiecka and Triggiani [7].

Proposition 3.1. [7, pg. 647-649,Prop. 2.4] Let Kx = 〈Ax, a〉 for a ∈ X and D(K) =

D(A). If there exist some m > 0 and δ ∈ R such that

|1− 〈AR(s, A)b, a〉|〉| ≥ m for s ∈ Cδ, (3.14)

then for each x0 ∈ D(A), and any T > 0 there exists a unique solution x(t) ∈ C([0, T ]; X)

of the integral equation

x(t) = eAtx0 +

∫ t

0

eA(t−s)bKx(s) ds. (3.15)

where Kx(s) ∈ L2(0, t) for any x0 ∈ D(A). This solution satisfies the semigroup property:

x(t + τ, x0) = x(τ, x(t, x0)) for any t, τ ≥ 0. Furthermore, the solution x(t) is Laplace

transformable with convergence in some right-half-plane.

The solution to (3.15) does not in general yield a strongly continuous semigroup. The

next result shows that if the hypotheses of Proposition 3.1 hold, then A + bK generates an

integrated semigroup. Integrated semgigroups are a generalization of strongly continuous

semigroups. See [9] for details. In this case, if the initial data is smooth enough, then

the solution given by this semigroup is a classical solution to the Cauchy problem ẋ(t) =

(A + bK)x(t); see Theorems 4.2 and 4.5 in [9] for a description of the relationship between

the integrated semigroup and the solution to the Cauchy problem.

Proposition 3.2. Let Kx = 〈Ax, a〉 for a ∈ X and D(K) = D(A). If there exist some

m > 0 and δ ∈ R such that (3.14) holds, then A + bK generates an integrated semigroup.

Proof: In Theorem 4.8 of [9] it is shown that a densely defined linear operator A generates

an integrated semigroup if and only if there exist real constants M , w, and k ∈ N0 such that

R(s, A) exists and satisfies

‖R(s, A)‖ ≤ M(1 + |s|)k for all s ∈ Cw.

From [7, equation (2.13)], for s ∈ Cδ where Cδ is as in the previous proposition,

R(s, A + bK) = R(s, A) +
R(s, A)bKR(s, A)

1− 〈AR(s, A)b, a〉
. (3.16)

Note that

KR(s, A)x = 〈AR(s, A)x, a〉 = s〈R(s, A)x, a〉 − 〈x, a〉 (3.17)

and that there exists real constants M1 and w1 such that

‖R(s, A)‖ ≤ M1

Re (s)− w1

. (3.18)
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Combining (3.16), (3.17) and (3.18),

‖R(s, A + bK)‖ ≤ M(1 + |s|)k for all s ∈ Cw.

is satisfied with k = 1, completing the proof. �

Proposition 3.3. Assume that (A, b, c) has uniform relative degree n+1 and c ∈ D(A∗n) for

some non-negative integer n. Defining K by (2.7), the solution to (1.1) with initial condition

x0 ∈ D(A) and u(t) = Kx(t) satisfies (3.15). Furthermore, if x0 ∈ D(A) ∩ Zn, the solution

x(t) of (3.15) remains in Zn for all t.

Proof: The first part of this result is a simple consequence of Proposition 3.1. Using the

definition of K given by (2.7),

1−KR(s, A)b = 1− 〈AR(s, A)b, a〉

= 1 +
〈AR(s, A)b, An∗c〉

〈b, An∗c〉

= s
〈R(s, A)b, An∗c〉

〈b, An∗c〉
.

From (2.13),

s〈R(s, A)b, An∗c〉 = sn+1G(s).

Thus,

|1−KR(s, A)b| = |sn+1G(s)|
〈b, An∗c〉

,

which satisfies (3.14) since (A, b, c) has uniform relative degree n + 1.

Indicate the unique solution of (3.15) by SK(t)x0 for any t ≥ 0 and x0 ∈ D(A) ∩ Zn.

