MATH 249, WINTER 2017, ASSIGNMENT 7

This assignment is due Friday March 24 at 3pm. It should be submitted using crowdmark. The crowdmark instructions are the same as before.

Questions.

(1) (2 points) This is a little algebraic fact that will be useful to you (on this very assignment even)

Prove that for integer $n>0$

$$
\binom{1 / 2}{n}(-4)^{n}=\frac{-2}{n}\binom{2(n-1)}{n-1}
$$

(2) (4 points) Prove that for formal power series $A(x)$ and $B(x),(A B)^{\prime}(x)=A^{\prime}(x) B(x)+$ $A(x) B^{\prime}(x)$.
(3) (4 points) Let a_{n} be the number of binary strings of length n where every even block of 0 s is followed by exactly one 1 and every odd block of 0 s is followed by exactly two 1s. Show that

$$
\sum_{n \geq 0} a_{n} x^{n}=\frac{1+x}{1-x^{2}-2 x^{3}}
$$

(4) (7 points) Consider the class of ordered rooted trees where each vertex has either 0 or two children.
(a) Find a functional equation satisfied by the generating series for this class of trees.
(b) Solve the functional equation to obtain a closed form for the generating series of this class.
(c) Use the generalized binomial theorem to obtain a formula for the number of trees in this class of size n. Simplify it so that there are no binomial coefficients with negative or fractional arguments.
(5) (a) (3 points) Let a_{n} be the number of compositions of size n in which every part is at most 3. Give a closed form for the generating series $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
(b) (3 points) Let b_{n} be the number of compositions of size n in which every part is a positive integer that is not divisible by 3 . Give a closed form for the generating series $B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$.
(c) (2 points) Use the generating series from the previous parts to prove that $b_{n}=a_{n}-a_{n-3}$.
(d) (3 points BONUS) Give a combinatorial argument for the result of the previous part.

