MATH 249, WINTER 2017, ASSIGNMENT 8

This assignment is due Friday March 31 at 3pm. It should be submitted using crowdmark. The crowdmark instructions are the same as before.

Questions.

(1) (a) (4 points) Suppose I have a set $J \subseteq \mathbb{Z}_{\geq 0}$ and for each $j \in J$ I also have sets $I_{1}^{(j)}, I_{2}^{(j)}, \ldots, I_{j}^{(j)} \subseteq \mathbb{Z}_{\geq 1}$. What is the generating series for compositions where the number of parts must be an element of J and when there are j parts, the i th part must be an element of $I_{i}^{(j)}$? Now you can answer all math 239 composition questions. Note that you won't be able to get a closed form in general, though particular math 239-type questions will typically be special cases for which you can.
(b) (3 points BONUS) Describe a class of compositions which are not a special case of the previous part but for which you can still find the generating series.
(2) (6 points)
(a) Pick a combinatorial class counted by the Catalan numbers and define it. Try Wikipedia for some good ideas, but once you pick one, try to do the rest of this problem yourself.
(b) Describe a decomposition of your class of the form

$$
\mathcal{C} \cong \mathcal{X} \cup\left(\mathcal{Z} \times \mathcal{C}^{2}\right)
$$

where \mathcal{X} and \mathcal{Z} are both single element classes.
(c) Describe a decomposition of your class of the form

$$
\mathcal{C} \cong \sum_{i \geq 0}(\mathcal{Z} \times \mathcal{C})^{i}
$$

where \mathcal{Z} is a single element classes.
(d) Check that you get the same generating function in either case.
(3) (5 points)
(a) Use generating series to find the number b_{n} of binary strings of length n in which every block of 0 s is followed by a block of 1 s of the same length. Go through all the steps, describe the decompositition, find the corresponding equation for the generating series, find a closed form for the generating series, calculate $\left[x^{n}\right] B(x)$, using partial fractions if necessary, to get a closed form for the answer.
(b) Use a combinatorial argument to prove a recurrence for b_{n}. Use the recurrence to get the closed form for the generating series in a different way.
(4) (5 points) Find the generating function for lattice walks using the steps $\uparrow, \rightarrow, \downarrow$, starting at $(0,0)$ and which never visit the same vertex twice in the same walk (so in the graph theory sense these will be paths).
(5) (5 points) Solve the recurrence $b_{n}=-3 b_{n-1}+4 b_{n-3}$ for $n \geq 3$ with initial conditions $b_{0}=9, b_{1}=-9, b_{2}=18$.