We will show that 〈SK(t)x0, c〉 = 0 for all such t and x0. This is equivalent to showing

that the Laplace transform of 〈SK(t)x0, c〉 is identically zero in some right-half-plane. Since

〈·, c〉 is a continuous operation on X we can interchange this with the Laplace transform

L(s, x0) := L(SK(t)x0). From [7, eqn 2.13],

L(s, x0) = R(s; A)x0 +
R(s; A)b〈AR(s; A)x0, a〉

1− 〈AR(s, A)b, a〉
(3.19)

where a is defined in (2.7). Rewriting,

L(s, x0) =
[R(s, A)x0 − 〈AR(s, A)b, a〉R(s, A)x0 + R(s, A)b〈AR(s, A)x0, a〉]

1− 〈AR(s, A)b, a〉
.

It is now straightforward to verify that if n = 0 in (2.7), 〈L(s, x0), c〉 = 0. Similarly, if n > 0,

〈L(s, x0), A
∗jc〉 = 0 for 1 ≤ j ≤ n. Thus, L(s, x0) ∈ Zn. This implies that x(t) ∈ Zn for all

t > 0.

�
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If the conditions of Proposition 3.3 are satisfied, there is still no guarantee that that the

solution semigroup is strongly continuous. It is well-known that a relatively bounded pertur-

bation of a generator of a C0−semigroup is not necessarily the generator of a C0−semigroup,

see for instance the example in [7, section 2.2.2, pg. 652]. In fact, this example can be mod-

ified in order to obtain a system with uniform relative degree 1 for which A + bK generates

a semigroup, yet the semigroup is not strongly continuous.

Definition 3.4. A closed subspace Z of X is closed-loop invariant if the closure of Z∩D(A)

in X is Z, there exists an A-bounded feedback K such that (A + bK)(Z ∩D(A)) ⊆ Z, and

the restriction of A + bK to Z generates a C0-semigroup on Z.

The condition that (A + bK)(Z ∩D(A)) ⊂ Z allows arbitrary elements of X \D(A) to be

appended to Z. The additional condition that the closure of Z ∩D(A) is Z eliminates this

ambiguity.

There are many results in the literature that give sufficient conditions for a relatively

bounded perturbation of a generator of a C0-semigroup to be the generator of a C0-semigroup.

For instance, if for any T > 0 and some MT > 0, K satisfies for all x0 ∈ D(A),

‖KS(t)xo‖L2(0,T ) ≤ MT‖x0‖X

[14, Chap. 5], or if A generates an analytic semigroup [6, Chap. 9, sect. 2.2], then A + bK

generates a C0 semigroup.

Assume now that A + bK is the generator of a C0-semigroup on X. In general, feedback

invariance does not imply closed-loop invariance [18, Eg. 1.6]. However, in the case where

K is given by (2.7), Zn is closed-loop invariant under the semigroup e(A+bK)t generated by

A + bK.

Theorem 3.5. Assume that an integer n ≥ 0 is such that (2.5) and (2.6) hold, and define K

as in (2.7). Also assume that A + bK generates a C0-semigroup on X. Then the restriction

of A + bK to Zn generates a C0-semigroup on Zn. Hence Zn is closed-loop invariant under

A + bK.

Proof: We will show that for λ ∈ ρ∞(A + bK) the image of Zn under (λI − (A + bK)) is

all of Zn. This will imply, by [18, Lem. I.4], that Zn is e(A+bK)t invariant.

We will use the projection Qn defined in (2.4), which we will denote here by Q for con-

venience, to decompose X into X1 ⊕ X2, where X1 = Zn and X2 = Wn. Any element of

X can be written x = x1 + x2, where x1 = (I − Q)x ∈ X1 and x2 = Qx ∈ X2. Because

Qx ∈ D(A) for every x ∈ X, if x ∈ D(A) then x1 ∈ D(A) and x2 ∈ D(A). The operator A

can be decomposed as

A =

[
A11 A12

A21 A22

]
, (3.20)

where

A11 = (I −Q)A|X1 , A12 = (I −Q)A|X2 , A21 = QA|X1 , A22 = QA|X2 . (3.21)

12



Let b1 = (I − Q)b and b2 = Qb. Let K be as in (2.7), so (A + bK)(X1 ∩D(A)) ⊂ X1. Let

K1 = K(I − Q) and K2 = KQ, so with Ã12 = A12 + b1K2 and Ã22 = A22 + b2K2, we can

write

(λI − (A + bK))x =

[
(λI − A11 − b1K1)x1 − Ã12x2

(λI − Ã22)x2

]
. (3.22)

Since λ ∈ ρ(A+ bK), the range of (λI− (A+ bK)) is all of X. Since {βj}n
j=1 is a basis of X2,

the image of X2 under Ã12 is span{Ã12βj}n
j=1. Thus, the image of X1 under (A+bK) contains

X1 if the image of X1 under (λI − (A1,1 + b1K1)) contains {Ã12βj} for each j = 1, 2, . . . n.

