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Preface

These notes are based in part on lectures notes developed by P. Tenti.

Useful references

1. Course notes.

2. Bender, C. M., and Orzag, S. A. Advanced Mathematical Methods for Scientist and Engineers,
McGraw-Hill (1978). QA371.B43 1978.

The book I learned from. A wealth of topics. Lots and lots of problems. Some very difficult.

3. Lin, C. C., and L. A. Segel, L. A. Mathematics Applied to Deterministic Problems in the
Natural Sciences, MacMillan (1974). QA37.2.L55 1974

This is one of the best applied mathematics texts available. It was reprinted by SIAM in
1988. Parts of it can be read on google books.

4. Murdock, J. A. Perturbations: Theory and Methods. QA871.M87 1999
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7. Ablowitz, M. J., and Fokas, A. S. Complex Variables: Introduction and Applications, Cam-
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Chapter 1

Introduction

Before the 18th century, Applied Mathematics and its methods received the close attention of
the best mathematicians who were driven by a desire to explain the physical universe. Applied
Mathematics can be thought of as a three step process:

Physical 1 Mathematical
Situation =⇒ Formulation

ww�2
Physical 3 Solution by Purely

Interpretation ⇐= Formal Operations
of the Solution of the Math Problem

Over the centuries step 2 took on a life of its own. Mathematics was studied on its own, devoid
of contact with a physical problem. This is pure mathematics. Applied mathematics deals with all
three steps.

The goal of asymptotic and perturbation methods is to find useful, approximate solutions to
difficult problems that arise from the desire to understand a physical process. Exact solutions
are usually either impossible to obtain or too complicated to be useful. Approximate, useful solu-
tions are often tested by comparison with experiments or observations rather than by ‘rigourous’
mathematical methods. Hence we will not be concerned with ‘rigorous’ proofs in this course. The
derivation of approximate solutions can be done in two different ways. First, one can find an ap-
proximate set of equations that can be solved, or, one can find an approximate solution of a set of
equations. Usually one must do both.

A key turning point in the history of mathematics was the brilliant discovery of the theory of
limits of Gauss (1777–1855) and Cauchy (1789–1857). In the limit process, usually characterized
by an infinite expansion, we do not attempt to obtain the exact solution but merely to approach
it with arbitrary precision. Thus, the desire for absolute accuracy (zero error) was replaced by one
for arbitrarily great accuracy (arbitrarily small error):

absolute
accuracy

=⇒ arbitrarily great
accuracy

and

zero
error

=⇒ arbitrarily small
error

.

1



We are no longer interested in what happens after a finite number of steps but wish to know
what happens eventually if the number of steps is increased indefinitely. The obvious difficulty
with this is that in most real applications you can only sum up a finite number of terms. In fact,
for many problems that we will tackle we will obtain only the first two or three terms in a series.
We are then not particularly interested in what happens as the number of terms goes to zero but
rather in how accurate, or useful, an approximation using a few terms is. Since observations have
limited accuracy, there is no need to make the error arbitrarily small.

This gives rise to a different limiting process and different questions: What error occurs after
a finite number of steps? How can we minimize the error for a given number of steps? This is a
branch of applied analysis.

1.0.1 The Role of Numerical Analysis

An obvious question, particularly in this day and age, is ‘If the problem is so difficult why not solve
it on a computer’. Ultimately you may end up doing this, but using asymptotic and perturbation
techniques to find useful, approximate answers is an extremely important first step. It should always
be done whenever possible. Approximate solutions have many benefits. They provide necessary
checks, and aid in the understanding and interpretation, of numerical solutions. They illuminate
potential problems, e.g., regions in parameter space where singularities exist and where special
numerical approaches may be required. They can give tremendous insight into how the solution
depends on the parameters of the problem and help determine what the important parameters are.

Example 1.0.1 Newtonian, constant density, steady state flow past a finite object Ω ⊂ R
3.





u · ~∇ · u = − 1
ρ0
~∇p+ ν∇2u

u|∂Ω = 0
u → u∞ as |x| → ∞

(1.1)

where

u(x, y, z) = fluid velocity

ρ0 = mass density

p = hydrodynamic pressure

u∞ = constant for field flow

ν = kinematic viscosity

Much work needs to be done on (1.1), e.g., prove existence and uniqueness. Such a proof
may not be constructive, i.e. it may not be helpful in finding the solution. No knowledge of fluid
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mechanics is required: the problem of proving existence and uniqueness is part of step 2 in our
three step process and is part of pure analysis. To obtain an actual solution is another matter. In
general, it is impossible. The biggest source of difficulty lies in the nonlinear term u · ~∇u and in
the viscous term ν∇2u. One way of tackling this problem is to assume that the viscous term ν∇2u
term is negligible. This would appear to be very reasonable for, e.g., an airplane in air, since the
viscosity of air is very small (≈ 10−5 m2 s−1). Dropping this term requires abandonment of the
boundary condition u|∂Ω = 0 (this condition, which says that the fluid velocity is zero on the solid
boundary, is a consequence of viscosity). This results in a linear potential problem

u = ~∇φ

∇2φ = 0

∇φ · n̂ = 0 on ∂Ω

(1.2)

This approximate linear problem can be solved for some geometries and many general results
can be proved as much is known about solutions of Laplace’s equation. This makes it very tempting
to use the simplified problem (1.2). In fact researchers in the late 1800’s and early 1900’s used this
model and proved that airplanes can’t fly!

Today there is a strong tendency to solve problems like (1.1) on a computer. This can be a lot
of work and if the mathematical model does not correctly describe the physics then the numerical
solution is garbage no matter how accurately you solve the model equations. In fact (1.1) is useful
only for laminar flows (e.g., flow over a streamlined body like an airplane wing) because the model
is very inaccurate for turbulent flows.

Computers, while very useful and often necessary, should be used in the last stage of a scientific
investigation. Analytic work on a mathematical problem is necessary to provide a rough under-
standing of possible solutions. Phases 1 and 3 must be considered even in cases where we think we
already have a good mathematical model at our disposal. It is here that perturbation theory has
proved invaluable.

1.0.2 Numerical Noise vs. Physical Noise

Example 1.0.2 (C. Lanczos) Solving the 2× 2 linear system

x+ y = 2.00001
x+ 1.00001y = 2.00002

}
(1.3)

we obtain the solution

x = 1.00001

y = 1.

Suppose that the values on the R.H.S. were obtained from measurements which have limited
accuracy. Suppose they are accurate to ±10−3.

Someone else takes the measurement and gets:

x+ y = 2.001 (1.4)

x+ 1.00001y = 2.002. (1.5)

Solving yields the solution (x, y) = (−97.999, 100). A very different solution! The difficulty here is
that in this system of equations x+ y is well represented but x− y is poorly represented. Setting

ξ =
1

2
(x+ y) and η =

1

2
(x− y), (1.6)
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gives the system

2ξ = 2.00001 (1.7)

2.00001ξ − 0.00001η = 2.00002. (1.8)

The first equation immediately gives ξ. Changing the right-hand side by a tiny amount will change
the solution by a tiny amount. In this sense x+ y = 2ξ is well represented. To get η we will need
to divide by 10−5, resulting in

η = 105
(
2.00001ξ − 2.00002

)
. (1.9)

Thus, the value of η is very sensitive to small changes in the measured values.
Here the problem is very simple to understand, but suppose we had a large system and went to

the computer to find the solution. Roundoff error would play havoc giving completely erroneous
results. The ‘exact’ numerical solution of a mathematical problem may have no physical significance.

Exercise: Write (1.3) in matrix form as

A~x = ~s, (1.10)

where ~x = (x, y)T . What are the eigenvalues of the matrix A and how do they imply sensitivity of
the solution to the source term ~s?

1.0.3 Perturbation Theory and Asymptotic Analysis in Applied Mathematics

Most mathematical problems facing applied mathematicians, scientists, and engineers have features
which preclude exact solutions. Some of these features include:

• nonlinear terms in the equations

• variable coefficients

• nonlinear boundary conditions at known boundaries

• linear or nonlinear boundary conditions at unknown boundaries

Perturbation Theory (PT) is the collective name for a group of techniques developed for the
purpose of deriving approximate solutions, valid in certain limiting cases which are helpful in un-
derstanding the essential processes in simple terms. These often serve as benchmarks for fully
numerical solutions. They often have highly accurate predictive capability even when applied out-
side the range of conditions for which the method is justified. Approximate solutions obtained by
perturbation theory usually consist of the first two or three terms of a certain series expansion in
the neighbourhood of a point at which the solution has an essential singularity. Asymptotic and
perturbations methods can be helpful in several ways. First, they can help by directly finding an
approximate solution to your problems. Secondly, these methods can be used to find approxima-
tions to exact solutions which are difficult to understand (e.g., solutions written in terms of Bessel
functions of large or complicated arguements, or in terms of elliptic function). A third approach
is to use asymptotic methods to derive simpler problems which can then be solved exactly (or
approximately using perturbation and asymptotic methods again!).

The series obtained by perturbation and asymptotic methods is usually divergent and ordinary
results from calculus do not apply. Asymptotic Analysis is the new branch of analysis developed
to study such series.
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Perturbation Theory has its origin in celestial mechanics. From Newtonian Mechanics it is
known that the motion of a celestial body, (e.g. the Earth) is specified by

Mẍi = F
(0)
i + µF

(1)
i + µ2F

(2)
i + · · · , (1.11)

for i = 1, 2, 3, where the F(j)(x1, x2, x3, t) represent the gravitational forces emanating from other
bodies. F(0) is the largest force, due to the sun.

The other terms, µF(1), µ2F(2), . . . are successively smaller forces due to the moon and other
planets. These other forces are perturbations of the main force due to the sun. In particular, µ ≪ 1
is a small parameter.

In about 1830 Poisson suggested looking for a solution of (1.11) in a series of powers of µ:

xi(t) = x
(0)
i (t) + µx

(1)
i (t) + µ2x

(2)
i (t) + · · · , (1.12)

the reasoning behind this being that the solution is a function of µ as well as time t: xi = xi(t, µ).

Substituting this expansion into (1.11), expanding the F
(j)
i s in power series of µ,

F
(0)
i (x(0) + µx(1) + µ2x(2) + · · · , t)

= F
(0)
i (x(0), t)

+ ~∇F
(0)
i (x(0), t) · [µx(1) + µ2x(2) + · · · ]
+ · · · ,

(1.13)

and equating like powers of µ gives a series of ODEs to solve.
The first, obtained from the coefficients of µ0, is

Mẍ
(0)
i = F

(0)
i (x

(0)
1 , x

(0)
2 , x

(0)
3 , t) i = 1, 2, 3.

This is called the reduced equation or the reduced problem. It is obtained by setting µ = 0. One
must be able to solve the reduced problem in order to proceed.

Before Poincaré (1859–1912) the mathematical status of perturbation series of the form (1.12)
was rarely considered. One could rarely find more than a few terms, let alone determine if the
series converged or not. Indeed, it was often not known whether a solution existed or not.

Poincaré shifted the attention from the convergence of a power series, such as
∑∞

n=1 µ
nx(n)(t)

where the emphasis is on the limiting behaviour of
∑N

n=1 µnx(n)(t) as N → ∞ for fixed µ and t,

to the new concept of asymptotic analysis of finding the limiting behaviour of
∑N

n=1 µ
nx(n)(t) as

µ → 0 or t → ∞ for fixed N .
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Chapter 2

Simple linear systems and roots of
polynomials

2.1 Introduction and simple linear systems

Reference: Lin & Segel
The general idea behind perturbation theory is the following:

(A) Non-dimensionalize the problem to introduce a small parameter, traditionally called ǫ or µ.

(B) Estimate the size of the terms in your model and drop small ones obtaining a reduced
problem.

(C) Solve the reduced problem.

(D) Compute perturbative corrections.

Basic Simplification Procedure (BSP): Set ǫ = 0 to get the reduced problem. Solve.

Example 2.1.1 (From Lin & Segel, page 186): Solve approximately

ǫx+ 10y = 21,

5x+ y = 7,
(2.1)

for ǫ = 0.01.

