MATH 249, WINTER 2017, ASSIGNMENT 6

This assignment is due Friday March 17 at 3pm. It should be submitted using crowdmark. The crowdmark instructions are the same as before.

Questions.

(1) (6 points) Read section 8.4 of the math 239 notes (on Hall's theorem).
(a) Find an example of a graph G and a subset S of vertices of G so that for all $D \subseteq S,|N(D)| \geq|D|$ but there is no matching of G saturating S. This shows that the bipartite hypothesis is necessary in Hall's theorem.
(b) What if we modify the definition of $N(D)$ to not include vertices which are within D itself, call this $N_{1}(D)$. Then show that the non-bipartite analogue of Hall's theorem using $N_{1}(D)$ fails in the other direction.
(2) (4 points BONUS) Let \mathcal{H} be the Connes-Kreimer Hopf algebra of rooted trees and let \mathcal{T} be the set of rooted trees (so as an algebra $\mathcal{H}=\mathbb{Q}[\mathcal{T}]$). Suppose we have two functions $f: \mathcal{H} \rightarrow \mathcal{H}$ and $g: \mathcal{T} \rightarrow \mathcal{H}$. We can define the convolution of f and g, written $f \star g: \mathcal{T} \rightarrow \mathcal{H}$ by

$$
f \star g=m(f \otimes g) \Delta
$$

where m takes the two sides of a tensor and returns the single element of \mathcal{H} which is the product of the two sides (this is the multiplication of \mathcal{H} viewed in this tensor language). That is, to calculate $f \star g$ on an element $t \in \mathcal{T}$, first apply the coproduct to t, then apply f to the left hand side of all of the resulting tensors and apply g to the right hand side, then forget the tensor signs so we are left with a sum of products of the form $f(a) g(b)$.

Prove that there exists a unique function $S: \mathcal{T} \rightarrow \mathcal{H}$ with the property that id $\star S$ is the function which takes an element of $\mathbb{Q}[\mathcal{T}]$ to its constant term as a polynomial.

Hint: unwind the meaning of $i d \star S$ being this function to get a recursive definition for S. This S is called the antipode of \mathcal{H}.
(3) (5 points) In the graph Hopf algebra where the coproduct runs over bridgeless subgraphs, calculate

$$
\Delta\left(K_{4}\right)
$$

For this application please keep loops and multiple edges that appear during contraction.
(4) (8 points) Let n be a nonnegative integer. A composition of n is a sequence $\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ of positive integers such that $m_{1}+m_{2}+\cdots+m_{k}=n$. The number of compositions of n is 2^{n-1}. Now you give a few different proofs of this fact.
(a) Give a proof that the number of compositions of n is 2^{n-1} using a bijection with binary strings. Show the details.
(b) Give a proof that the number of compositions of n is 2^{n-1} by building compositions of n out of smaller compositions. Show the details.
(c) Give a bijection between compositions and multisets.
(5) (6 points) Let $n \geq 0$ and $t \geq 2$ be integers. This question concerns the identity

$$
\binom{n+t-1}{t-1}=\sum_{j=0}^{n}\binom{j+t-2}{t-2}
$$

(a) Give a combinatorial proof of this identity.
(b) Give an algebraic proof of this identity.
(6) Recall that a matroid is a pair $M=(E, \mathcal{I})$, where E is a finite 'ground' set and \mathcal{I} is a collection of subsets of E such that

- $\varnothing \in \mathcal{I}$,
- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$, and
- for all $I, J \in \mathcal{I}$ with $|I|<|J|$ then there exists $e \in J-I$ such that $I \cup\{e\} \in \mathcal{I}$.
(a) (2 points) Given $e \in E(M)$, let $M \backslash e=(E,\{I \in \mathcal{I}: e \notin I\})$ and $M / e=$ $(E,\{I \subseteq E-\{e\}: I \cup\{e\} \in \mathcal{I})$. Show that $M \backslash e$ and M / e are matroids.
(b) (3 points) Let \mathcal{I}^{*} be the collection of subsets of E whose complement contains a maximal element of \mathcal{I}. (In other words, the maximal sets in \mathcal{I}^{*} are the complements of the maximal sets in \mathcal{I}.) Show that M^{*} is a matroid, and that $(M / e)^{*}=M^{*} \backslash e$ for all $e \in E$.
(c) (3 points BONUS) For a real matrix A with columns indexed by E, let $M(A)$ denote the matroid (E, \mathcal{I}), where \mathcal{I} is the collection of subsets of E for which the corresponding set of columns of A is linearly independent. Show that if B is an $r \times(n-r)$ matrix and $A=\left[I_{r} \mid B\right]$, then $M(A)^{*}=M\left(A^{*}\right)$, where A^{*} denotes the matrix $\left[B^{T} \mid I_{n-r}\right]$ whose columns are also indexed by E. Note that you've seen this before on an assignment. What is the connection?