To show this, for each j = 1, 2, . . . n note that there exists unique x1 and x2 that solve[
(λI − A11 − b1K1)x1 − Ã12x2

(λI − Ã22)x2

]
=

[
0(

λI − Ã22

)
βj.

]
(3.23)

From (3.22) we see that if λ ∈ ρ(A + bK) and (3.23) holds, then x2 = βj. Plugging this into

the first row of the matrix equation (3.23) we obtain that

(λI − A11 − b1K1)x1 − Ã12βj = 0.

This shows that the image of X1 under A + bK contains span{Ã12βj}. Hence the image of

X1 under A + bK contains X1, so X1 is closed-loop invariant. �

Example 3.6.

We consider the following one dimensional heat equation with Dirichlet boundary condi-

tions, which was also discussed in [18, Eg. IV.22]:

∂x

∂t
(r, t) =

∂x2

∂r2
(r, t) + b(r)u(t), r ∈ (0, 1), t > 0 (3.24)

x(0, t) = 0, x(1, t) = 0 (3.25)

y(t) =

∫ 1

0

x(r, t)ci(r)dr. (3.26)

For this system, the state space is X = L2(0, 1) and the infinitesimal generator is

A =
∂2

∂r2
, D(A) = {x ∈ H2(0, 1); x(0) = x(1) = 0}.

Note that for this generator A∗ = A. We choose b to be the characteristic function on [0, 2
π
]:

b(r) = χ[0, 2
π

](r).

We consider two observation elements. The first is

c1(r) =


−100r2 + 20r; 0 ≤ r ≤ .1

1; .1 < r ≤ 1
π
− .1

2000(r − 1
π
)3 + 300(r − 1

π
)2; 1

π
− .1 < r ≤ 1

π

0 1
π

< r ≤ 1.

(3.27)
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In [18, Example IV.22] it is shown that in this case the largest feedback invariant subspace

in c⊥1 exists. However, these earlier results did not identify this largest subspace, nor the

appropriate feedback. It is easy to check that 〈b, c1〉 6= 0, so the largest closed-loop invariant

subspace in c⊥1 is c⊥1 . Since c1 ∈ D(A∗) = D(A), the feedback K1x = 〈Ax, c1〉/〈b, c1〉 is

bounded, and can be written

K1x = 〈x, k1〉

where

k1 =
−1

〈b, c1〉
Ac1

=
−1

〈b, c1〉
∂2c1

∂r2

= −4.25


−200; 0 ≤ r < .1

0; .1 ≤ r < 1
π
− .1

12000(r − 1
π
) + 600; 1

π
− .1 ≤ r ≤ 1

π

0 1
π
≤ r ≤ 1.

(3.28)

Consider now the observation element

c2(r) = χ[0, 1
π

](r),

which is close in the X-norm to c1, but is not in D(A). We still have that 〈b, c2〉 6= 0

and so the largest feedback- invariant subspace in c⊥2 is c⊥2 . Since A generates an analytic

semigroup, this subspace is also closed-loop invariant. However, because c2 /∈ D(A∗), the

feedback operator is unbounded. Numerical investigations in [18, Example IV.22] indicated

that no largest feedback invariant subspace of c⊥2 existed, but the definition used in [18] only

allowed bounded feedback operators.

4 The Case When 〈b, c〉 = 0 and c 6∈ D(A∗)

The previous sections dealt with invariance for relative degree n + 1 systems that satisfy an

assumption that c ∈ D(A∗n). If this assumption on c is not satisfied, the situation is quite

different.The following example illustrates that if 〈b, c〉 = 0 and c /∈ D(A∗) a largest feedback

invariant subspace as defined in Definition 1.2 might not exist.

Example 4.1.