Solution:

(A) Step (A) is already done: equation nondimensionalized and a small parameter ǫ has been
introduced.

(B) The Basic Simplification Procedure assumes that the presence of a small parameter in the
coefficient of a term indicates that that term is small. Using the BSP, we set ǫ = 0 to get the
reduced problem, giving

10y0 = 21,

5x0 + y0 = 7,
(2.2)

where we have introduced x0 and y0 to denote the approximate solution.
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(C) The reduced problem is easily solved giving

(x0, y0) = (0.98, 2.1). (2.3)

(D) We next find perturbative corrections. The most common approach in perturbation theory
is the following. The solution of the system (2.16) depends on ǫ. Denote the solution by
(x, y) = (x(ǫ), y(ǫ)) and assume a Taylor Series for x(ǫ) and y(ǫ) exists:

x(ǫ) = x0 + ǫx1 + ǫ2x2 + · · · ,
y(ǫ) = y0 + ǫy1 + ǫ2y2 + · · · .

(2.4)

Substituting these expansions into (2.16) gives

ǫ0(10y0 − 21) + ǫ(x0 + 10y1) + ǫ2(x1 + 10y2) + · · · = 0,

ǫ0(5x0 + y0) + ǫ(5x1 + y1) + ǫ2(5x2 + y2) + · · · = 0.
(2.5)

Since these equations should be satisfied for all ǫ in a neighbourhood of 0, the coefficient of
each power of ǫ must be zero. Thus we get a sequence of problems:

(a) The O(1) terms (those with coefficient ǫ0) give

10y0 − 21 = 0,

5x0 + y0 = 0.
(2.6)

This is the reduced problem we have already solved.

(b) The O(ǫ) terms give

x0 + 10y1 = 0,

5x1 + y1 = 0.
(2.7)

From this we find

y1 = −x0
10

= −0.098, (2.8)

and
x1 = −y1

5
= 0.0196. (2.9)

(c) The O(ǫ2) terms give

x1 + 10y2 = 0,

5x2 + y2 = 0.
(2.10)

giving
(x2, y2) = (0.000392,−0.00196). (2.11)

Thus, to order ǫ2, we have

x = 0.98 + 0.0196ǫ + 0.000392ǫ2 + · · · ,
x = 2.1 − 0.098ǫ − 0.00196ǫ2 + · · · .

(2.12)

For ǫ = 0.01 the first three terms give

(x, y) ≈ (0.9801960392, 2.099019804). (2.13)
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The exact solution is

(x, y) =
( 49

50− ǫ
,
105− 7ǫ

50− ǫ

)
, (2.14)

which, for ǫ = 0.01 gives

(x, y) =
( 49

49.99
,
104.93

49.99

)
= (0.9801960392 . . . , 2.09901980396 . . . ). (2.15)

The first three terms in the perturbation expansion gives the solution to the accuracy of my
calculator!

Some important points:

(i) We had to solve the O(1) problem (i.e., the reduced problem) first. All the subsequent
problems depended on it. One always needs to have a reduced problem that can be solved.
Trivial in this case, but not always.

(ii) The solution of the reduced problem (x0, y0) = (0.98, 2.1) is very close to the exact solution.
This is indication that the terms neglected to obtain the reduced problem were indeed small.
For the exact solution ǫx = 0.0098 · · · ≪ 10y = 20.99 . . . , so approximating the first equation
by dropping ǫx was OK.

The next example shows one way things can go wrong. It is a simple example which allows us
to understand why perturbation theory fails in this case.

Example 2.1.2 (From Lin & Segel): Find an approximate solution of the system

ǫx+ y = 0.1,

x+ 101y = 11,
(2.16)

for ǫ = 0.01.
The reduced problem is

y0 = 0.1,

xx + 101y0 = 11,
(2.17)

which has the solution (x0, y0) = (0.9, 0.1). Solving the system exactly, we have

(1− 101ǫ)x = 11− 10.1 = 0.9,

(101ǫ − 1)y = 0.11 − 0.1 = 0.01
(2.18)

so
(x, y) = (−90, 1). (2.19)

The solution of the reduced problem is way off. What went wrong?
For the exact solution ǫx = −0.9 is comparable to the other two terms in the first equation. In

obtaining the reduced problem by dropping the ǫx term we assumed that it was small compared with
the other terms. In this example this assumption is incorrect and it leads to a poor reduced problem.

In real problems we won’t know the exact solution (otherwise we wouldn’t be using perturbation
methods!), so how can we realize our perturbation solution is wrong? In this example, assuming we
haven’t noticed the problem we proceed to find perturbative corrections. This leads to

x = 0.9 + 90.9ǫ+ 9180.9ǫ2 + · · · ,
y = 0.1 − 0.9ǫ− 90.9ǫ2 + · · · ,

(2.20)
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which, for ǫ = 0.01, gives

x = 0.9 + .909 + 0.91809 + · · · ,
y = 0.1− 0.009 − 0.00909 + · · · .

(2.21)

It looks like the series will not converge (of course we can’t really tell with only three terms). In
general the O(ǫ) correction should be small compared with the leading-order (O(1) terms, and the
O(ǫ2) terms should be small compared to the O(ǫ) terms. This is clearly not the case here.

The exact solution for x is

x =
0.9

1− 101ǫ
. (2.22)

Thus, x(ǫ) has a singularity at epsilon = 1/101 = 0.009901 . . . and the Taylor Series expansion for
x(ǫ) cannot converge for ǫ = 0.01.

For ǫ = 0.002, say, the first three terms of the expansion gives a very good approximation
(x ≈ 1.1185236 vs the exact solution x = 1.12782 . . . ).

Perturbative methods often work only if the small parameter(s), ǫ in this case, is small enough.
How small ‘small enough’ is may be difficult to determine.

• Dropping terms uncritically can be dangerous!

• Learning how to simplify a problem consistently is difficult and a very important part of this
course.

In most problems you will have to introduce a small parameter, or perhaps several small pa-
rameters. Where does ǫ come from? Two possibilities:

• Introduce ǫ artificially.

• Obtain ǫ from scaling and non-dimensionalization.

The latter is the most important when dealing with physical problems.

2.2 Roots of polynomials

References: Murdoch or Bender & Orzag.

Example 2.2.1 (From Bender & Orzag): Artificial introduction of ǫ.
Find approximate solutions of

x3 − 4.001x + 0.002 = 0. (2.23)

Tricky, but
x3 − 4x = x(x− 2)(x+ 2) = 0, (2.24)

is easy. Consider (2.23) a perturbation of (2.24). There are many ways to do this, one is to consider
the problem

x3 − (4 + ǫ)x+ 2ǫ = 0. (2.25)

where we are interested in the solution when ǫ = 0.001. As above, assume the solutions x(ǫ) have
a Taylor series expansion

x = x0 + ǫx1 + ǫ2x2 + ǫ3x3 + · · · . (2.26)
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Substituting into (2.25) and collecting like powers of ǫ gives

(x30 − 4x0) + (3x20x1 − 4x1 − x0 + 2)ǫ+ (3x20x2 + 3x21x0 − 4x2 − x1)ǫ
2 + O(ǫ3) = 0. (2.27)

The coefficient of each power of ǫ must be zero, giving a sequence of problems to be solved.

1. O(1) problem:
x30 − 4x0 = 0 (2.28)

giving the three roots x0 = −2, 0, 2. Note that we chose ǫ so that at ǫ = 0 our problem
reduced to this simple problem that we already noticed we could easily solve.

2. O(ǫ) problem:
(3x20 − 4)x1 = x0 − 2. (2.29)

This is easily solved:

x1 =
x0 − 1

3x20 − 4
. (2.30)

Each value of x0 gives a different value for x1. Note that the denominator 3x20− 4 is non-zero
for each of our values for x0.

3. O(ǫ2) problem:
(3x20 − 4)x2 = x1 − 3x21x0, (2.31)

so

x2 =
x1 − 3x21x0
3x20 − 4

. (2.32)

Note that the denominator is the same as in the O(ǫ) problem. This is no coincidence. More
on this later.

Taking x0 = −2, one root is

x(1) = −2− 1

2
ǫ+

1

8
ǫ2 + O(ǫ3), (2.33)

which gives x(1) ≈ −2.000499875 for ǫ = 0.001.

Comment:

• There may be many ways to introduce a small parameter. Some good, some bad.

• The O(1) problem (the reduced problem) must be solvable. In the preceding example this
problem was a cubic polynomial that we could easily solve, as opposed to the original cubic
problem. The higher-order problems were all simple linear problems. Once the leading-order
problem was solved the higher-order corrections were simple. This is common to all problems
involving finding roots of polynomials, but it is not always the case for other types of problems.
Sometimes the higher-order problems get more difficult to solve.
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2.2.1 Order of the error

If we truncate our solution at O(ǫn) then how can we estimate the error? We know that the error
is due to the terms O(ǫn) and higher but that does not mean the error is bounded by Cǫn for some
constant C > 0. The coefficients of the ǫm terms for m > n may grow very rapidly. The series may
not converge and in fact many useful asymptotic series do not.

Definition 2.2.1 We will call OF (ǫ
n) the formal order of truncation and by this mean that

terms of O(ǫn) and higher are neglected. It says nothing about the error.

From now on we will use the notation OF (ǫ
n) unless we know the error is bounded by Cǫn in

which case the error is O(ǫn). For our root problem we can say something more.
Let

f(x, ǫ) = x3 − (4 + ǫ)x+ 2ǫ. (2.34)

Then f(x, ǫ) = 0 implicitely defines x(ǫ) — actually three different x(ǫ), one for each root. The
Implicit Function Theorem guarantees that a unique function is defined by

f(x(ǫ), ǫ) = 0; x(0) = x0, (2.35)

where x0 is one of the roots of f(x, 0) = 0, i.e., x0 = −2, 0, or 2, for a non-zero interval containing
ǫ = 0.

Theorem 2.2.1 Implicit Function Theorem: Let f(x, ǫ) be a function having continuous par-
tial derivatives (including mixed derivatives) up to order r. Let x0 satisfy f(x0, 0) = 0 and
fx(x0, 0) 6= 0. Then there is an ǫ0 > 0 and a unique Cr function x = x(ǫ) defined for all 0 ≤ |ǫ| ≤ ǫ0
such that

f(x(ǫ), ǫ) = 0 and x(0) = x0. (2.36)

You can read about the Implicit Function Theorem in, for example, Murdoch ‘Perturbations:
Theory and Methods’, Marsden & Hoffman ‘Elementary Classical Analysis’ or Apostol ‘Calculus:
Volume II’.

The function f(x, ǫ) need not be a polynomial. If it is then it is C∞ (only a finite number of
derivatives being non-zero) and, provided fx(x0, 0) 6= 0, x(ǫ) exists and is C∞. For the previous
example

f(x, ǫ) = 3x3 − (4 + ǫ)x+ 2ǫ, (2.37)

and
fx(x, ǫ) = 3x2 − 4 (2.38)

which is nonzero for all three roots. Thus, by the Implicit Function Theorem, the solution x(ǫ)
exists for all 0 ≤ |ǫ| ≤ ǫ0 for some ǫ0 > 0. The theorem does not help us determine the size of
ǫ0. Taylor’s Theorem (see below) can be used to show that, using a third-order approximation for
example, ∣∣∣x(ǫ)− (x0 + x1ǫ+ x2ǫ

2)
∣∣∣ ≤ M

ǫ3

6
, (2.39)

where

M = max
{∣∣∣∂

3x

∂ξ3
(ξ)
∣∣∣ : ξ ∈ [0, ǫ0]

}
, (2.40)

which gives us some information about the error.
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Theorem 2.2.2 Taylor’s Theorem: Let x(ǫ) be a Cr function on |ǫ| < ǫ0. For k ≤ r − 1 let
pk(ǫ) be the Taylor polynomial

pk(ǫ) =

k∑

0

x(n)

n!
(2.41)

where x(n) denotes the nth derivative of x. Then if x(ǫ) is approximated by pk(ǫ) the error is

Rk(ǫ) = x(ǫ)− pk(ǫ) =

∫ ǫ

0
x(k+1)(η)

(ǫ− η)k

k!
dη (2.42)

and for each ǫ1 ∈ (0, ǫ0)

|Rk(ǫ)| ≤
Mk(ǫ1)

(k + 1)!
|ǫ|k+1 for |ǫ| ≤ ǫ1 (2.43)

where
Mk(ǫ1) = max

{
|f (k+1)(ǫ)| for |ǫ| ≤ ǫ1

}
(2.44)

For a proof, which is based on the fundamental theorem of calculus and integration by parts, see
any first year Calculus book. It is also discussed in the text by Murdoch.

