MATH 249, WINTER 2017, ASSIGNMENT 4

This assignment is due Friday February 10 at 3pm. It should be submitted using crowdmark. The crowdmark instructions are the same as before.

Questions.

(1) (5 points) Suppose G is a k-regular graph on v vertices with adjacency matrix A. Let τ be the least eigenvalue of A, let I be the identity matrix and J the all ones matrix. Show that the matrix

$$
A-\tau I-\frac{k-\tau}{v} J
$$

has all nonnegative eigenvalues. Hint: use the fact that for a symmetric matrix we can choose orthogonal eigenvectors and consider the other eigenvalues of A.
(2) (3 points) Let Φ be the Kirchhoff polynomial and let

$$
\Psi=\sum_{T} \prod_{e \notin T} a_{e}
$$

where the sum runs over spanning trees of G and the conventions are otherwise the same as for the Kirchhoff polynomial. Prove that

$$
\left(\prod_{e \in E(G)} a_{e}\right) \Phi\left(\frac{1}{e_{1}}, \ldots, \frac{1}{e_{|E(G)|}}\right)=\Psi\left(e_{1}, e_{2}, \ldots, e_{|E(G)|}\right)
$$

(3) (10 points) Let G be a graph with oriented incidence matrix E. Let Λ be the diagonal matrix with (i, i) th entry the edge variable a_{i}. Let \widetilde{E} be E with one row removed. Consider the block matrix

$$
M=\left[\begin{array}{cc}
\Lambda & \widetilde{E}^{T} \\
-\widetilde{E} & 0
\end{array}\right]
$$

(a) Prove that $\operatorname{det}(M)=\Psi$ (where Ψ is as defined in the previous question.)
(b) Interpret $\left.\operatorname{det}(M)\right|_{a_{1}=0}$ in two ways, first as Ψ for some graph and second in terms of spanning forests of G with edge 1 removed.
(c) Let $M_{1,2}$ be the matrix M with the first row and second column removed. Suppose edges 1 and 2 meet at a vertex v. Characterize which monomials appear with nonzero coefficients in $\operatorname{det}\left(M_{1,2}\right)$ using spanning forests of G with edges 1 and 2 removed.
(4) (4 points) Give two different proofs that the Petersen graph is nonplanar. At least one of them cannot use results that we didn't prove (unless you prove them yourself).
(5) (a) (5 points) Which circulants (with any number of gap parameters) on 8 vertices are planar?
(b) (3 points BONUS) What can you say abound the planarity of a circulant graph given only the number of gap parameters? (You can assume the gap
parameters are distinct and at most $n / 2$.) If you are feeling ambitious you could try to fully characterize the planar circulants.
(6) (4 points) Give an example of a planar embedding of a graph graph in which every vertex has degree 3 or 4 , every face has degree 4 or 5 , but which the graph contains a 3-cycle.
(7) (4 points) Show that a regular connected graph with a planar embedding where each face is a 4 -cycle has at most eight vertices.