The following example of a controlled delay equation first appeared in Pandolfi [12]:

ẋ1(t) = x2(t)− x2(t− 1)

ẋ2(t) = u(t) (4.29)

y(t) = x1(t).
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The transfer function for this system is

G(s) =
1− e−s

s2
. (4.30)

The system of equations (4.29) can be written in a standard state-space form (1.1), (1.2),

see [4]. Choose the state-space

X = R×R× L2(−1, 0)× L2(−1, 0).

A state-space realization on X is

b =


0

1

0

0

 , c =
[

1 0 0 0
]
,

D(A) :=
{
[r1, r2, φ1, φ2]

T | φ1(0) = r1, φ2(0) = r2, φ1 ∈ H1(−1, 0), φ2 ∈ H1(−1, 0)
}

,

and for [r1, r2, φ1, φ2]
T ∈ D(A),

A(r1, r2, φ1, φ2) =


φ2(0)− φ2(−1)

0

φ̇1

φ̇2

 .

In this example 〈b, c〉 = 0 and c 6∈ D(A∗). From the transfer function (4.30) we can see that

the system has relative degree 2.

Pandolfi [12] showed that the largest feedback invariant subspace Z ⊂ c⊥, if it exists, is not

a delay system. We now show that this system does not have a largest feedback invariant

subspace in c⊥. Define

ek(t) =


0

1

0

exp(2πikt)

 ∈ D(A) ∩ c⊥.

For each k the subspace span{ek} is (A, b)-invariant and hence feedback invariant [19]. Define

Vn = span−n≤k≤nek.

Each subspace Vn is feedback invariant. Define also the union of all finite linear combinations

of ek,

V =
⋃

Vn.

By well-known properties of the exponentials, the closure of {exp(2πikt)}∞k=−∞ is L2(0, 1).

Consider a sequence of elements in V , [0, 1, 0, zn] where zn(0) = 1 and limn→∞ zn = 0.
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This sequence converges to [0, 1, 0, 0] and so we see that the closure of V in X is V̄ =

0×R× 0×L2(−1, 0). If there is a largest feedback invariant subspace Z in c⊥, then Z ⊃ V̄ .

The important point now is that although b /∈ V , b ∈ V̄ . Since b cannot be contained in any

feedback invariant subspace (Theorem 2.2), V̄ is not feedback invariant. Hence no largest

feedback invariant subspace exists for this system. �

We end this paper with further consideration of the case where 〈b, c〉 = 0 and c 6∈ D(A∗).

Theorem 2.1 implies that any element x ∈ D(A) of an (A, b)-invariant subspace of c⊥ is

contained in the set

Z = {z ∈ c⊥ ∩D(A) | 〈Az, c〉 = 0}. (4.31)

The closure of Z is a natural candidate for the largest feedback invariant subspace of c⊥; in

fact, if c ∈ D(A∗), the closure of Z in X is Z1 = c⊥ ∩ (A∗c)⊥, the largest feedback invariant

subspace if 〈b, A∗c〉 6= 0. The situation if c 6∈ D(A∗) is quite different.

Theorem 4.2. If c 6∈ D(A∗), the set Z is dense in c⊥. Furthermore, Z 6= c⊥ ∩D(A).

Proof: This will be proved by showing that if Z is not dense in c⊥ then c ∈ D(A∗). Let

λ ∈ ρ(A) and Aλ = A − λI, so D(Aλ) = D(A). D(A) is a Hilbert space with the graph

norm, and the graph norm is equivalent to

‖x‖1 := ‖Aλx‖. (4.32)

The corresponding inner product on D(A) is

〈x, y〉1 := 〈Aλx, Aλy〉. (4.33)

Define e = (Aλ
∗)−1c ∈ X. For x ∈ D(A), the condition 〈c, x〉 = 0 can be written as

0 = 〈x, c〉 = 〈Aλx, e〉 = 〈Aλx, AλAλ
−1e〉 = 〈x, Aλ

−1e〉1. (4.34)

For x ∈ c⊥ ∩D(Aλ), the condition 〈Ax, c〉 = 0 is equivalent to 〈Aλx, c〉 = 0. Hence for such

x we have

0 = 〈Aλx, c〉 = 〈Aλx, AλAλ
−1c〉 = 〈x, Aλ

−1c〉1. (4.35)

We can write Z as {
x ∈ D(A)| 〈x, Aλ

−1e〉1 = 0 and 〈x, Aλ
−1c〉1 = 0

}
.