2.2.2 Sometimes you don’t expand in powers of ǫ

The presence of a small parameter ǫ in your problem does not necessarily imply that the pertur-
bation series solution is in integer powers of ǫ. Consider the following.

Example 2.2.2 Find approximate roots x(ǫ) of

f(x, ǫ) = x3 − x2 + ǫ = 0. (2.45)

Solution: Proceeding as before substitute

x = x0 + x1ǫ+ x2ǫ
2 + · · · (2.46)

into the equation giving

x30 − x20 +
(
(3x20 − 2x0)x1 + 1

)
ǫ+

(
(3x20 − 2x0)x2 + 3x0x

2
1 − x21

)
ǫ2 + · · · = 0. (2.47)

This leads to the following sequence of problems:

1. O(1) problem:
x30 − x20 = 0. (2.48)

which has two roots: x0 = 1 and x0 = 0. The latter is a double root.

2. O(ǫ) problem:
(3x20 − 2x0)x1 + 1 = 0, (2.49)

giving

x1 = − 1

3x20 − 2x0
. (2.50)

3. O(ǫ2) problem: The solution is

x2 = −3x0x
2
1 − x21

3x20 − 2x0
. (2.51)
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Figure 2.1: (a) Plots of the functions y = f(x,0) (solid curve) and y = f(x, 0.01) (dashed curve) where f(x, ǫ) =
x3

− x2 + ǫ . (b) Neighbourhood of x = 1. (c) Neighbourhood of x = 0.

For the single root x0 = 1 we find x1 = −1 and x2 = −2, so an approximation to one root is

x(1) = 1− ǫ− 2ǫ2 + O(ǫ3), (2.52)

(why can we use O instead of OF ?). For the double root x0 = 0 both x1 and x2 are undefined since
the denominator 3x20 − 2x0 = 0!

What went wrong and how can we resolve the problem? Note that fx(x0, 0) = 3x20 − 2x0 is
equal to zero at x0 = 0 so at the double root the conditions of the Implicit Function Theory are
not satisfied.

The curves f(x, ǫ) for ǫ = 0 and 0.01 are illustrated in Figure 2.1. Consider the simple root
near x = 1. Let g(x) = f(x, 0). For ǫ = 0 the polynomial y = g(x) can be approximated by
the tangent line y = g′(1)(x − 1) = x − 1 in a neighbourhood of x = 1. In this example the
function f(x, ǫ) is obtained by adding ǫ to f(x, 0) which simply shifts the curve up a distance ǫ.
The tangent line is shifted up to y = g′(1)(x− 1) + ǫ = x− 1 + ǫ. This curve intersects the x-axis
at x = 1− ǫ/g′(1) = 1− ǫ which approximates the root of f(x, ǫ) = 0 which is near x = 1. Adding
ǫ to g(x) shifts the root by ∆x = −ǫ/g′(1). In other words, the first correction to the approximate
root x0 = 1 is linear in ǫ. This is illustrated in Figure 2.2(a).

For the double roots the problem is different. The tangent line to y = f(x, 0) at x = 0 is the line
y = 0. Adding ǫ to f(x, 0) shifts the tangent line up to y = ǫ which never crosses the x-axis. We
need a higher-order approximation to f(x, 0) in this case if we want to estimate the roots f(x, ǫ) = 0
that are close to the origin. In the neighbourhood of x = 0 we need to approximate the polynomial
with a quadratic. The quadratic passing through (x, y) = (0, 0) with the same slope and curvature
as y = f(x, 0) is yq(x) = −x2 ( this simplest way to see this is that as x → 0, the term x3 becomes
much smaller than −x2 so for sufficiently small x, x3 − x2 ≈ −x2).

In a small neighbourhood of x = 0, f(x, ǫ) can be approximated by y = −x2 + ǫ. Its roots are
x = ±ǫ1/2, which may be imaginary if ǫ < 0. Hence

For a double root we must expand x(ǫ) in powers of ǫ1/2. Similarly for roots
of order n we must expand x(ǫ) in powers of ǫ1/n.

To find perturbative corrections to the double root at x = 0 we need to set

x(ǫ) = x0 + ǫ1/2x1 + ǫx2 + ǫ3/2x3 + · · · . (2.53)
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Figure 2.2: As in figure 2.1. (a) Neighbourhood of root at x = 1. Dotted curve is linear fit (tangent line) to
y = f(x, 0.01) at x = 1. (b) Neighbourhood of roots near x = 0. Dotted curve is quadratic fit to y = f(x, 0.01) at
x = 0.

Substituting into f(x, ǫ) = 0 gives

(
x0 + ǫ1/2x1 + ǫx2 + ǫ3/2x3 + · · ·

)3
−
(
x0 + ǫ1/2x1 + ǫx2 + ǫ3/2x3 + · · ·

)2
+ ǫ = 0. (2.54)

Expanding and collecting like powers of ǫ leads to

x30 − x20 + (3x20 − 2x0)x1ǫ
1/2 +

(
(3x20 − 2x0)x2 + 3x0x

2
1 − 2x0x1 − x21 + 1

)
ǫ

+
(
(3x20 − 2x0)x3 + 6x0x1x2 + x31 − 2x1x2

)
ǫ3/2 + · · · = 0.

(2.55)

For the double roots x0 = 0 this simplifies to

(
−x21 + 1

)
ǫ+

(
x31 − 2x1x2

)
ǫ3/2 + · · · = 0, (2.56)

hence the two roots near zero are

x2,3 = ±ǫ1/2 +
1

2
ǫ+ OF (ǫ

3/2). (2.57)

[Note: instead of subsituting (2.53) it is easier in this case to use x0 = 0 and substitute x(ǫ) =
ǫ1/2x1 + · · · . This simplifies the algebra, particularly if you are finding the solution by hand].

2.2.3 Solving by rescaling: a singular perturbation problem

By an appropriate rescaling we can replace OF in the previous solution with O. Let µ = ǫ1/2 and
x = µy so that the two roots near x = 0, x(2,3), become y ≈ ±1. The polynomial become

µy3 − y2 + 1 = 0. (2.58)

Expanding as
y = y0 + ǫy1 + µ2y2 + · · · , (2.59)
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leads to

µ
(
y0 + y1µ+ y2µ

2 + y3µ
3 + · · ·

)3
−
(
y0 + y1µ+ y2µ

2 + y3µ
3 + · · ·

)2
+ 1 = 0. (2.60)

Expanding and collecting like powers of µ leads to

−y20 + 1 + (y30 − 2y0y1)µ+ (3y20y1 − 2y0y2 − y21)µ
2 + · · · = 0. (2.61)

Solving this leads to

y = ±1 +
1

2
µ± 5

8
µ2 + O(µ3), (2.62)

where we can say O(µ3) because the conditions of the implicit function theorem are satisfied. Using
µ = ǫ1/2 and y = x/ǫ1/2 recovers (2.57).

We now have a different problem. The cubic polynomial (2.58) has three roots. Our perturbation
solution has only found two of them! What happen to the other one?

We already know that the missing root is x(1) = 1 − ǫ− 2ǫ2 + O(ǫ3). In terms of y and µ this
becomes

y(1) =
1

µ
− µ− 2µ3 + O(µ5). (2.63)

This has a singularity at µ = 0. The rescaling x = µy is only valid if µ 6= 0.

2.2.4 Finding the singular root: Introduction to the method of dominant bal-
ance

In the examples we have considered thus far we have always used the Basic Simplification Procedure
(set the small parameter to zero) to obtain the reduced problem. This is not always appropriate,
and indeed often is not in singular perturbation problems.

Consider again the problem
µy3 − y2 + 1 = 0, (2.64)

where µ ≪ 1.
The equation has three terms in it. We wish to simplify the problem and that can only be done

by dropping one of the three terms. The idea here is that two of the three terms are much larger
than the third so to a first approximation they are equal. This gives the reduced problem. There
are three possible cases:

Case 1: µy3 is much smaller than −y2 and 1. This leads to the reduced problem y20 = 1 from which
we have already seen two roots are obtained. For two of the three roots µy3 is indeed small
compared with −y2 and 1.

Case 2: y2 is much smaller than µy3 and 1. If this is true then µy3 ≈ −1 which means y ≈ 11/3/µ1/3.
Note there are three roots corresponding to each of the cubic roots of 1: 1, ei2π/3 and ei4π/3.
Since µ ≪ 1, y is very large. But that means y2 ≫ 1 contradicting our assumption that
y2 ≪ 1. Thus this case is not consistent and must be discarded.

Case 3: 1 is much smaller than µy3 and y2. Solving µy30 = y20 gives y0 = 0, which violates our
assumption that y2 ≫ 1, or y0 = 1/µ. If y ≈ 1/µ then µy3 ≈ y2 ≈ 1/µ2 ≫ 1 so this solution
is consistent with our assumption that 1 is small compared with the other terms. The full
solution is now obtained by expanding y(µ) as

y =
1

µ
+ y0 + y1µ+ y2µ

2 + · · · . (2.65)

Proceeding we would obtain (2.63).
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2.3 Problems

1. Find approximate solutions of the following problems by finding the first three terms in a
perturbation series solution (in an appropriate power of ǫ) using perturbation methods. For
problem (a) explain whether the missing terms are OF (ǫ

?) or O(ǫ?). You should find all of
the roots, including complex roots.

(a) x2 + (5 + ǫ)x− 6 + 3ǫ = 0.

(b) x2 + (4 + ǫ)x+ 4− ǫ = 0.

(c) (x− 1)2(x+ 2) + ǫ = 0.

(d) x3 + ǫ+ 1 = 0.

(e) ǫx3 + x2 + 2x+ 1 = 0.

(f) ǫx5 + (x− 2)2(x+ 1) = 0.

(g) ǫx4 + ǫx3 + x2 − 3x+ 2 = 0.
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Chapter 3

Nondimensionalization and scaling

The chapter is based on material from Lin and Segel (1974). It is strongly recommended that you
read the relevent sections of this book.

3.1 Nondimensionalizing to get ǫ

Example 3.1.1 (The Projectile Problem) Consider a vertically launched projectile of mass m
leaving the surface of the Earth with speed v. Find the height of the projectile as a function of time.

Ignore:

• the Earth’s rotation;

• the presence of air (i.e., friction);

• relativistic effects;

• the fact that the Earth is not a perfect sphere;

• etc., etc., etc.

Assume:

• Earth is a perfect sphere;

• Newtonian mechanics apply.

Include:

• Fact that the gravitational force varies with height.

Solution

Let the x-axis extend radially from the centre of the Earth through the projectile. Let x = 0
at the Earth’s surface. Let ME and R be the mass and radius of the Earth.

Let x(t) be the height of the projectile at time t. The initial conditions are

x(0) = 0 and ẋ(0) = v > 0, (3.1)
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where the dot denotes differentiation.
From Newtonian mechanics

ẍ(t) = − GME

(x+R)2
= − gR2

(x+R)2
(3.2)

where g = GME/R
2 ≈ 9.8 m s−2 is the gravitational acceleration at x = 0.

Summary of the problem:

ẍ = − gR2

(x+R)2
,

x(0) = 0,

ẋ(0) = v.

(3.3)

We can separate the solution procedure into three steps: (1) dimensional analysis; (2) use the
ODE to deduce some useful facts; and (3) nondimensionalize (rescale) the problem to obtain a good
reduced problem and find an approximate solution.

