MATH 249, WINTER 2017, ASSIGNMENT 6

This assignment is due Friday March 17 at 3pm. It should be submitted using crowdmark. The crowdmark instructions are the same as before.

Questions.

- (1) (6 points) Read section 8.4 of the math 239 notes (on Hall's theorem).
 - (a) Find an example of a graph G and a subset S of vertices of G so that for all $D \subseteq S$, $|N(D)| \ge |D|$ but there is no matching of G saturating S. This shows that the bipartite hypothesis is necessary in Hall's theorem.
 - (b) What if we modify the definition of N(D) to not include vertices which are within D itself, call this $N_1(D)$. Then show that the non-bipartite analogue of Hall's theorem using $N_1(D)$ fails in the other direction.
- (2) (4 points BONUS) Let \mathcal{H} be the Connes-Kreimer Hopf algebra of rooted trees and let \mathcal{T} be the set of rooted trees (so as an algebra $\mathcal{H} = \mathbb{Q}[\mathcal{T}]$). Suppose we have two functions $f : \mathcal{H} \to \mathcal{H}$ and $g : \mathcal{T} \to \mathcal{H}$. We can define the *convolution* of f and g, written $f \star g : \mathcal{T} \to \mathcal{H}$ by

$$f \star g = m(f \otimes g)\Delta$$

where *m* takes the two sides of a tensor and returns the single element of \mathcal{H} which is the product of the two sides (this is the multiplication of \mathcal{H} viewed in this tensor language). That is, to calculate $f \star g$ on an element $t \in \mathcal{T}$, first apply the coproduct to *t*, then apply *f* to the left hand side of all of the resulting tensors and apply *g* to the right hand side, then forget the tensor signs so we are left with a sum of products of the form f(a)g(b).

Prove that there exists a unique function $S : \mathcal{T} \to \mathcal{H}$ with the property that $\mathrm{id} \star S$ is the function which takes an element of $\mathbb{Q}[\mathcal{T}]$ to its constant term as a polynomial.

Hint: unwind the meaning of $id \star S$ being this function to get a recursive definition for S. This S is called the antipode of \mathcal{H} .

(3) (5 points) In the graph Hopf algebra where the coproduct runs over bridgeless subgraphs, calculate

 $\Delta(K_4)$

For this application please keep loops and multiple edges that appear during contraction.

- (4) (8 points) Let n be a nonnegative integer. A composition of n is a sequence (m_1, m_2, \ldots, m_k) of positive integers such that $m_1 + m_2 + \cdots + m_k = n$. The number of compositions of n is 2^{n-1} . Now you give a few different proofs of this fact.
 - (a) Give a proof that the number of compositions of n is 2^{n-1} using a bijection with binary strings. Show the details.
 - (b) Give a proof that the number of compositions of n is 2^{n-1} by building compositions of n out of smaller compositions. Show the details.
 - (c) Give a bijection between compositions and multisets.

(5) (6 points) Let $n \ge 0$ and $t \ge 2$ be integers. This question concerns the identity

$$\binom{n+t-1}{t-1} = \sum_{j=0}^{n} \binom{j+t-2}{t-2}$$

- (a) Give a combinatorial proof of this identity.
- (b) Give an algebraic proof of this identity.
- (6) Recall that a matroid is a pair $M = (E, \mathcal{I})$, where E is a finite 'ground' set and \mathcal{I} is a collection of subsets of E such that
 - $\varnothing \in \mathcal{I}$,
 - if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$, and
 - for all $I, J \in \mathcal{I}$ with |I| < |J| then there exists $e \in J I$ such that $I \cup \{e\} \in \mathcal{I}$.
 - (a) (2 points) Given $e \in E(M)$, let $M \setminus e = (E, \{I \in \mathcal{I} : e \notin I\})$ and $M/e = (E, \{I \subseteq E \{e\} : I \cup \{e\} \in \mathcal{I}\})$. Show that $M \setminus e$ and M/e are matroids.
 - (b) (3 points) Let \mathcal{I}^* be the collection of subsets of E whose complement contains a maximal element of \mathcal{I} . (In other words, the maximal sets in \mathcal{I}^* are the complements of the maximal sets in \mathcal{I} .) Show that M^* is a matroid, and that $(M/e)^* = M^* \setminus e$ for all $e \in E$.
 - (c) (3 points BONUS) For a real matrix A with columns indexed by E, let M(A) denote the matroid (E, \mathcal{I}) , where \mathcal{I} is the collection of subsets of E for which the corresponding set of columns of A is linearly independent. Show that if B is an $r \times (n r)$ matrix and $A = [I_r|B]$, then $M(A)^* = M(A^*)$, where A^* denotes the matrix $[B^T|I_{n-r}]$ whose columns are also indexed by E. Note that you've seen this before on an assignment. What is the connection?