We now introduce the notation

(y)⊥1 := {x ∈ D(A) | 〈x, y〉1 = 0}.

Using this notation,

Z = (Aλ
−1e)⊥1 ∩ (Aλ

−1c)⊥1 .
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Now suppose that Z is not dense in c⊥ (as a subspace of X). Then there exists v ∈ c⊥

such that 〈x, v〉 = 0 for all x ∈ Z. Define w = (Aλ
∗)−1v. As in (4.34), for x ∈ D(A), the

condition 〈x, v〉 = 0 is equivalent to

〈x, Aλ
−1w〉1 = 0. (4.36)

Hence we see that

Z ⊆ (Aλ
−1e)⊥1 ∩ (Aλ

−1w)⊥1 . (4.37)

Let R be the orthogonal projection from D(A) onto (Aλ
−1e)⊥1 (using the inner product

〈·, ·〉1). Then

Z = (Aλ
−1e)⊥1 ∩ (RAλ

−1c)⊥1

and

(Aλ
−1e)⊥1 ∩ (Aλ

−1w)⊥1 = (Aλ
−1e)⊥1 ∩ (RAλ

−1w)⊥1 .

Hence (4.37) becomes

(Aλ
−1e)⊥1 ∩ (RAλ

−1c)⊥1 ⊆ (Aλ
−1e)⊥1 ∩ (RAλ

−1w)⊥1 . (4.38)

This implies that there is a scalar γ such that

RAλ
−1c = γRAλ

−1w.

We obtain that

Aλ
−1c = αAλ

−1w + βAλ
−1e.

Applying Aλ to both sides of this equation,

c = αw + βe.

Since w = (Aλ
∗)−1v and e = (Aλ

∗)−1c, we see that c ∈ D(Aλ
∗) = D(A∗). Thus, if Z is not

dense in c⊥ then c ∈ D(A∗).

Now assume that Z = c⊥ ∩ D(A). Then (Aλ
−1e)⊥1 ∩ (Aλ

−1c)⊥1 = (Aλ
−1e)⊥1 , so, as above,

c = βe, which would imply that c ∈ D(A∗). �

Lemma 4.3. Suppose that q ∈ X and c 6∈ D(A∗). Then q⊥ ∩ Z is dense in q⊥ ∩ c⊥.

Furthermore, q⊥ ∩ Z 6= q⊥ ∩ c⊥ ∩D(A).

Proof: If q = λc for some scalar λ, then q⊥ ∩ Z = Z and q⊥ ∩ c⊥ = c⊥, and the result

follows immediately from Theorem 4.2.

Assume now that q is not parallel to c. Let P be the orthogonal projection of X onto c⊥,

and q̃ = Pq, so q̃ 6= 0. Let X̃ = (q̃)⊥, and let Q be the orthogonal projection of X onto (q̃)⊥.

By construction, c = Qc ∈ X̃. Let

Ã = QA|X̃ , D(Ã) = D(A) ∩ X̃, Z̃ = {x ∈ D(Ã) | 〈x, c〉 = 0 and 〈Ãx, c〉 = 0}.
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We wish to show that c 6∈ D(Ã∗). Note that for x ∈ X̃,

〈Ãx, c〉 = 〈Q̃Ax, c〉 = 〈Ax, Qc〉 = 〈Ax, c〉. (4.39)

Therefore c 6∈ D(A∗) if the functional x → 〈Ax, c〉 is unbounded on X̃. To show this let

q0 ∈ D(A) ∩ X̃ and let Q0 be the (possibly not orthogonal) projection onto X̃ given by

Q0x = x− 〈x, q̃〉
〈q0, q̃〉

q0.

Then 〈Ax, c〉 is unbounded on X̃ if 〈AQ0x, c〉 is unbounded on X. Since

〈AQ0x, c〉 = 〈Ax, c〉 − 〈x, q̃〉
〈q0, q̃〉

〈Aq0, c〉.

The second term on the right is clearly bounded on X, and the first term on the right is

unbounded on X since c /∈ D(A∗), so 〈AQ0x, c〉 is not a bounded operator on X, hence

c 6∈ D(Ã∗).