1. Dimensional analysis.

Physical Quantity Dimension

t, time T
x, height L
R, radius of Earth L
V , initial speed LT−1

g, acceleration at x = 0 LT−2

There are two dimensions involved: time and length. We need to scale both by introducing
nondimensional time and space variables via,

t = Tct̃ and x = Lcx̃. (3.4)

where Tc and Lc are characteristic time and length scales. They hold the dimensions while t̃ and x̃
are dimensionless. There are many choices for Tc and Lc.

Typical values of v, R and g are

v ≈ 100 m s−1,

R ≈ 6.4 × 106 m

g ≈ 10 m s−2.

While the values of R and g are fixed the value of v is a choice. This choice is such that the
projectile rises high enough for the height variation of the gravitational force has an effect (it will
be small).

2. Use the ODE to say something useful about the solution.
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1. Existence - Uniqueness Theorems for 2nd order ODEs ensures that there is a unique solution
up to some time t0 > 0.

2. Multiplying the ODE by ẋ and integrating from 0 to tmax, where tmax is the time the projectile
reaches its maximum height xmax gives

xmax =
v2R

2gR − v2
=

v2

2g

(
1

1− v2

2gR

)
(3.5)

Note that

1. xmax → ∞ as v → √
2gR ≈ 104 m s−1.

2. For v ≈ 100 m s−1, g ≈ 10 m s−2, R ≈ 6.4 × 106 m,

v2

2gR
≈ 104

2× 10 × 6× 106
≈ 10−4 (3.6)

⇒ xmax ≈ v2

2g
. (3.7)

3. Nondimensionalization

We now consider three possible choices for the time and length scales Tc and Lc. The first two
will turn out to be bad choices but they serve to illustrate some of the things that can go wrong
and also illustrate the point that you need to put some thought into your choice of scales.

Procedure A:

Take Lc = R and Tc = R/v, which is the time needed to travel a distance R at speed v. Then

dx

dt
=

dt̃

dt

d

dt̃
(Lcx̃) =

Lc

Tc

dx̃

dt̃
= v

dx̃

dt̃
(3.8)

which makes sense as Lc/Tc = v is the velocity scale. Next

d2x

dt2
=

Lc

T 2
c

d2x̃

dt̃2
=

v2

R

d2x̃

dt̃2
(3.9)

Therefore the ODE becomes:

v2

R

d2x̃

dt̃2
= − gR2

(Rx̃+R)2
= − g

(x̃+ 1)2,
(3.10)

or
v2

gR

d2x̃

dt̃2
= − 1

(1 + x̃)2
. (3.11)

Recall that v2/2gR ≈ 10−4which is very small. Hence

ǫ =
v2

gR
(3.12)

is a small dimensionless parameter.
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Scaling the initial conditions we have

x(0) = 0 → x̃(0) = 0 (3.13)

ẋ(0) = v → v
dx̃

dt̃
(0) = v ⇒ dx̃

dt̃
(0) = 1, (3.14)

hence the final scaled, nondimensional problem is

ǫ
d2x̃

dt̃2
=

−1

(1 + x̃)2
,

x̃(0) = 0,

dx̃

dt̃
(0) = 1.

(3.15)

Because we have only scaled the variables and have not dropped any terms we have not intro-
duced any errors. No approximation has been made yet and the solution of this scaled problem is
the correct solution. The difficulty lies with the reduced problem. The reduced problem, obtained
by setting ǫ = 0, is

0 = − 1

(1 + x̃0)2
,

x̃0(0) = 0,

dx̃0

dt̃
(0) = 1,

(3.16)

which has no solution! This is a bad reduced problem. The small parameter ǫ multiplying the
second derivative of x̃ incorrectly suggests that this term is small. In fact, at t = 0 the r.h.s. is
exactly equal to -1. Thus, if ǫ = 10−4, at t = 0 d2x̃/dt̃2 must be equal to 104, which is very large
compared with 1. We need to scale the dimensional variables so the presence of the small parameter
ǫ correctly identifies negligible terms. This is very important.

Procedure B:

The quantity
√

R
g has units of time, so let’s try Tc =

√
R
g and take Lc = R as before. This

gives

d2x̃

dt̃2
= − 1

(1 + x̃)2
, (3.17)

x̃(0) = 0, (3.18)

dx̃

dt̃
(0) =

√
v2

Rg
=

√
ǫ, (3.19)

where, as before, ǫ = v2/gR ≈ 10−4 ≪ 1.
As in the previous case, no approximations have been made yet so the solution of this problem

is the correct solution. There are, however, two problems with this scale.

1. The ODE has not been simplified!

2. The solution of the reduced problem has x̃ becoming negative for t̃ > 0 (since the initial
velocity is zero and the initial acceleration is negative). Hence, the solution of the reduced
problem has the projectile going the wrong way!
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These are both indications of a bad reduced problem!

Procedure C:

To get a good reduced problem we must properly scale the variables. You must think about how
you nondimensionalize the problem!

In procedure A we obtained

ǫ
d2x̃

dt̃2
= − 1

(1 + x̃)2
(3.20)

As already pointed out, the problem here is that d2x̃
dt̃2

must be very large so that ǫd
2x̃
dt̃2

balances the
r.h.s. since both sides are equal to negative one at t = 0. The nondimensionalization should be
done so that the coefficients reflect the size of the whole term.

We’ll now do the scaling properly. We have already shown that the maximum height reached
by the projectile is

xmax =
v2

2g

(
1

1− v2

2gR

)
≈ v2

2g
, (3.21)

since v2/(2gR) ≈ 10−4. Thus

xmax

R
≈ v2

2gR
≈ 10−4 ⇒ xmax ≪ R, (3.22)

showing that R is not a good choice for the length scale:

• If we set x = Rx̃ then

0 ≤ x ≤ V 2

2g
,

⇒ 0 ≤ x̃ ≤ V 2

2gR
≈ 10−4.

(3.23)

This scaling is not a good choice because x̃ is very tiny, i.e., much smaller than one.

• If we set x = V 2

g x̃ then

0 ≤ x̃ ≤ 1

2
, (3.24)

i.e. x̃ is an O(1) number. Thus Lc = v2/g is a much better choice for the length scale. It is
in fact the only choice because this scaling reflects the maximum value of x(t).

• v is the obvious velocity scale since the velocity of the projectile must vary between v and −v
as the projectile rises and returns to the Earth’s surface. If v = Lc/Tc then Tc = Lc/v = v/g,
is the only logical time scale, since it ensures t̃ is O(1).

• Suppose the time scale is not obvious. Then leave it undetermined for a while. Have:

Lc

T 2
c

d2x̃

dt̃2
= − gR2

(R+ Lcx̃)2
=

−g

(1 + Lc

R x̃)2

⇒ v2/g

T 2
c

d2x̃

dt̃2
=

−g

(1 + v2

gR x̃)
2

⇒
(
v/g

Tc

)2 d2x̃

dt̃2
= − 1

(1 + ǫx̃)2

(3.25)
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where ǫ = v2/(gR) ≪ 1 as before. Since the r.h.s. ≈ −1 , the l.h.s. ≈ −1. To have d2x̃
dt̃2

close

to one (in magnitude) means v/g
Tc

should be close to 1. Therefor one should choose Tc = v/g.

The problem is now

d2x̃

dt̃2
= − 1

(1 + ǫx̃)2
,

x̃(0) = 0,

dx̃

dt̃
(0) = 1.

(3.26)

Setting ǫ = 0 gives the reduced problem

⇒ d2x̃0

dt̃2
= −1,

x̃0(0) = 0,

dx̃0

dt̃
= 1,

(3.27)

which has the solution

x̃0(t) = t̃− t̃2

2
. (3.28)

Note that max{x̃0} is 1/2 as expected. Note also that x̃o(t̃) attains its maximum value at t̃ = 1,
hence the time scale Tc = v/g can also be interpreted as the characteristic flight time.

3.2 More on Scaling

The goal of scaling is to introduce non-dimensional variables that have order of magnitude equal
to 1.

Definition 3.2.1 A number A has order of magnitude 10n, n an integer, if

3 · 10n−1 < |A| ≤ 3 · 10n (3.29)

or if

n− 1

2
< log10 |A| ≤ n+

1

2
(3.30)

(log10 3 ≈ 1
2 ).

By order of magnitude of a function, we mean the order of magnitude of the maximum, or the
least upper bound of the function.

Suppose we have a model of the form:

f

(
u,

du

dx

)
= 0, x ∈ [a, b] (3.31)

To properly scale u and x we choose

U = max{|u| : x ∈ [a, b]} (3.32)
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Figure 3.1: Scaling illustration.

so that in setting
u = Uũ (3.33)

the function ũ has order of magnitude 1. We next need to scale x via

x = Lx̃ (3.34)

so that
du

dx
=

U

L

dũ

dx̃
(3.35)

results in dũ
dx̃ having order of magnitude 1.

This means we should have

U

L
= max

{∣∣∣∣
du

dx

∣∣∣∣ : x ∈ [a, b]

}

⇒ L =
max |u|
max

∣∣du
dx

∣∣
(3.36)

Note: If u is known this is easy. If u is unknown this can be difficult.

Example 3.2.1 Consider the function

u = a sin(λx), a > 0 on [0, 2π]. (3.37)

Solution: Obviously U = a and

L =
max |u|
max

∣∣du
dx

∣∣ =
a

aλ
=

1

λ
, (3.38)

giving
ũ = sin x̃ (3.39)
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In general, a model will be of the type

f(u, u′, u′′, . . . , u(n)) = 0 (3.40)

One could take L so that

U

L
= max |u′| or

U

L2
= max |u′′| or . . . or

U

Ln
= max |u(n)|. (3.41)

You should choose L so that the largest of the non-dimensional derivatives has order of magnitude
1 ⇒ L is smallest of above choices. Thus, take

L = min

{
max |u|
max |u′| ,

(
max |u|
max |u′′|

)1/2

, · · · ,
(

max |u|
max |u(n)|

)1/n
}
. (3.42)

Example 3.2.2 Consider the function

u = a sinλx. (3.43)

Solution: Have (
max |u|

max |u(n)|

)1/n

=
( a

aλn

)1/n
=

1

λ
(3.44)

so L = 1/λ.

Example 3.2.3 Consider the function

u = a sinλx+ 0.0001a sin 10λx. (3.45)

Solution: Have max |u| ≈ a so take U = a. Next,

max |u(n)| = max

∣∣∣∣∣∣
aλn




cos(λx)
or

sin(λx)


+ 10n−3aλn




cos(10λx)
or

sin(10λx)



∣∣∣∣∣∣

= aλn max

∣∣∣∣∣∣




cos(λx)
or

sin(λx)


+ 10n−3




cos(10λx)
or

sin(10λx)



∣∣∣∣∣∣

≈
{

aλn for n ≤ 3
aλn10n−3 for n ≫ 1

(3.46)

Thus, for n ≤ 3 one should take L = 1/λ while for n ≥ 3 one should take L = 1/(101−3/nλ)
which is approximately 1/10λ. Figure 3.2 shows plots of u and some of its derivatives,
clearly illustrating that for large derivatives the fast oscillations dominate and determine the
appropriate length scale.
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Figure 3.2: Plots of u(x) and some of its derivatives where u(x) = a sin(λx) + 0.001a sin(10λx) with a = 0.1 and

λ = 3. (a) u(x). (b) u′(x). (c) u′′(x). (d) u(4)(x).
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Figure 3.3: (a) Orthodoxy satisfied on [0, 5]. (b) Orthodoxy not satisfied on [0, 5].

3.3 Orthodoxy

Suppose we are comparing two terms in a model, T1(x) and T2(x), for x ∈ [a, b], which have been
appropriately scaled . We now wish to compare the sizes of each and neglect one if it is small
compared to the other.

Problem: The scaling may show that max |T2| ≪ max |T1|, but this does not mean that |T2| ≪ |T1|
on all of [a, b].

Definition 3.3.1 Orthodoxy is said to be satisfied if one term is much smaller than the other on
the whole interval.

If orthodoxy is not satisfied then the intervals on which orthodoxy is not satisfied may be so
small that the effects are negligible, e.g., T1(x) = sinx and T2 = 0.01 cos x, or multiple scales are
needed.
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Figure 3.4: Solid: y = a(x− exp(−x/ǫ) for a = 0.8 and ǫ = 0.04. Dashed: y = ax. Vertical dotted lines are x = ǫ
and x = 4ǫ.

Example 3.3.1 Consider the function u(x) = a(x + e−x/ǫ) for x ∈ [0, 1], a > 0 and 0 < ǫ ≪ 1
(see Figure 3.4). What scales for x should be used?

The derivative of u(x) is

u′(x) = a

(
1− 1

ǫ
e−x/ǫ

)
=





a
(
1− 1

ǫ

)
≈ −a/ǫ at x = 0;

a
(
1− 1

ǫ e
− 1

ǫ

)
≈ a at x = 1;

(3.47)

for 0 < ǫ ≪ 1. Taking L = max |u|
max |u′| =

a
a/ǫ gives L = ǫ when ǫ ≪ 1. This is a good length scale near

the origin (see figure) but not in the region far away from the origin. Away from the origin, say on
[4ǫ, 1]

max |u′| = u′(1) ≈ a. (3.48)

Using U = a and L = ǫ gives ũ = ǫx̃+ exp(−x̃) and ũ′(x̃) = ǫ− exp(−x̃). The interval of interest
is now very large, namely x̃ ∈ [0, ǫ−1]. For x̃ ≫ 1, which is most of the interval since ǫ ≪ 1, ũ′(x̃)
is very tiny. For most of the domain of interest the correct length scale is L = 1

Functions such as this one need to be treated differently in different parts of the domain. There
is an inner region, near the origin, in which u(x) varies rapidly, and an outer region, away from the
origin, where u varies much more slowly.

Inner Region: Within a few multiples of ǫ of x = 0

• max |u| ≈ a

• max |u′| ≈ a
ǫ ⇒ U = a, L = ǫ

Therefor we should set u(x) = aũi and x = ǫx̃i where subscript i denotes inner region. With this
scaling

u(x) = a(x+ e−x/ǫ) ⇒ ũi(x̃i) = ǫx̃i + e−x̃i (3.49)
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The leading order behaviour of ũ in the inner region is e−x̃i . We say ũi(x̃i) ∼ e−x̃i as ǫ → 0 with
x̃i fixed, where “∼” denotes “is asymptotic to”. More on this shortly.

Outer Region: Many multiples of ǫ away from the origin.

In the outer region

u′ = a

(
1− 1

ǫ
e−x/ǫ

)
≈ a. (3.50)

Both max |u| and max |u′| are close to a, hence we should take U = a and L = 1. Setting u = aũ0
and x = 1 · x̃0, where the 1 carries the dimensions (if problem hasn’t been nondimensionalized yet)
we have ũ = x̃0 + e−x̃0/ǫ ∼ x̃0 as ǫ → 0 for any fixed, nonzero x̃0 (i.e., for any x̃0, no matter how
small, ǫ can be made sufficiently small, e.g., x̃0/4 such that the second term is negligible.

Inner and outer regions arise naturally in many problems as illustrated in the above examples.
The inner region is often called a boundary layer.

Example 3.3.2 Consider the problem

ǫg′′ + g′ = 0 on [0, 1], 0 < ǫ ≪ 1,

g(0) = a,

g(1) = b,

(3.51)

where 0 < ǫ ≪ 1.

Solution: The exact solution is

g =

(
b− ae−1/ǫ

1− e−1/ǫ

)
+

(
a− b

1− e−1/ǫ

)
e−x/ǫ,

≈ b+ (a− b)e−x/ǫ.

(3.52)

Example 3.3.3 Consider the problem

ǫf ′′ − f ′ = 0 on [0, 1], 0 < ǫ ≪ 1

f(0) = a

f(1) = b

(3.53)

Solution:

f =

(
b− ae1/ǫ

1− e1/ǫ

)
+

(
a− b

1− e1/ǫ

)
ex/ǫ,

≈ b+ (a− b)e(x−1)/ǫ.

(3.54)

These two problems only differ by a change in sign of the second term in the differential equation.
The solutions are qualitatively very different. The first has a term e−x/ǫ which decays rapidly near
the origin (left side of the domain). The second has a term e(x−1)/ǫ which decays rapidly as one
moves into the domain from the right boundary at x = 1. The solutions are shown in Figure 3.5.
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Figure 3.5: Solid curves: solutions of examples 4.2 and 4.3 for a = 0.8, b = 0.2, and ǫ = 0.02. Dashed lines indicate
values of a and b while the vertical dotted lines are x = ǫ and x = 1− ǫ.

Question: Attempting to solve ǫy′′ + y′ = 0 via regular perturbation methods gives the reduced
problem

y′ = 0,

y(0) = a,

y(1) = b.

(3.55)

This is a first-order ODE with two boundary conditions! We can only use one of them. Which
one? The solution above shows that we must pick y(1) = b which yields the outer solution. For the
second problem, ǫy′′ − y′ = 0, the reduced problem is identical but we must now use the boundary
condition y(0) = a. How can we determine which boundary condition to use without knowing the
solution? What happens if ǫ is negative? We will return to questions of this type later when we
study boundary layers and matched asymptotics.

Example 3.3.4 Consider the IVP

ẍ(t) + π2x(t) = sin(t) + ǫ, t ∈ R

x(0) = 1

x′(0) = 0.

(3.56)

1. Find the exact solution.

2. Find x(t, 0) and x(t, ǫ) and make a sketch. Is orthodoxy satisfied?

3. Is lack of orthodoxy important?

Solution:

1. The general solution of the DE is

x(t) = A sinπt+B cos πt+
1

π2 − 1
sin t+

ǫ

π2
. (3.57)
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Applying the boundary conditions gives

x(t) = − 1

π(π2 − 1)
sinπt+

1

π2 − 1
sin t+

ǫ

π2

(
1− cos πt

)
. (3.58)

2. Near the zeros of ẍ, x and sin t the term ǫ in the ODE will not be much smaller than these
terms so orthodoxy is not satisfied

3. It does not matter that orthodoxy is not satisfied in this case.

|x(t, 0) − x(t, ǫ)| = ǫ

π2
|1− cos πt| ≤ 2ǫ

π2
≪ 1, (3.59)

where 1 gives the order of magnitude of the solution (and hence is the appropriate quantity
to compare to).

3.4 Example: Inviscid, compressible irrotational flow past a cylin-

der

Background: (not examinable)

• Inviscid flow means neglect viscosity and heat conduction, (i.e. adiabatic flow).

This type of flow is a good approximation for cases where a fast moving object (i.e. a plane)
moves through the air on a time scale much smaller than that required for significant diffusion. It
is valid only outside the boundary layer.

Thermodynamics tells us that for isentropic flow the pressure p and density ρ are related by an
equation of state p = p(ρ) or ρ = ρ(p). Two important cases are

• For a perfect gas at constant temperature

p

ρ
= C; (3.60)

• For a Perfect Gas at constant entropy

p

ργ
= C, (3.61)

where C is a constant and γ = CP

CV
≈ 1.4. We will assume isentropic flow (constant entropy).

Let v(x, y, z, t) be the fluid velocity. The motion of the fluid is governed by the following
conservation laws:

1. Conservation of mass:
ρt + ~∇ · (ρv) = 0 (3.62)

2. Conservation of linear momentum:

ρ

(
∂v

∂t
+
(
v · ~∇

)
v

)
= −~∇p (3.63)
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Definition 3.4.1 Irrotationality: If fluid particles have no angular momentum then ~∇× v = 0.

Definition 3.4.2 The sound speed is defined by

a =

√
dp

dρ
=

√
γ
p

ρ
. (3.64)

Theorem 3.4.1 (Kelvin, 1868) For inviscid flow with p = p(ρ), if the fluid is initially irrota-
tional and the speed U of the flow is less that speed of sound then the flow remains irrotational for
all time.

In this theorem U is the maximum deviation from the flow speed at ‘infinity’, or far from the
cylinder. That is, U should be found in a reference frame fixed with the fluid at infinity.

If ~∇×v = 0 at t = 0 then, assuming the conditions of Kelvin’s Theorem are satisfied, ~∇×v = 0
for all time⇒ v = ~∇φ for some velocity potential φ. The introduction of a velocity potential greatly
simplifies things because the three components of the velocity vector are replaced by a single scalar
field.

Using

1

ρ
~∇p = −

~∇p

p1/γ
C1/γ = − γ

γ − 1
~∇(p1−1/γ)C1/γ , (3.65)

the momentum equation can be written as

~∇
(∂φ
∂t

+
1

2
|~∇φ|2 + γ

γ − 1
p1−1/γC1/γ

)
= 0. (3.66)

Thus,
∂φ

∂t
+

1

2
|~∇φ|2 + a2

γ − 1
= g(t), (3.67)

where g(t) is an undetermined function of time. Assuming a steady uniform far-field flow v =
(U∞, 0, 0) with sound speed a2∞ gives

∂φ

∂t
+

1

2
|~∇φ|2 + a2

γ − 1
=

1

2
U2
∞ +

a2∞
γ − 1

. (3.68)

The continuity equation can be written as

(∂
∂t

+ ~∇φ · ~∇
)
a2 = −(γ − 1)a2∇2φ, (3.69)

Applying the operator (∂/∂t+ ~∇φ · ~∇ to (3.68) then yields a single PDE for the velocity potential:

a2∇2φ− ∂2φ

∂t2
=

∂

∂t
|~∇φ|2 + ~∇φ · [(~∇φ · ~∇)~∇φ]. (3.70)

We now simplify to 2 dimensions and use

Theorem 3.4.2 (Conformal Mapping Theorem:) Any simply connected region A ⊂ C can be
transformed (bijectively and analytically) to a disk.
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Using this theorem, for the 2-D case we can assume the object is a disk of radius R. Assuming
steady state the model equations give

(
1− u2

a2

)
φxx −

2uv

a2
φxy +

(
1− v2

a2

)
φyy = 0, (3.71)

where v = (u, v) = ~∇φ.
The discriminant of the PDE is

∆ =
(uv
a2

)2
−
(
1− u2

a2

)(
1− v2

a2

)
= M2 − 1 (3.72)

where M = |v|
a is the Mach number:

M < 1 subsonic flow equation (3.71) is elliptic → static situations
M = 1 sonic flow equation (3.71) is parabolic → diffusive situations
M > 1 supersonic flow equation (3.71) is hyperbolic → wave situations

Next we nondimensionalize. Let

(x, y) = R(x̃, ỹ),

(u, v) = U∞(ũ, ṽ).
(3.73)

Recall that R is the radius of the cylinder and U∞ is the far field flow. Then

(u, v) = ~∇φ → U∞(ũ, ṽ) =
1

R
~̃∇φ (3.74)

So we should set φ = RU∞φ̃. Putting the terms linear in φ on the left and the terms cubic in φ on
the right gives

U∞

R

[
φ̃x̃x̃ + φ̃ỹỹ

]
=

U2
∞

a2

(
ũ2

U∞

R
φ̃x̃x̃ + 2ũṽ

U∞

R
φ̃x̃ỹ + ṽ2

U∞

R
φ̃ỹỹ

)
, (3.75)

where a is a function of x and y. We need to express it in terms of a∞, the sound speed at infinity.
Using (3.68) to eliminate a and dropping the tildes gives

The nondimensional governing equation:

∇2φ = M2
∞

(
φ2
xφxx + 2φxφyφxy + φ2

yφyy −
γ − 1

2
∇2φ(1− φ2

x − φ2
y)
)
, (3.76)

where M∞ = U∞
a∞

is the free stream Mach number.

For air at ≈ 20◦C and atmospheric pressure and for U∞ ≈ 100 km hr−1, M2
∞ ≈ 0.1, so M2

∞ is
a small parameter.