Now we can apply Theorem 4.2 to X̃, Ã, c and Z̃ and conclude that X̃ ∩ Z̃ is dense in

X̃ ∩ c⊥ and X̃ ∩ Z̃ 6= X̃ ∩ c⊥ ∩D(A).

For x ∈ c⊥, 〈x, Pq〉 = 〈x, q〉 and so

X̃ ∩ c⊥ = {x ∈ X | 〈x, c〉 = 0, 〈x, Pq〉 = 0}
= {x ∈ X | 〈x, c〉 = 0, 〈x, q〉 = 0}
= q⊥ ∩ c⊥.

Similarly,

X̃ ∩ Z̃ = {x ∈ D(A) | 〈x, c〉 = 0, 〈x, q〉 = 0, 〈Ãx, c〉 = 0}. (4.40)

This can be written

X̃ ∩ Z̃ = {x ∈ D(A) | 〈x, c〉 = 0, 〈x, q〉 = 0, 〈Ax, c〉 = 0}
= q⊥ ∩ Z.

Thus we have shown that q⊥ ∩Z is dense in q⊥ ∩ c⊥, and that the two spaces are not equal.

�

If 〈b, c〉 = 0, c ∈ D(A∗), and 〈b, A∗c〉 6= 0, the largest invariant subspace in c⊥ is Z1 =

c⊥ ∩ (A∗c)⊥, and defining α = −1/〈b, A∗c〉,

A + bK = A + αb〈Ax, A∗c〉, D(A + bK) = {z ∈ c⊥ ∩D(A) | 〈Az, c〉 = 0}

is Z1-invariant. In many cases, this operator generates a C0-semigroup on Z1. It is tempting

to hope, that even if c 6∈ D(A∗), the operator (with some value of α)

A + bK = A + αb〈A2x, c〉, D(A + bK) = {z ∈ c⊥ ∩D(A2) | 〈Az, c〉 = 0}

is a generator, or has an extension which is a generator. However, we see from the next result

that this operator is not closable, so that no extension of it is a generator of a C0-semigroup,

or even an integrated semigroup (see [9, Theorem 4.5]).
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Theorem 4.4. Suppose that b ∈ X and c 6∈ D(A∗). Then the operator

AF x := Ax + b〈A2x, c〉, D(AF ) = {x ∈ c⊥ ∩D(A2) | 〈Ax, c〉 = 0}

is not closable.

Proof: Let λ ∈ ρ(A) and Aλ = A − λI, as above. From Corollary 4.3 we see that

((A−1
λ )∗c)⊥ ∩ Z is dense in ((A−1

λ )∗c)⊥ ∩ c⊥. Let

Tx := 〈Aλx, c〉, D(T ) = ((A−1
λ )∗c)⊥ ∩ c⊥ ∩D(A).

We will now show that T is not closable. From Corollary 4.3, ((A−1
λ )∗c)⊥ ∩Z 6= D(T ). Thus

we can choose f ∈ D(T ) such that f 6∈ ((A−1
λ )∗c)⊥∩Z, and there exists (fn) ⊂ ((A−1

λ )∗c)⊥∩Z

such that lim fn = f . From the definition of Z, Tfn = 0 for all n. Let xn = f − fn, so

lim xn = 0, and lim Txn = Tf 6= 0, (4.41)

which shows that T is not closable [16, Section II.6, Proposition 2]. It then follows that

I + bT with domain D(T ) is not closable.

Now note that y ∈ D(AF ) if and only if Aλy ∈ D(T ), and that for y ∈ D(AF )

AF y = (I + bT )Aλy + λy,

so AF is closable if and only if (I + bT )Aλ is closable. Using the sequence (xn) ⊂ D(T )

defined above, define yn = A−1
λ xn. Note that (yn) ⊂ D(AF ) and

lim yn = 0 and lim(I + bT )Aλyn = bTf 6= 0.

Hence (I + bT )Aλ is not closable, so AF is not closable. �

5 Disturbance Decoupling

Consider the controlled, observed system with disturbance v(t)

ẋ(t) = Ax(t) + bu(t) + dv(t)

y(t) = 〈x(t), c〉 (5.42)

where b, d and c are in the state-space X.

Disturbance Decoupling Problem (DDP): Find a feedback K so that (1) A + bK

generates a C0-semigroup; and (2) with u(t) = Kx(t), the output y(t) in (5.42) is independent

of the disturbance v(t).