The boundary conditions: No flow through solid boundary and fluid velocity goes to far-field
velocity (1, 0) at infinity:

~∇φ · n̂ = 0 on x2 + y2 = 1,

(φx, φy) → (1, 0) as |x| → ∞.
(3.77)

The solution will depend on the circulation around the disk. We will assume zero circulation which
implies that the flow is symmetric above and below the disk.
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Regular Perturbation Theory Solution:

Assume M2
∞ is small and set

φ = φ0(x, y) +M2
∞φ1(x, y) +M4

∞φ2(x, y) + · · · (3.78)

O(1) problem: At leading order we have

∇2φ0 = 0,

~∇φ0 → (U∞, 0) as |x| → ∞,

~∇φ0 · n̂ = 0 on x2 + y2 = 1.

(3.79)

In addition φ0 is symmetric about y = 0. This Neumann problem for φ0 has the solution

φ0(r, θ) =

(
r +

1

r

)
cos θ. (3.80)

Without symmetry condition we get an additional term Aθ for arbitrary A.

O(M2
∞) problem: In polar coordinates at the next order we have

∂2

∂r2
φ1 +

1

r

∂

∂r
φ1 +

1

r2
∂2

∂θ2
φ1 = (γ − 1)

[(
1

r7
− 1

r5

)
cos θ +

1

r3
cos 3θ

]
,

φ1 → 0 as r → ∞,

∂φ1

∂r
= 0 on x2 + y2 = 1,

φ1(r, θ) = φ1(r,−θ) (symmetry)

(3.81)

which can be solved to yield the total solution

φ =

(
r +

1

r

)
cos θ +

γ − 1

2
M2

∞

(( 13

12r
− 1

2r3
+

1

12r5

)
cos θ

+
( 1

12r3
− 1

4r

)
cos 3θ

)
+ OF (M

4
∞).

(3.82)

Remarks:

1. Real life problems can be difficult.

2. Getting the first two terms in a Perturbation Theory expansion can be a lot of work.

3. Problem: What is the error? It is believed that the series is uniformly valid (definition below)
but this has not been proven (as of mid-90’s. I may be out of date). Hence, this is an example
of RPT.

Definition 3.4.3 A series expansion
∑

ǫ2ξ2(·, ·) is said to be uniformly valid if it converges uni-
formly over all parts of the domain as ǫ → 0. The series is said to be uniformly ordered if all ξn
are bounded, in which case the series may not converge.

More on this later.
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Chapter 4

Resonant Forcing and Method of
Strained Coordinates: Another
example from Singular Perturbation
Theory

4.1 The simple pendulum

Consider a mass m suspended from a fixed frictionless pivot via an inextensible, massless string.
Let θ be the angle of the string from the vertical. The only force acting on the mass is gravity and
the tension in the string (i.e., ignore presence of air). The governing equations for a mass initially
at rest at an angle a are

d2θ

dt2
+

g

ℓ
sin θ = 0,

θ(0) = a,

dθ

dt
(0) = 0.

(4.1)

The solution of the linear problem, obtained by assuming θ is small and approximating sin θ by
θ is

θ = a cos
(√g

ℓ
t
)
. (4.2)

According to this solution the mass oscillates with frequency
√

g/ℓ and period Tℓ = 2π
√

ℓ/g. The
full nonlinear problem can be solved exactly in terms of Jacobian elliptic functions. Since these can
only be expressed in terms of power series we might as well seek a Perturbation Theory solution
which will give a power series solution directly. As a first step we need to scale the variables.

To begin with consider the energy of the system. The governing nonlinear ODE has the energy
conservation law

d

dt

(1
2

(
dθ

dt

)2

− g

ℓ
cos θ

)
= 0, (4.3)

which, after using the initial conditions, gives

1

2

(
dθ

dt

)2

+
g

ℓ
cos a =

g

ℓ
cos θ. (4.4)
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From this we can deduce that |θ| ≤ a and that θ oscillates periodically between ±a. Therefore
scale θ by a:

θ = aθ̃. (4.5)

For the time scale take the inverse of the linear frequency, thus set

t =

√
ℓ

g
τ. (4.6)

The scaled problem is

d2θ̃

dτ2
+

sin aθ̃

a
= 0,

θ̃(0) = 1,

dθ̃(0)

dτ
= 0.

(4.7)

We will assume that a is small. Note that for small a sin(aθ̃)/a is O(1) hence so is the scaled
acceleration d2θ̃/dτ2. This suggests we have appropriately scaled t.

The Taylor series expansion of sin aθ̃ converges for all aθ̃, so we can write the governing DE in
(4.7) as

d2θ̃

dτ2
+ θ̃ − a2

3!
θ̃3 +

a4

5!
θ̃5 + · · · = 0. (4.8)

The small parameter a appears only in even powers, hence we seek a Perturbation Theory solution
of the form

θ̃ = θ0(τ) + a2θ1(τ) + a4θ2(τ) + · · · . (4.9)

O(1) problem: At leading order we have

d2θ0
dτ2

+ θ0 = 0,

θ0(0) = 1,

dθ0
dτ

(0) = 0,

(4.10)

which has solution
θ0 = cos τ. (4.11)

O(a2) problem: At the next order we have

d2θ1
dτ2

+ θ1 =
1

3!
cos3 τ =

1

24
cos 3τ +

1

8
cos τ,

θ1(0) =
dθ1
dτ

(0) = 0.

(4.12)

The general solution of (4.12) is:

θ1(τ) = − 1

192
cos 3τ +

1

16
τ sin τ +A cos τ +B sin τ. (4.13)
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Figure 4.1: Comparison of regular perturbation theory solution with linear and nonlinear solutions for initial angle
of 45◦. Dotted curve: linear solution. Solid curves: nonlinear solution. Dashed curves: regular perturbation theory
solution.

Applying the boundary conditions gives

θ1 =
1

192
[cos τ − cos 3τ ] +

τ

16
sin τ (4.14)

so that the total solution is

θ̃ = cos τ + a2
(

1

192
(cos τ − cos 3τ) +

τ

16
sin τ

)
+ OF (a

4). (4.15)

Problem: The amplitude of the (a2/16)τ sin τ term grows in time. It is as important as the leading
order term, cos τ , when a2τ/16 is order 1. Thus, the perturbation series breaks down by a time of
O(1/a2), at which point a2θ1 is no longer much smaller than θ0. The breakdown is illustrated in
Figure 4.1 for a = π/4. Note that while the perturbation solution becomes very bad after three
or four periods it is better than the linear solution for times up to close to 2 linear periods. At
this time the linear solution has drifted away from the nonlinear solution whereas the phase of
perturbation solution is much better.

Physically the perturbation solution goes awry because the linear (i.e., the leading-order) and
nonlinear solutions drift apart in time. The O(a2) error made in linearizing the problem to get
the leading-order problem for θo are cumulative and eventually destroy the approximation. The
regular perturbation solution tries to correct for this but does not do so correctly — the phase is
improved at the cost of a growing amplitude.

The secular term (a2/16)τ sin τ appears in the O(a2) solution because of the appearance of the
resonant forcing term cos τ in the DE for θ1 (resonant forcing because the forcing term has
the same frequency as the homogeneous solution, or more generally because the forcing term is a
solution of the homogeneous solution):

d2θ1
dτ2

+ θ1 =
1

24
cos 3τ +

1

8
cos τ.

︸ ︷︷ ︸
resonant
forcing
term

The appearance of a resonant forcing term means this is another example of a Singular Perturbation
Theory problem.
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How can we fix this problem? From energy considerations we know that the amplitude is given
by the initial condition. The nonlinearity does not change this. We also know that the solution
is periodic. Nonlinearity modifies the shape and period of the oscillations. It increases the period
because the true restoring force, (g/l) sin(θ) is less than the linearized restoring force (g/l)θ. The
properties of the linear and nonlinear solutions are compared in table 4.1.

property linear solution nonlinear solution

amplitude a a

shape sinusoidal non-sinusoidal shape

period 2π
√

l/g increases with amplitude

Table 4.1: Properties of linear and nonlinear solutions.

Because the periods of the linear and nonlinear solutions are different they slowly drift out of
phase. Eventually they will be completely out of phase.

The Fix: We must allow the period, or equivalently the frequency, to be a function of a.

Recall the original unscaled problem was

d2θ

dt2
+

g

ℓ
sin θ = 0,

θ(0) = a,

dθ

dt
(0) = 0.

(4.16)

As before, set θ = aθ̃, since this is the amplitude of the nonlinear solution. In our previous
attempt we set

t =

√
ℓ

g
τ,

i.e. we used a time scale Tc =
√

ℓ/g, which was independent of a, and proportional to the period of
the linearized solution. We need a time scale which is relevant to the nonlinear solution, one which
depends on a. Since we do not know how the period depends on a we are forced to introduce an
unknown function σ(a) via

t =

√
ℓ

g

τ

σ(a)
. (4.17)

This is known as the method of strained coordinates (MSC) (we have ‘strained’ time by an
unknown function σ(a)). We will return to this method later.

Since in the limit a → 0 the period does go to
√

ℓ/g we can take σ(0) = 1. With this time
scaling the nondimensionalized problem is

σ2(a)
d2θ̃

dτ2
+

sin aθ̃

a
= 0,

θ̃(0) = 1,

dθ̃

dτ
(0) = 0.

(4.18)
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Figure 4.2: Comparison of singular perturbation theory solution with linear and nonlinear solutions for different
initial angles. Dotted curves: linear solution. Solid curves: nonlinear solution. Dashed curves: singular perturbation
theory solution. The dashed curves are almost identical to the nonlinear solution.

We now expand both θ̃ and σ in powers of a2, via

θ̃ = θ0(τ) + a2θ1(τ) + a4θ2(τ) + · · · ,
σ(a) = 1 + a2σ1 + a4σ2 + · · · .

(4.19)

Substituting the series into the differential equation gives

(
1 + 2σ1a

2 + (2σ2 + σ2
1)a

4 + · · ·
)(d2θ0

dτ2
+ a2

d2θ1
dτ2

+ · · ·
)

+
(
θ0 + a2θ1 + a4θ2 + · · ·

)
− a2

6

(
θ0 + a2θ1 + a4θ2

)3
+ O(a4) = 0.

(4.20)

O(1) Problem: The leading-order problem is unchanged

d2θ0
dτ2

+ θ0 = 0,

θ0(0) = 1,

dθ0
dτ (0) = 0.





⇒ θ0 = cos τ

O(a2) Problem: At O(a2) we have

2σ1
d2θ0
dτ2

+
d2θ1
dτ2

+ θ1 −
1

6
θ30 = 0,

θ1(0) = 0,

dθ1
dτ

(0) = 0.

(4.21)

39



⇒ d2θ1
dτ2

+ θ1 =
1

24
cos 3τ +

1

8
cos τ.

︸ ︷︷ ︸
We had this before

+2σ1 cos τ

There is a new resonant forcing term, namely 2σ1 cos τ . By choosing σ1 = −1/16 the resonant
forcing terms are eliminated. There is in fact no choice about this. The only way to eliminate the
secular growth in the O(ǫ) solution is be eliminating the resonant forcing term. This reduces the
problem to

d2θ1
dτ2

+ θ1 =
1

24
cos 3τ, (4.22)

which, with the initial conditions, gives

θ1 = − 1

192
(cos τ − cos 3τ) . (4.23)

The total solution, so far, is

θ̃ = cos τ +
a2

192
(cos τ − cos 3τ) + OF (a

4),

σ(a) = 1− a2

16
+ OF (a

4),

(4.24)

where

τ =

√
g

ℓ
σ(a)t. (4.25)

The dimensional solution is

θ(t) = aθ̃(τ) = aθ̃

(√
g

ℓ
σ(a)t

)
, (4.26)

or

θ(t) = a cos

(√
g

ℓ

(
1− a2

16
+ · · ·

)
t

)

+
a3

192

[
cos

(√
g

ℓ

(
1− a2

16
+ · · ·

)
t

)
− cos

(
3

√
g

ℓ

(
1− a2

16
+ · · ·

)
t

)]

+ OF (a
5).

(4.27)

The nonlinear solution frequency is σ(a)
√

g/ℓ =
(
1− a2

16 + · · ·
)√

g/ℓ <
√

g/ℓ which makes

sense because we know that the period of the nonlinear solution must be larger than the period
of the linear solution because the forcing in the nonlinear problem, (g/l) sin θ, is smaller that the
forcing in the linear problem, (g/l)θ (i.e., the acceleration of the nonlinear pendulum is smaller
than for the linear pendulum). The SPT solution (4.27) is shown in figure 4.2 showing excellent
agreement with the full nonlinear solution over six linear periods for very large initial angles.
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Chapter 5

Asymptotic Series

5.1 Asymptotics: large and small terms

Notation

For order of magnitude of a number of function we will use the symbol OM :

90 = OM (100)

0.0072 sin x = OM (10−2)

Definition 5.1.1 (The O “big-oh” Symbol) Let f and g be two functions defined on a region
D in R

n or C
n. Then

f(x) = O(g(x)) on D (5.1)

means that
|f(x)| ≤ k|g(x)| ∀x ∈ D (5.2)

for some constant k.

We will usually be interested in the relative behaviour of two functions in the neighbourhood
of a point x0. In that case when we write

f(x) = O(g(x)) as x → x0

we mean there exists a constant k and a neighbourhood of x0, U, such that

|f(x)| ≤ k|g(x)| for x ∈ U

Remarks

1. If g(x) 6= 0 then f(x) = O(g(x)) in D or f(x) = O(g(x)) as x → x0 can be written as f(x)
g(x) < ∞

in D, or f(x)
g(x) is bounded as x → x0.

2. O(g(x)) on its own has no meaning. The equals sign in “f(x) = O(g(x))” is an abuse of
notation.

f(x) = O(g(x)) ⇒ 2f(x) = O(g(x)) (5.3)

but this does not mean that 2f(x) = f(x).
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3. f(x) = O(g(x)) does not imply that g(x) = O(f(x)). For example, x2 = O(x) as x → 0 since
|x2| < 5|x| for |x| < 5, but x 6= O(x2) as x → 0 because it is not true that |x| < k|x2| for
some constant k in a neighbourhood of 0.

4. An expression containing O is to be considered a class of functions. For example, O(1)+O(x2)
in 0 < x < ∞ denotes the class of all functions of the type f+g where f = O(1) and g = O(x2).

5. If f(x) = c is a constant, f = O(1) no matter what the value of c is.

10−9 = O(1),

1 = O(1),

109 = O(1).

Example 5.1.1

• x2 = O(x) on [-2,2] since x2 < 5|x| on [−2, 2].

• x2 6= O(x) on [1,∞] since |x2|
|x| = |x| is unbounded on [1,∞].

• sin(x) = O(1) on R.

• x2 = O(x) as x → 0 since x2

x = x is bounded as x → 0.

• ex − 1 = O(x) as x → 0 since |ex−1|
|x| is bounded as x → 0.

Definition 5.1.2 (The o “little-oh” symbol) Let f and g be functions defined on a region D

and let x0 be a limit point of D. Then

f(x) = o(g(x)) as x → x0,

means that

f(x)

g(x)
→ 0 as x → x0.

Example 5.1.2

• x3 = o(x2) as x → 0.

• x3 = o(x4) as x → ∞.

• xn = o(ex) as x → ∞.

Note that f(x) ≪ g(x) as x → x0 is the same as f = o(g(x)) as x → x0.

Definition 5.1.3 (Asymptotic Equivalence) Let f and g be defined in a region D with limit
point x0. We write

f ∼ g as x → x0 (5.4)

to mean that
f(x)

g(x)
→ 1 as x → x0 (5.5)
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Note:

1. x0 could be ±∞.

2. f ∼ g as x → x0 implies that f = O(g(x)) and g = O(f(x)). The converse is not true. For
example, f(x) = x, g(x) = 5x.

Example 5.1.3

•
x+

1

x
∼ 1

x
as x → 0,

since
x+ 1

x
1
x

= x2 + 1 → 1 as x → 0.

•
x+

1

x
∼ x as x → ∞.

•
x3 + 9x4 − 3

2
x5 ∼

{
x3 as x → 0;

−3
2x

5 as x → 0.

•
ex−9/x ∼

{
e−9/x as x → 0;

ex as x → ∞.

Note: f ∼ g as x → x0 ⇒ g ∼ f as x → x0.

Note: f ∼ g means that f − g ≪ g.

Example 5.1.4 The functions f = ex+x and g = ex are asymptotic to one another as x → ∞ as

f − g

g
=

x

ex
→ 0 as x → ∞

Note that the difference f − g does not go to 0! The difference goes to infinity as x → ∞. Saying
f ∼ g as x → x0 does not mean that f and g get close in an absolute sense, it only means that
they get close in a relative sense: f − g can blow up but f − g gets small relative to f or g (i.e.,
gets small in the sense that (f − g)/g → 0). Saying something is large or small can only be done in
comparison with something else. You shouldn’t say 0.0000001 is small. It is small compared to 1
(which, if someone says 0.0000001 is small, is what they mean implicitely), but it is large compared
with 10−20.

Definition 5.1.4 (Asymptotic Series) To say that

g(x) ∼ x4 − 3x2 − 2x+ · · · as x → ∞,

means the following:

1. g ∼ x4, i.e. g
x4 → 1 as x → ∞,
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2. g − x4 ∼ −3x2, i.e. g−x4

−3x2 → 1 as x → ∞,

3. g − x4 + 3x2 ∼ −2x, i.e. g−x4+3x2

−2x → 1 as x → ∞,

etc. The series on the right hand side is an example of an asymptotic series. In the series the
fastest growing term comes first. Each successive term must grow more slowly than the preceding
term.

Asymptotic series are very useful for finding approximate values of integrals and functions,
which we consider next.

5.2 Asymptotic Expansions

We begin by finding an asymptotic expression for an integral.

5.2.1 The Exponential Integral

The exponential integral function Ei(x) is defined by:

Ei(x) =

∫ ∞

x

e−t

t
dt for x > 0. (5.6)

This is not very useful as it stands – can we find a useful approximation? Successively integrating
by parts gives

Ei(x) = e−x

(
1

x
− 1

x2
+

2!

x3
− 3!

x4
+ · · ·+ (−1)n−1(n− 1)!

xn

)

︸ ︷︷ ︸
Sn(x)

+(−1)nn!

∫ ∞

x

e−t

xn+1
dt

︸ ︷︷ ︸
Rn(x)

. (5.7)

As n → ∞, Sn(x) gives a divergent series as is easily seen from the ratio test. The ratio of the
(m+1)st and mth terms is

(−1)mm!
xm+1

(−1)m−1(m−1)!
xm

=
m

x
→ ∞ as m → ∞ (5.8)

for fixed x. Suppose we change the question from “What is the limit of Sn(x) as n → ∞ for fixed
x?”, to “What is the limit as x → ∞ for fixed n”.

Have

|Ei(x)− Sn(x)| = |Rn(x)|

≤ n!

∫ ∞

x

e−t

tn+1
dt

≤ n!

xn+1

∫ ∞

x
e−t dt

so

|Ei(x)− Sn(x)| ≤
n!

xn+1
e−x → 0 as x → ∞. (5.9)

Hence for fixed n, Sn(x) gives a good approximation to Ei(x) if x is sufficiently large. An alternative
derivation of this result is the following. Because the error term Rn alternates in sign S2n−1 <
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Figure 5.1: Comparison of xexEi(x) and asymptotic approximations using two (dots), three (dashes) and four
(dash-dot) terms of the Asymptotic Expansion.

Ei(x) < S2n so the magnitude of the error is less than the magnitude of the first omitted term,
namely e−xn!/xn+1, as above.

Because of this result we can write

Ei(x) ∼ e−x

(
1

x
− 1

x2
+

2!

x3
− 3!

x4
+ · · ·

)
as x → ∞. (5.10)

This is an asymptotic expansion of Ei(x). Figure 5.1 compares xexEi(x) with xexSi(x) for i = 1, 2, 3.
The first two terms of the Asymptotic Expansion, 1 − 1/x, is within 1% of the exact value for x
larger than about 13.3. Using the first four terms the error is less than 1% for x larger than about
6.3.

Now we can ask the question “For a given value of x for what value of n, call it N(x), does
Sn(x) give the best approximation to Ei(x)?”. The answer to this question is difficult to determine
precisely as we only have an upper bound on the magnitude of the error which is easy to use. We
can approximate the answer by minimizing our bound on the error. This means choosing n so
the first neglected term in the alternating series is minimized. As shown above the ratio of the
magnitudes of the (n+1)st and nth terms is

n

x
< 1 if n ≤ x. (5.11)

The terms decrease until n > x thus the minimum is at nN(x) = ⌊x⌋, the greatest integer less than
x. This implies that as a function of n, |Ei(x) − Sn(x)| initially decreases monotonically until n
exceeds x after which it increases monotonically. This is illustrated in Figure 5.2 which compares
Sn(x) with Ei(x) as a function of n for x = 5 and 10. Alternatively,

|Rn(x)| ≤
n!e−x

xn+1
=

e−x

x
· 1
x
· 2
x
· 3
x
· · · · · n

x
. (5.12)

The factors 1/x, 2/x, . . . are less than 1, hence decrease Rn until n becomes larger than x.
In summary, for the exponential integral, for fixed x our upper bound on the error is minimized

when n = ⌊x⌋. Hence, S⌊x⌋(x) is an estimate Ei(x) with error R⌊x⌋(x) <
e−x⌊x⌋!

x⌊x⌋+1 .
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Figure 5.2: Comparison of Ei(x) (dotted line) with values of partial sums Sn as a function of n. (a) x = 5.0. (b)
x = 10.0.

Rule of Thumb: For an alternating divergent series use SN (x) where the (N + 1)st term in the
asymptotic series is the smallest.

The rule of thumb is a rough guide. In practice we can often take n much less than nopt = ⌊x⌋,
depending on the level of accuracy required. This is particularly true for large x as shown in Figure
5.2. Here it can be seen that the Sn(x) are very close to Ei(x) over a much broader range of values
of n when x = 10 than when x = 5.

Example 5.2.1 For x = 10, R4(10) ≤ 4!e−10

105
≈ 1.1× 10−8. The error bound gives an approximate

error of
∣∣∣∣
R4(10)

S4(10)

∣∣∣∣× 100% = 0.26%,

whereas using the optimal value of n the approximate error is
∣∣∣∣
R10(10)

S10(10)

∣∣∣∣× 100% = 0.04%.

The actual error using S4 is
∣∣∣∣
Ei(10) − S4(10)

Ei(10)

∣∣∣∣× 100% = 0.18%

and it is 0.0193% using S10 and −0.0202% using S11.

Important point: For a given x there is a minimum error (which is less than the error bound,
in this case |R⌊x⌋| ≤ ⌊x⌋!e−x/x⌊x⌋+1) that can be made. In contrast, for a convergent power series
the error can be made arbitrarily small if we are prepared to sum enough terms. In this example
the minimum error decreases as x increases.
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5.2.2 Asymptotic Sequences and Asymptotic Expansions (Poincaré 1886)

Definition 5.2.1 A set of functions {ϕn(x)}, n = 1, 2, 3, . . . for x ∈ D(= R,Rn,C) is an asymp-
totic sequence (AS) as x → x0 if for each n, ϕn(x) is defined on D and ϕn+1(x) = o(ϕn(x)) as
x → x0.

Example 5.2.2

• {(x − x0)
n} is an asymptotic sequence as x → x0, but is not an asymptotic sequence as

x → ∞.

• {e−xx−an} is an asymptotic sequence as x → ∞ where an ∈ R with an + 1 > an.

• {ln(x)−n} is an asymptotic sequence as x → ∞.

Definition 5.2.2 Let x, x0 and D be defined as above and let f(x) be a function on D. Let {ϕn(x)}
be an asymptotic series as x → x0. The ‘formal’ series

f =
N∑

n=1

anϕn(x) (5.13)

is said to be an asymptotic expansion of f as x → x0 to N terms provided

f(x)−
N∑

n=1

anϕn(x) =





o(ϕN (x))
or

O(ϕN+1(x))



 as x → x0. (5.14)

Note that (5.14) gives some information about the error, i.e.

error = f(x)−
N∑

n=1

anϕn(x) → 0

faster than ϕN (x) → 0 as x → x0 or it blows up more slowly. This means that the error is small
compared to ϕN (x). Of course this may only be useful if ϕN (x) → 0 as x → x0 and only for x
sufficiently close to x0.