Solution of the DDP implies the existence of a feedback such that the output y is en-

tirely “decoupled” from the disturbance. This problem is closely connected to the invariant
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subspace problem considered in this paper. Previous work on the disturbance-decoupling

problem for infinite-dimensional systems assumed that the feedback operator K was bounded

[2, 3, 10, 11, 19]. Also, in previous work it was not known a priori which systems possessed

a largest invariant subspace in the kernel of C. In [11], for instance, the existence of such

a subspace was required as an additional assumption on the system. Note that although

the control and observation operators are bounded we do not require the feedback K to be

bounded. The use of unbounded feedback extends the class of systems for which disturbance

decoupling is possible, since the results in this paper lead to a characterization of single-input

single-output systems which possess a largest invariant subspace within the kernel of C.

The following theorem is an immediate consequence of the results in Sections 2 and 3.

Theorem 5.1. Assume that (A, b, c) has relative degree n + 1 for some n ∈ N, c ∈ D(A∗n)

and the operator A + bK where K is defined in (2.7) generates a C0-semigroup on X. The

system can be disturbance decoupled if and only if d ∈ Zn.

Proof: Theorem 2.10 implies that Zn is a feedback invariant subspace inside c⊥. The assump-

tion that A + bK generates a C0-semigroup on X implies that Zn is closed-loop invariant,

by Theorem 3.5. Thus, if d ∈ Zn, the closed loop system

ẋ(t) = (A + bK)x(t) + dv(t)

with initial condition in Zn can be viewed as a system in Zn, so the system state remains in

Zn. Since Zn ⊂ c⊥, the output y is identically zero.

Conversely, suppose the DDP is solvable. That is, there exists a feedback K such that (1)

A + bK generates a C0-semigroup, SK(t), and (2) for all t > 0 and all v ∈ L2(0, t),

C

∫ t

0

SK(t− s)Dv(s)ds = 0.

Equivalently, define the subspace of all reachable states R(SK , D) consisting of the closure

of

{x ∈ X|x =

∫ t

0

SK(t− s)Dv(s)ds, t ≥ 0, v ∈ L2(0, t)}.

Solvability of the DDP means that R(SK , D) ⊂ c⊥. Also, since

D = lim
t→0

1

t

∫ t

0

SK(t− s)Dds,

D ∈ R(SK , D). The subspace R(SK , D) is invariant under the semigroup SK(t); hence

A+ bK-invariant. Thus, R(SK , D) is (A, b) feedback invariant. Since Zn is the largest (A, b)

feedback invariant subspace in c⊥, follows that

Zn ⊃ R(SK , D) ⊃ D.

Thus, solvability of the DDP implies that D ∈ Zn. �
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Example 3.6 continued: With both choices of observation, the control system is a relative

degree 1 system. The largest feedback invariant subspace in c⊥ is exactly c⊥.

First consider c1. Since the observation element c1 ∈ D(A∗), the feedback operator is

bounded and the feedback operator is

K1x = 〈x, k1〉,

where k1 ∈ L2(0, 1) is defined in (3.28). Since K1 is bounded, c⊥ is also closed-loop invariant.

The disturbance decoupling problem has a solution if and only if 〈d, c1〉 = 0.

Consider the second observation element c2 /∈ D(A∗). The feedback operator is only A-

bounded. Since A generates an analytic semigroup, A + bK generates a C0-semigroup and

c⊥ is again closed loop invariant. The disturbance decoupling problem is solvable for any d

such that 〈d, c2〉 = 0.

The eigenfunctions of A form a basis for the state space L2(0, 1). The operator K2 can

be calculated by computing its effect on each eigenfunction in this basis. Projections of

the system and feedback operators onto the span of the first n eigenfunctions yield a finite-

dimensional model of order n. Figure 1 shows the norm of the feedback gain kn against

model order n, for both the first and second observation operator. These numerical results

illustrate the theory: in the first case (c1 ∈ D(A∗)) is bounded, while it is unbounded for

the second observation operator (c2 6∈ D(A∗)). Figures 2 shows the norm of A−1
n kn for both

observation operators. As predicted by the theory, both feedback operators are A-bounded.
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