Important Point: The accuracy of an asymptotic approximation is limited. It has nothing to do
with ordinary convergence. In the case of a function f(x) expressed as a convergent power series
we can make the error arbitrarily small if we are prepared to sum enough terms. In an asymptotic
expansion the potential accuracy is limited.

Example 5.2.3

For Ei(x) the smallest we can guarantee the error to be less than

n!e−x

xn+1
,

with n = ⌊x⌋ for any given x. This is an upper bound on the error, so the actual error might
be a lot smaller but without further analysis we can’t say any more about the error. Thus, there
is nothing we can do to reduce the error using this asymptotic expansion (a function has many
asymptotic expansions, a different one may give a better error estimate).
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Example 5.2.4 The Bessel function Jo(x) has the power series expansion

J0(x) = 1− x2

22
+

x4

22 · 42 − x6

22 · 42 · 62 + · · · . (5.15)

which converges to J0(x) for all x. The power series is completely useless unless x is small. For
example,

J0(4) = 1− 4 + 4− 16

9
+ · · · , (5.16)

and 8 terms are need to get three digits of accuracy. An asymptotic expansion for J0(x) is

J0(x) ∼
√

2

πx

{(
1− 9

128x2
+ · · ·

)
cos
(
x− π

4

)

+

(
1

8x
− 75

1024x2
+ · · ·

)
sin
(
x− π

4

)}
as x → ∞.

(5.17)

This series is divergent for all x. This non-divergent asymptotic series is, however, extremely useful.
The leading order term √

2

πx
cos
(
x− π

4

)
(5.18)

gives J0(x) to three digit accuracy for all x ≥ 4! Example approximations are shown in Figure
5.3. There it can be seen that the leading-order asymptotic approximation is very good for x ≥ 1
whereas the 4, 10 and 20-term power series approximations are useful for x <≈ 3, 7.5 and 15
respectively. Finding J0(99) using the power-series would clearly be difficult but easy using the
asymptotic approximation! We will discuss finding the asymptotic expansion for the Bessel function
in the next chapter.

Claim 5.2.1 If f(x) and {ϕn(x)} are known where {ϕn} is an asymptotic series, then the asymp-
totic expansion for f in terms of the ϕn is unique.

Proof: Need to find an’s such that

f ∼ a1ϕ1 + a2ϕ2 + · · · as x → x0. (5.19)

This means that

f − a1ϕ1 = o(ϕ1(x)) as x → x0,

⇒ f − a1ϕ1

ϕ1
=

f

ϕ1
− a1 → 0 as x → x0.

Thus, take

a1 = lim
x→x0

f

ϕ1
. (5.20)

Next

f − a1ϕ1 − a2ϕ2 = o(ϕ2),

⇒ f − a1ϕ1 − a2ϕ2

ϕ2
=

f − a1ϕ1

ϕ2
− a2 → 0 as x → x0.
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Figure 5.3: Comparison of approximation of J0(x) with power series or asymptotic series. In both panels the
solid curve is J0(x) and the dotted curve is the leading-order term of the asymptotic expansion. (a) Dashed: 4
term power series approximation. Dash-dot: 10 term power series approximation. (b) Dashed: 10 term power series
approximation. Dash-dot: 20 term power series approximation.

Therefore take

a2 = lim
x→x0

f − a1ϕ1

ϕ2
. (5.21)

The pattern is clear.

Note:

1. This might give something useless, such as all an’s are zero, as would happen, for example, if
f = e−x and ϕn(x) =

1
xn as x → ∞.

2. If the asymptotic series is not known, there will be many possible asymptotic expansions for
f . For example,

sin 2ǫ ∼ 2ǫ− 4

3
ǫ3 +

4

15
ǫ5 + · · · as ǫ → 0,

sin 2ǫ ∼ 2 tan ǫ− 2 tan3 ǫ+ 2 tan5 ǫ+ · · · as ǫ → 0,

sin 2ǫ ∼ 2

(
3ǫ

3 + 2ǫ2

)
− 7

12

(
3ǫ

3 + 2ǫ2

)5

+ · · · as ǫ → 0.
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5.2.3 The Incomplete Gamma Function

Example 5.2.5 The incomplete Gamma function is defined as

γ(a, x) =

∫ x

0
e−tta−1 dt (5.22)

for a, x > 0.

1. Derive a power series expansions which converges for all x. Show it is useless for large x.

2. Find an asymptotic expansion for γ by writing (5.22) as

γ(a, x) =

∫ ∞

0
e−tta−1dt−

∫ ∞

x
e−tta−1 dt

= Γ(a)− Eia−1(x).

Solution:

1. Using the convergent power series expansion of e−t write

e−tta−1 = ta−1
∞∑

n=0

(−1)ntn

n!

=
∑

n=0∞

(−1)ntn+a−1

n!
.

(5.23)

The partial sums converge uniformly on any interval [0, x] so we can integrate term by
term to get

γ(a, x) =
∞∑

n=0

(−1)n

n!

xn+a

n+ a
=

∞∑

n=0

an, (5.24)

where

an =
(−1)n

n!

xn+a

n+ a
. (5.25)

Applying the ratio test,

an+1

an
=

x

(a+ n+ 1)(n + 1)
→ 0 as n → ∞, (5.26)

showing that the series converges for all x. For any fixed N the partial sum

SN (x) = xa
N∑

n=0

(−1)nxn

(a+ n)n!
→ ∞ as x → ∞. (5.27)

Thus, for large x a large number of terms from the power series are needed to obtain a
reasonably accurate approximation. This makes the power series useless for large x.

2. Proceeding as for Ei(x), several integration by parts yields

Eia−1(x) = xae−x

(
1

x
+

(a− 1)

x2
+ · · · + (a− 1)[n−1]

xn

)

+ (a− 1)[n]
∫ ∞

x
e−tta−(n+1)dt,

(5.28)

50



where k[n] = k(k − 1)(k − 2) · · · (k − n+ 1).

Set

Sn(x, a) = xae−x

(
1

x
+

(a− 1)

x2
+ · · ·+ (a− 1)[n−1]

xn

)
,

Rn(x, a) = (a− 1)[n]
∫ ∞

x
e−tta−n+1 dt.

(5.29)

As before Sn(x, a) is divergent as n → ∞. For fixed x the integral in Rn converges for
all a > 0 and limx→∞Rn(x, a) = 0. Have

Eia−1(x) ∼ xae−x

(
1

x
+

a− 1

x2
+ · · ·+ (a− 1)[n−1]

xn
+ · · ·

)
, (5.30)

as x → ∞.
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Appendix A: USEFULL FORMULAE

Trigonometric Identities:

sin3(t) =
3

4
sin(t)− 1

4
sin(3t),

cos3(t) =
3

4
cos(t) +

1

4
cos(3t),

sin5(t) =
5

8
sin(t)− 5

16
sin(3t) +

1

16
sin(5t),

cos5(t) =
5

8
cos(t) +

5

16
cos(3t) +

1

16
cos(5t),

(A cos t+B sin t)3 =
3

4
A(A2 +B2) cos t+

3

4
B(A2 +B2) sin t

+
1

4
A(A2 − 3B2) cos 3t− 1

4
B(B2 − 3A2) sin 3t

sin(nt) cos(mt) =
sin((n +m)t) + sin((n−m)t)

2
,

sin(nt) sin(mt) =
cos((n −m)t)− cos((n+m)t)

2
,

cos(nt) cos(mt) =
cos((n +m)t) + cos((n−m)t)

2
,

Solutions of homogeneous ODEs for y(x):

y′′ +
a

x
y′ +

b

x2
y = 0 → try y ∝ xn,

y′ =
1

4
y(4− y) → dx

dy
= (

1

y
+

1

4− y
)
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Particular solutions of common forced ODEs:

y′′ + λ2y = sinλt yp = − 1

2λ
t cos λt,

y′′ + λ2y = cos λt yp =
1

2λ
t sinλt,

y′′ + λ2y = sinαt yp =
1

λ2 − α2
sinαt for λ 6= α,

y′′ + λ2y = cosαt yp =
1

λ2 − α2
cosαt for λ 6= α,

y′ − λy = eλt yp = teλt,

y′′ − λy′ = 1 yp = − t

λ
,

y′′ − λy′ = eλt yp =
t

λ
eλt − 1

λ2
eλt

Taylor Series:

tanh(x) = x− 1

3
x3 +

2

15
x5 + · · · , (9.60)

Expansions:

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4,

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5,

(ao + a1µ+ a2µ
2 + · · · )2 = a2o + 2a0a1µ+ (2aoa2 + a21)µ

2 + · · · ,
(ao + a1µ+ a2µ

2 + · · · )3 = a3o + 3a20a1µ+ (3a2oa2 + 3aoa
2
1)µ

2 + · · · ,
(ao + a1µ+ a2µ

2 + · · · )4 = a4o + 4a30a1µ+ (4a3oa2 + 6a2oa
2
1)µ

2 + · · · ,
(ao + a1µ+ a2µ

2 + · · · )5 = a5o + 5a40a1µ+ (5a4oa2 + 10a3oa
2
1)µ

2 + · · · .

Methods:

• Lighthill: y = Y (X) is replaced with

x = X + ǫx1(X) + · · · .

• Pritulo: y = yo(x) + ǫy1(x) + · · · is replaced by

Yo(X) + ǫY1(X) + · · · with x = X + ǫx1(X) + · · · .

• MSC and Poincaré-Linstedt: τ = ω(ǫ)t
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Solutions to Selected Problems

Problems from chapter 2

1(a). Have a second order polynomial, hence two roots to find. Setting ǫ = 0 gives two distinct
roots −6 and 1 hence expand in powers of ǫ. Get

x(1) = −6− 3

7
ǫ− 12

73
ǫ2 +O(ǫ3),

x(2) = −6− 4

7
ǫ+

12

73
ǫ2 +O(ǫ3).

1(c). Polynomial of degree three, hence need to find three roots. Setting ǫ = 0 gives a double root
at x0 = 1 and a single root x0 = −2. Near the single root expand in powers of ǫ to find
x(1) = −2 + ǫ/9 + (2/243)ǫ2 + O(ǫ3). Near the double root expand in powers of ǫ1/2 to get
x(2,3) = 1± iǫ1/2/

√
3 + ǫ/18 +O(ǫ3/2).

1(e). Need to find three roots. Setting ǫ = 0 gives x0 = −1 as a double root. To find the two
roots near x0 = −1 expand in powers of ǫ1/2. Find x1/2 = −1 ± ǫ1/2 − 3ǫ/2 + O(ǫ3/2). For
the third root dominant balance is between ǫx3 and x2 so ǫx3 ≈ −x2 or x ≈ −1/ǫ. Thus set
x = −1/ǫ+ x1 + x2ǫ+ x3ǫ

2 + · · · . Fine x(3) = −1/ǫ+ 2 + 3ǫ+O(ǫ2).

1(g). Need to find four roots. Setting ǫ = 0 give a quadratic equation with two distinct roots. For
these expand in powers of ǫ giving x(1) = 1+2ǫ+18ǫ2+O(ǫ3) and x(2) = 2−24ǫ+488ǫ2+O(ǫ3).
For the other two roots the dominant balance is between ǫx4 and x2 which gives x ≈ ±iǫ−1/2.
Let µ = ǫ1/2 and y = µx = y0 + y1µ + y2µ

2 + · · · . Get y4 + µy3 + y2 − 3µy + 2µ2 = 0. The
leading order problem gives y0 = ±i and y0 = 0 as a double root. Only first two of interest.
Since ±i are distinct single roots expand in powers of µ. Find y = ±i− 2µ± 3iµ2 +O(µ3) or
x3,4 = ±i/ǫ1/2 − 2± 3iǫ1/2 +O(ǫ).
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